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Abstract 

The cloud platform provides abundant resources and services for users. More and more mobile users began to use the cloud services. 

They have higher real-time demands on service. The size of traditional virtual machine (VM) operating system is basically large. It 

will take many resources in deployment and communication process, and always affect the real-time performance of system. To 

reduce communication overhead and improve deployment speed of VMs, this paper proposes an approach of customized VM image 

with LFS. LFS can reduce the size of VM image efficiently and enable flexible customization of the VM image by incremental 

customization. The experimental results show us that the size of VM image generated by the proposed method is smaller than the one 
generated by kernel tailoring technology in system overhead. Meanwhile it is also faster in running speed. 
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1 Introduction 

 

Cloud computing is at the forefront of the information 

technology. With the development of mobile devices and 

the increasing requirement of mobile user, cloud 

computing begin to be applied in providing service for 

mobile users. The size of traditional VM image is so 

large that it has a profound impact on real-time. If the 

size of VM image could be decreased, we can 

realistically reduce system overhead and communication 

overhead for cloud platform. With cloud computing 

application development on mobile platforms and other 

devices, the micro-kernel technology will be more 

demanded under cloud computing environment. This 

paper will analyze how to get customized VM image 

through LFS. The full name of LFS is "Linux from 

Scratch" [1]. LFS refers to building a Linux system 

manual or an idea rather than a release version of Linux. 

Unlike ordinary Linux installation, LFS guides to 

compile the open-source software packages into a needed 

smallest, fastest Linux system through the host system. 

Users can control all features of the new system during 

the build process such as Installation Directory and File 

organization form, parameters and permissions settings, 

etc. We can improve the real-time performance 

effectively by using the customized system. 

In section 2 of this paper, we will give a brief 

introduction of related work about current VM image 

customized methods. In section 3, the design and 

implementation of customize VM image through LFS 

will be presented in detail. Than in section 4, experiments 

undertaken and results obtained will be shown which 

demonstrate that the new method provides an effective 

solution. Finally, we will conclude the paper in section 5. 

 

2 Relevant work 

 

Because of the large size of the traditional VM image, the 

real-time performance of system is poor and too many 

system resources are employed. It becomes necessary to 

reduce the system size. Although many Linux kernel-

cutting methods can efficiently decrease the size of Linux 

kernel, these methods are usually used to customize the 

Linux kernel for embedded system [2, 3] and many other 

specific fields [4]. These methods are not appropriate for 

cloud computing and micro-kernel technology is not yet 

universally applied in the cloud computing.  

Application of virtualization technology proposed 

software as a service model. As App-V [5] of Microsoft, 

ThinApp [6] of VMware and Citrix XenApp [7], 

individual does not need to consider the process of 

installation, maintenance and upgrade. These operations 

can be completed by software service providers. Users 

obtain the right to use the software via user identity 

authentication mechanism. They distinguish the 

application and the OS, the centralized management, the 

maintenance and upgrading of the software. Software 

provider on-demand provides the software for user; users 

can use them without installation. However, most of the 

proposed plans are business plans for windows, and their 

application needs to run with network support. Therefore, 

OpenAppV [8] proposed on-demand Customized Virtual 

Machine Instance System. These methods realized 

software customization, but did not reduce the system 
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size. In general, VM developed by the traditional 

methods is often difficult to be understood and modified. 

It is not satisfied enough in extensibility and reusability. 

It is very difficult to dynamically change and extend the 

VM. It needs frequently to full-manually override the 

existing VM [9, 10]. Reference [11] proposed An 

Implementation Approach to Custom-Built Virtual 

Machines. However, this method is relatively slow and 

not suitable for high real-time systems. To reduce the 

system size and to improve the real-time, we will analyze 

getting the customized VM image through LFS in this 

paper.  
 

3 VM image customized with LFS 
 

At present, jhalfs can realize the automatic installation of 

LFS by extracting the command from the XML of 

lfsbook. jhalfs can choose flexibly whether LFS process 

tests the installation and optimizes the system etc. by 

setting common/config file under the jhalfs. In order to 

meet users’ requirements, we need generate customized 

VM image with the minimum matching image 

incremental installation, for which, we need to get the 

configuration information of users’ requirements through 

the management process of the cloud platform. Therefore, 

this paper analyzes how to realize automatic installation 

of LFS, and the application software and services based 

on our own shell scripts. 

GCC is a GNU [12] compiler containing C / C + + 

compiler, which can compile the source code program to 

generate the target file in combination with other basic 

tools. Binutils [14] is a set of binary tools including 

connectors, assembler and other tools used in the target 

file and it can transform the target file into an executable 

file. Make is a program similar to the shell script, which 

can control the entire compile-link process through 

reading a makefile that contains the source code and 

document library dependencies and rules. Glibc, the 

crucial link in the production process of LFS, is also very 

important for Linux. All dynamic linker must use it. In 

the process, aforementioned four tools are dependent on 

the C Runtime library glibc. 

The toolchain is a temporary build environment. It is 

used to generate the target system that includes all 

necessary tools such as GCC and binutils. Their versions 

have exactly the same as the tools of the target system. 

As the Linux kernel source code we want to compile 

requires a specific toolchain and glibc version and an 

environment that are inconsistent with the host system. 

Therefore, we have to first build a specific toolchain and 

glibc to get the target system. For this purpose, all the 

tools on the toolchain are compiled by their respective 

source codes. GCC, binutils, make, common tools in the 

compilation process are dependent on glibc. Similarly, 

the glibc needed is a particular one rather than the one in 

the host system. This particular glibc is compiled by 

another tool chain, which we call a temporary toolchain. 

While this temporary toolchain is compiled by host 

systems obtained through a set of own compilation tools, 

glibc, other C libraries and Linux kernel, etc. 

The implementation process of LFS shown in Figure 

1: 
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FIGURE 1 LFS implementation process 

1) Temporary tool chain compiled by source code of 

the tool set on the host system; 

2) Get an independent glibc library by compile the 

glibc source code using the temporary tool chain? 

3) Use the independent glibc library in the host 

system environment to build independent toolchain, 

independent build environment completed; 

4) Compile the Linux source code package in the 

independent build environment and build the Linux 

kernel for the operating system. 

5) Get the user request information and compiled 

required software and services in the target system 

according to user requests. Then generate customized 

system image. 

6) Finally, do some final changes work as removing 

the source package, temporary toolchain, and 

independent build environment, and restore the original 

system parameters and configuration files. 

The process of customizing VM image as showed in 

Fig. 2: 
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FIGURE 2 LFS implementation process 
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3.1 USER INTERFACE 

 

It is easy to access and operate by using the interactive 

interface of traditional web, and gives a list of application 

software and services in a platform. User can log in the 

platform for selecting their needs through a user 

interactive interface, as showed in Fig. 3. Sent through 

the network management process to the cloud platform, 

and user request information is stored in the management 

side. 
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FIGURE 3 User interface 

 

Shown in Fig. 4, the applications and components 

provided by the management side of the cloud platform 

also can be dynamically updated when new applications 

or components need to be updated to the cloud platform. 

Administrators use an interface to upload applications or 

components. When the list of components is missing 

from the system components that applications relied on, it 

needs administrators upload the missing system 

components and the management process generated script 

code used to complete the installation of the 

customization process. Administrators of cloud platform 

can dynamically update or delete the existing applications 

and components. Management process records the 

information when administrators upload applications and 

components. The information mainly includes five parts: 

(a) id of application or component, (b) name of 

application or component, (c) size of application or 

component, (d) components information that application 

relied on, (e) installation script information. 
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FIGURE 4 Applications and services management interface 

 

3.2 CONFIGURATION FILE 

 

Users select their needs through user interface and send 

the request information to the management process. The 

management process receives the request information and 

extracts it to form a customized XML configuration file. 

The information of the configuration file mainly includes 

three parts: (a) hardware requirements include CPU, hard 

disk, memory, and number of computing nodes, (b) 

applications requirements, (c) components requirements. 

We use id to record applications and components that 

user requested in configuration file. Configuration file 

fragment is shown as follows: 

 

1: <user-request> 

2:   <hardware name=”userid”>testuser</hardware> 

3:   <hardware name=”vmnum”>20</hardware> 

4:   <hardware name=”cpu”>1</hardware> 

5:   <hardware name=”ram”>1024</hardware> 

6:   <hardware name=”disk”>80</hardware> 

7:   <application name=”id”>2, 6, 8, 9, 11</application> 

8:   <component name=”id”>4, 7, 14</component> 

9: </user-request> 

 

Lines 3-6 record hardware requirements include the 

size of virtual cluster, frequency of VM CPU, memory 

size of VM and disk size of VM. Lines 7-8 record the id 

of applications and components that satisfy the user 

requirements. 

 

3.3 CUSTOMIZED IMAGE 

 

The management process extracts the information Iconf 

from the configuration file. The information of Iconf 

includes the user request. According to Iconf, user needs K 
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VM nodes. There are N exist VM image copies stored on 

cloud platform. The VM image copy is used to generate 

VM image that users customized previously. The initial 

minimized image is P0. The match degree is calculated by 

matching configuration file information of VM image 

copy with Iconf. The process traverses the copy and 

matches the copy of node c (0 =< c < N) with Iconf. If the 

copy node c exists other applications or services beyond 

Iconf, the node cannot be a matching node. If the copy of 

node c does not exist other applications or services and 

the match degree is greater than the former one, then 

Ptarget = Pc. If the copy node c matches exactly with Iconf, 

then Ptarget = Pc, now finish the traversal process to get 

customized VM image Ptarget. If there is not an exactly 

matching node, we need to completely traverse the copy 

in order to get Pc with the largest match degree to obtain 

customized VM image Ptarget and to install the application 

software and services in Iconf that Ptarget does not have to 

get customized VM image Ptarget. Then we store it in a 

virtual node and update the copy of the image to store 

this node information in that copy. The customized VM 

image generation process is as follows: 
 

1:   P0 ← initial VM image copy 

2:   S0 ← size of P0 

3:   I0 ← configuration file information of P0 

4:   M0 ← match degree of P0 

5:   Ptarget ← target VM image copy 

6:   Starget ← size of Ptarget 

7:   Mtarget ← match degree of Ptarget 

8:   Ptarget = P0, Starget = S0, Mtarget = M0 

9:   c = 0 

10: While c < N do 

11:     If Ic exactly matches with Iconf 

12:         Ptarget = Pc 

13:         Break 

14:     Else 

15:         If Ic exist other applications or components 

information beyond Iconf 

16:             Sc = 0, Mc = -1 

17:         Else 

18:             If Mc > Mtarget 

19:                 Ptarget = Pc, Starget = Sc, Mtarget = Mc. 

20:             End if 

21:             If Mc = Mtarget and Starget < Sc 

22:                 Ptarget = Pc, Starget = Sc, Mtarget = Mc 

23:             End if 

24:         End if 

25:     End if 

26:     c = c + 1 

27: End while 

28: If c == N 

29:     Ptemp ← According to Iconf, complete the Ptarget 

installing 

30:     Ptarget = Ptemp 

31: End if 

32: store the Ptarget and Itarget on cloud platform, set the host 

as target host 

33: generate customize VM image through Ptarget, create K 

VM nodes 
 

Lines 1-4 give VM image copy P0 as input that has no 

extra applications or components. P0 is generated by LFS 

process. Lines 5-8 initialize the target VM image copy 

Ptarget as output. Lines 10-27 find the target VM image 

copy that mostly satisfies the user’s requirements. If the 

VM image copy exists other applications or components 

beyond the user’s requirements, it is not the VM image 

we need. If there are two or more VM image copies 

mostly satisfy the user’s requirements, we should 

compare the size of these VM image copies and choose 

the biggest one as the target VM image copy. Lines 28-30 

show that if there is no VM image copy which exactly 

satisfies the user’s requirements, we can get a VM image 

copy that satisfies most the user’s requirements, then 

according to user’s requirements, complete the target VM 

image copy installation and get a new target VM image 

copy. Lines 32-33 store the target VM image copy on 

cloud platform and set the host that stored the target VM 

image copy as target host. Finally we generate customize 

VM image through the target VM image copy and create 

K VM nodes that satisfy the user hardware requirements. 

 

4 Experiment analysis 

 

To establish a minimum system requires about 1.3GB of 

the partition so as to have enough space to store and 

compile all the source packages. A larger space (2~3GB) 

is needed to install the application software and services 

that the user needs. The LFS system itself does not 

occupy so much space and most of the space required is 

used to provide adequate temporary space for the 

software compiler. It takes many temporary spaces to 

compile the package. However, these temporary spaces 

can be recycled after software installation done. We 

would better to use a small hard disk partition as swap 

space because memory (RAM) is not always enough 

during the compilation process. The kernel uses swap 

space to store the data in order to free up memory space 

for running processes. The swap partition that LFS 

system uses can be the same with the one that the host 

system uses. Therefore, we do not have to create a new 

one for the LFS system when the host system already has 

a swap partition. In this paper, we suggest getting 

customized VM image through LFS in order to achieve 

the goal of reducing system and communication 

consumption. 

Experiment Environment: In our experimental 

configuration, hosts with the same type are selected. We 

use HP proLiant ML350 G6 (AU662A) as hosts in cloud 

platform. These hosts are configured with Xeon E5506 

2.13GHz four core processor, 8GB DDRIII RAM, 4TB 

7.2K 6Gbps hard disk and NC326i PCI Express 

1000Mbit/s NIC. In order to simplify the process of 

customized VM image generation, we install LFS Live 

CD 6.2-3 with kernel 2.6.16.26 on all hosts as host 

system. Virtual Tool is Xen 4.1.1. We configure all VMs 

with single core, 40GB VM hard disk. To ensure parent-
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VM boot successfully, we configure VM memory size 

with 512M.  

Experiment: To reduce system resource occupation 

and to fundamentally solve the problem of too long 

virtual machine downtime in the deployment process, the 

VM image size should be as small as possible. We 

compare the customized VM image generated by LFS 

with current lite release version of Linux. 

Experimental comparison results are showed in 

Figure 5, 6. We customize VM image as web servers. We 

can limit the size of customized VM image generated by 

LFS at 38.63M. Comparing with other lite release version 

of Linux, LFS visibly reduced the system consumption, 

simplified customize process, and it is much easier in the 

customize process. It also has advantage in booting speed 

and system consumption. We configure VM memory size 

with 512M. LFS takes only 6.76s to complete the booting 

process. The boot speed of VM that load customized VM 

image generated by LFS is faster than others. By 

reducing the VM image size, we effectively reduce the 

VMs communication consumption. 
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5 Conclusion 

 

Cloud computing has a promising development prospects 

and the related key technologies are growing rapidly. In 

this paper, we give a summary of the existing VM image 

customized technology and present the design, 

implementation and evaluation of customized VM image 

through LFS. We customize the VM image with LFS in 

order to reduce the VM image size, thus decrease the 

system overhead and communication overhead. The 

customized VM satisfies the user’s request and consume 

less space. 

To further improve the performance of VM image 

customized, there are still many problems that need to be 

solved in the future. In customized VM image generation 

process, it traverses the copy to find the target host. It is 

not suitable for high real-time demanded cases. We plan 

to design a faster matching method to find the target host. 

We find that the target host takes only the match degree 

in consideration. In a cloud platform with workload or in 

a heterogeneous cloud platform, it is not enough and the 

target host we find may be not the best one. We plan to 

add the performance parameter for finding the target host. 
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