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Abstract 

The paper is focusing on extracting the vibration signals of circuit breakers by using Empirical Mode Decomposition (EMD) that 

improved using least squares to lower the impact on experiment results effectively, which is caused by the EMD inherent end effects. 

First, work on the EMD and wavelet transform decomposition of both normal and loosening signals, and then to calculate the energy 

entropy. The results show that the value of improved EMD energy entropy is significantly larger than the wavelet energy entropy. So 

the improved EMD energy entropy can improve the accuracy of fault diagnosis and provides useful help for the mechanical fault 
diagnosis based on circuit breakers vibration signals. 
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1 Introduction 

 

In traditional vibration, signals analysis theory, some 

people may totally do signal analysis in time domain, 

whereas some will do that in frequency domain totally. In 

order to improve the accuracy of mechanical vibration 

signals analysis, time- frequency analysis technology is 

lead up to the fault diagnosis of circuit breaker. For 

instance, Fourier transform, FFT transform, wavelet 

transform, wavelet packet transform, and so forth [1]. 

However, Fourier transform is the fundamental of 

whether FFT transform or wavelet transform. So it is 

impossible to get away from the inherence limitations of 

Fourier transform. That is for the analysis of non-

stationary signal, which must be approximated into 

stationary signal analysis. 

Empirical Mode Decomposition (EMD) is a kind of 

method for the non-stationary signal analysis. According 

to their own characteristic of time scale to signal 

decomposition, without setting any base function 

beforehand. With the base function to automatically 

generate and self-adaptive multi-resolution feathers, it has 

the incomparable advantages in the online analysis of 

non-stationary signal. However, there also exist some 

self-limitations in EMD, the end effect is the one can’t be 

ignored [2]. In this paper, the EMD was improved, and 

with the fusion of energy, entropy is applied to fault 

diagnosis of circuit breaker, to improve the accuracy of 

diagnosis. 

 

 

 

 

2 End effect 

 

In the EMD, envelope average is a technique to get spline 

interpolation fitting at the maximum and minimum 

extreme points of signals and then to calculate the 

average value of these data. If the endpoints on two ends 

of the data are not the extreme points, the cubic spline 

curve which constitutes the upper and lower envelope 

will produce offset at both ends of the data sequence. 

Then this will increase the error continuously when we 

do the spline interpolation and finally generate fitting 

error in data [3].  

During the “screening” process in EMD, due to the 

uncertainty of extreme value at endpoints, fitting error 

may be produced in every single spline interpolation and 

these errors can be accumulated continuously. When we 

deal with the high-frequency components, end effect will 

be limited in a very small interval due to a short distance 

between extreme values and a small time scale. However, 

when we handle the low-frequency components, situation 

seems getting worse, because of the large time scale 

feature existing in low-frequency components, a big 

fluctuation will occur at the endpoints by the using of 

cubic spline interpolation. So if we cannot deal with it 

timely or properly, such fluctuations will "infect", and 

even cause EMD results in very serious distortion, which 

led to the failure of EMD [4]. 

In order to further illustrate the impact on signals of 

the EMD end effect, here I will build a function to 

emulate. 

( ) sin(40 / 6) 0.2sin(20 )x t t t     , (1) 
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1( ) sin(40 / 6)x t t    

2 ( ) 0.2sin(20 )x t t , (2) 
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FIGURE 1 Original signal 
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FIGURE 2 The result of Empirical Mode Decomposition 

Due to space limitations, only intercept eight IMF 

components. These eight components are in accordance 

with the frequency from large to small order. From figure 

2, it will be easily noticed that there exist end effect both 

in IMF2 and IMF3. Waveform aberrance happens both at 

the left and the right endpoints. Due to the impact of 

IMF2, the waveform aberrance of IMF3 is getting 

serious. If we do not deal with these end effects in 

advance, the Hilbert spectrum will be distorted and the 

EMD will fail. In this way, we are almost unable to get 

the correct signal information, which will influence our 

final judgment. 

 

3 The principle of improved EMD 

 

Now, we are using the endpoint extension to solve the 

EMD end effect. For the extending method, many 

scholars have done amounts of research at home and 

abroad. For instance, Daji Huang [5] adopted the mirror 

extension method. Qifeng Luo [6] adopted the feature 

wave method. Yongjun Deng [7] used the RBF neural 

network method. Yushan Zhang [8] adopted the method 

of support vector regression machines to extend data. All 

of them have achieved good effect. In this paper, we will 

extend boundary by using the least-squares method.  

Assume that the sampling time of vibration signals 

are equally spaced. The sampling data is 

{ ( )},( 1,2, , )x k k n  and the sampling interval is 

1t  , so the polynomial function is 

2

0 1 2(̂ ) , 1,2, ,m

mx k a a k a k a k k n      . We will 

determine the undetermined coefficient 

( 0,1,2, , )ja j m  of (̂ )x k  to make the quadratic sum 

of accumulated error be the smallest, which includes 

(̂ )x k  and original data ( )x k . 

2 2

1 1 1

ˆ[ ( ) ( )] [ ( )]
n n m

j

j

k k j

E x k x k a k x k
  

      . (3) 

The following is an equation to guarantee an average 

value for E . 

1 0

2 [ ( )] 0, 1,2,...,
n m

i j

j

k j

E
k a k x k i m

x  


   


  , (4) 

Let us take the partial derivatives respect to ja  in 

order to obtain m 1  linear equations. We will get the 

coefficients ja  respect to every term by solving the 

equations. The m is the order of the polynomial and its 

values range from 0 to m. Once we set m equal to 0, we 

can calculate its constant term. 

0 0

0

1 1

( ) 0
n n

k k

a k x k k
 

   , (5) 

The constant term is 0

1

1
( )

n

k

a x k
n 

  . And the 

multinomial coefficient is ja . Next we will obtain the 

fitting curve of this polynomial. According to the fitting 

curve and the data length of instantaneous frequency, we 

will reconsider the value, get the modified instantaneous 

frequency. 

Figure 4 is the graph of improved EMD. Let us 

compare figure 4 with figure 2. In figure 4, it can be 

easily found that the end effects in IMF2 and IMF3 have 

been improved evidently. This strongly proves that end 

effect impact on original function can be lowered by the 

introduction of the EMD, which was improved through 

least squares. After we process the original signals using 

improved EMD method, it will be helpful to do the 

waveform analysis and also help a lot to improve the 

accuracy of fault diagnosis. 
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FIGURE 3 The steps of improved EMD method 

 

FIGURE 4 The graph of improved EMD 

 

4 The analysis of vibration signals using improved 

EMD  

 

The original waveform of vibration signals is showing in 

Figure 5, while the graph of Figure 6 is showing the 

original waveform of loosening signals. We are able to 

see that there is some obvious difference in the waveform 

of the normal and the loosening situation showing on the 

two time domain graphs. However, we have lots of 

difficulties in finding out the specific situation and the 

types of faults just through the comparison in time 

domain graphs. Therefore, we need to apply the improved 

EMD method to decompose the normal and the loosening 

signals separately. The IMF results are showing in both 

Figure 7 and Figure 8. 

   
FIGURE 5 original vibration signals  

 
FIGURE 6 Loosening vibration signals 

 

 
FIGURE 7 Applying the improved EMD to decompose normal signals 

 
FIGURE 8 Applying the improved EMD to decompose loosening 

signals 
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After the decomposition, we get 11 IMF components. 

Here we only list the 8 components in front. In the 

vibration signal, the key signal mainly concentrated in the 

high frequency parts, which are the first few components 

of the IMF. 

 

5 Applying wavelet decomposition to the analysis of 

vibration signals 

 

The principle of wavelet transform won’t be displayed 

here. We did five wavelet decompositions to obtain the 

high-frequency components of normal and loosening 

signals that was shown in Figure 9 and Figure 10 

respectively. For an easy observing, we increase the time 

to 104 times of the normal. From Figure 9 we can clearly 

see that vibration happens at 0.1s, whose signal ends up 

at 0.12s and the measure of it lasts 1s. However, the 

vibration continues to 0.5s in Figure 10. The huge 

denoising function of wavelet transform shows good 

results in the vibration signals processing. 
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FIGURE 9 Wavelet decomposition of normal waveform 
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FIGURE 10 Wavelet decomposition of loosening waveform 

 

6 Vibration signals analysis through power entropy 

and the EMD 

 

Information entropy is described mathematically like this: 

Assume that 
1 2( , , , )np p p p  is an uncertain probability 

distribution and k is an arbitrary constant, so the 

information entropy of this distribution is 

1

( ) ln
n

i i

i

s p k p p


   . (6) 

After a calculation, we know that if the system 

information entropy s 0 , it will be a certain system. No 

events will happen except the ones that had happened. 

The probability of event occurrence is strongly not 

uniform, so the uncertainty is 0 [9]. 

The power frequency distributions of vibration signals 

are different, which are generated in different status of 

different circuit breakers. Even in the same status, due to 

the changeable environment, there is difference in this 

distribution. We need a standard to value the amount of 

power. So the concept of power entropy is coming up. 

When we apply the EMD method to decompose a signal, 

different frequency terms will be included in the n IMF 

components. The energy is 
1 2, , nE E E , and it’s a 

partition in frequency domain. The definition of EMD 

power entropy is  

1

ln
n

E i i

i

H p p


  . (7) 

The 
ip  in this equation is the percentage of power 

in the ith IMF component, that is 
i ip E E , and 

1

n

i

i

E E


 . According to the definition of information 

entropy, the more uniform the distribution of 
ip  is, the 

larger the 
EH  value will be, whereas the smaller. 

 
FIGURE 11 The graph of comparison of wavelet power entropy 

Let us work on the calculation of the power entropy 

value after applying the EMD method and wavelet 

transform decomposition to normal and loosening 

signals. Power entropy values for ten groups signals by 

using wavelet transform decomposition are shown in 

Figure 11. The above line represents loosening signals, 

while the following one is for normal signals [10]. 

Power entropy values for normal and loosening 

signals by using improved EMD method are shown in 

Figure 12.  

 
FIGURE 12 Graph of the comparison of improved EMD power entropy 

When we compare the Figure 11 with Figure 12, we 

can find that the switching signals in normal status are 

smaller than that in fault status and they are relatively 

centralized. The mechanical fault vibration signals of 

circuit breakers are often at high frequency, and 
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resonance is hard to happen. So the power signals are 

relatively uniform and centralized. Power entropy can be 

used as the fingerprint for circuit breaker fault. 

Now we are going to get the average value of the 

signals that we measured to obtain the improved EMD 

and wavelet transform entropy value both under normal 

and loosening situations. Wavelet entropy under normal 

state is 0.403 and under loosening situations is 0.656. The 

improved EMD entropy under normal state is 0.426 and 

under loosening situations is 0.803. 

It tells us that the entropy value of improved EMD 

under loosening situation is larger than that we get under 

the normal situation. Meanwhile, the result is much more 

obvious than that by using wavelet. The bigger entropy 

value exists in these two statuses, the easier it can be 

distinguished. From this point, we can realize that the 

improved EMD method is better than the wavelet 

transform evidently. This kind of entropy value analysis 

method gives us a lot of convenience for training once the 

data permits later. 

Using the improved Empirical Mode Decomposition 

to process the original signal, we can effectively reduce 

the influence of end effect on the decomposition results 

and overcome the inherent disadvantages of EMD. 

Therefore, we combined it with energy entropy to do the 

analysis of vibration signals and achieved good effect.  
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