

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

62
Information and Computer Technologies

An approach of VM image customized through Linux from
scratch on cloud platform

Gaochao Xu1, 2, Yushuang Dong1*, Bingyi Sun1, Xiaodong Fu1, Jia Zhao1
1 Department of Computer Science and Technology, JiLin University, Changchun 130012, China

2 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

Received 1 March 2014, www.tsi.lv

Abstract

The cloud platform provides abundant resources and services for users. More and more mobile users began to use the cloud services.

They have higher real-time demands on service. The size of traditional virtual machine (VM) operating system is basically large. It

will take many resources in deployment and communication process, and always affect the real-time performance of system. To

reduce communication overhead and improve deployment speed of VMs, this paper proposes an approach of customized VM image

with LFS. LFS can reduce the size of VM image efficiently and enable flexible customization of the VM image by incremental

customization. The experimental results show us that the size of VM image generated by the proposed method is smaller than the one
generated by kernel tailoring technology in system overhead. Meanwhile it is also faster in running speed.

Keywords: Cloud computing, Linux from scratch, Customized virtual machine

* Corresponding author e-mail: yushuangdong@gmail.com

1 Introduction

Cloud computing is at the forefront of the information

technology. With the development of mobile devices and

the increasing requirement of mobile user, cloud

computing begin to be applied in providing service for

mobile users. The size of traditional VM image is so

large that it has a profound impact on real-time. If the

size of VM image could be decreased, we can

realistically reduce system overhead and communication

overhead for cloud platform. With cloud computing

application development on mobile platforms and other

devices, the micro-kernel technology will be more

demanded under cloud computing environment. This

paper will analyze how to get customized VM image

through LFS. The full name of LFS is "Linux from

Scratch" [1]. LFS refers to building a Linux system

manual or an idea rather than a release version of Linux.

Unlike ordinary Linux installation, LFS guides to

compile the open-source software packages into a needed

smallest, fastest Linux system through the host system.

Users can control all features of the new system during

the build process such as Installation Directory and File

organization form, parameters and permissions settings,

etc. We can improve the real-time performance

effectively by using the customized system.

In section 2 of this paper, we will give a brief

introduction of related work about current VM image

customized methods. In section 3, the design and

implementation of customize VM image through LFS

will be presented in detail. Than in section 4, experiments

undertaken and results obtained will be shown which

demonstrate that the new method provides an effective

solution. Finally, we will conclude the paper in section 5.

2 Relevant work

Because of the large size of the traditional VM image, the

real-time performance of system is poor and too many

system resources are employed. It becomes necessary to

reduce the system size. Although many Linux kernel-

cutting methods can efficiently decrease the size of Linux

kernel, these methods are usually used to customize the

Linux kernel for embedded system [2, 3] and many other

specific fields [4]. These methods are not appropriate for

cloud computing and micro-kernel technology is not yet

universally applied in the cloud computing.

Application of virtualization technology proposed

software as a service model. As App-V [5] of Microsoft,

ThinApp [6] of VMware and Citrix XenApp [7],

individual does not need to consider the process of

installation, maintenance and upgrade. These operations

can be completed by software service providers. Users

obtain the right to use the software via user identity

authentication mechanism. They distinguish the

application and the OS, the centralized management, the

maintenance and upgrading of the software. Software

provider on-demand provides the software for user; users

can use them without installation. However, most of the

proposed plans are business plans for windows, and their

application needs to run with network support. Therefore,

OpenAppV [8] proposed on-demand Customized Virtual

Machine Instance System. These methods realized

software customization, but did not reduce the system

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

63
Information and Computer Technologies

size. In general, VM developed by the traditional

methods is often difficult to be understood and modified.

It is not satisfied enough in extensibility and reusability.

It is very difficult to dynamically change and extend the

VM. It needs frequently to full-manually override the

existing VM [9, 10]. Reference [11] proposed An

Implementation Approach to Custom-Built Virtual

Machines. However, this method is relatively slow and

not suitable for high real-time systems. To reduce the

system size and to improve the real-time, we will analyze

getting the customized VM image through LFS in this

paper.

3 VM image customized with LFS

At present, jhalfs can realize the automatic installation of

LFS by extracting the command from the XML of

lfsbook. jhalfs can choose flexibly whether LFS process

tests the installation and optimizes the system etc. by

setting common/config file under the jhalfs. In order to

meet users’ requirements, we need generate customized

VM image with the minimum matching image

incremental installation, for which, we need to get the

configuration information of users’ requirements through

the management process of the cloud platform. Therefore,

this paper analyzes how to realize automatic installation

of LFS, and the application software and services based

on our own shell scripts.

GCC is a GNU [12] compiler containing C / C + +

compiler, which can compile the source code program to

generate the target file in combination with other basic

tools. Binutils [14] is a set of binary tools including

connectors, assembler and other tools used in the target

file and it can transform the target file into an executable

file. Make is a program similar to the shell script, which

can control the entire compile-link process through

reading a makefile that contains the source code and

document library dependencies and rules. Glibc, the

crucial link in the production process of LFS, is also very

important for Linux. All dynamic linker must use it. In

the process, aforementioned four tools are dependent on

the C Runtime library glibc.

The toolchain is a temporary build environment. It is

used to generate the target system that includes all

necessary tools such as GCC and binutils. Their versions

have exactly the same as the tools of the target system.

As the Linux kernel source code we want to compile

requires a specific toolchain and glibc version and an

environment that are inconsistent with the host system.

Therefore, we have to first build a specific toolchain and

glibc to get the target system. For this purpose, all the

tools on the toolchain are compiled by their respective

source codes. GCC, binutils, make, common tools in the

compilation process are dependent on glibc. Similarly,

the glibc needed is a particular one rather than the one in

the host system. This particular glibc is compiled by

another tool chain, which we call a temporary toolchain.

While this temporary toolchain is compiled by host

systems obtained through a set of own compilation tools,

glibc, other C libraries and Linux kernel, etc.

The implementation process of LFS shown in Figure

1:

H
o
st sy

stem

Linux kernel

GCC, binutils, other

basic kit

Glibc

 In
d
ep

en
d
en

t

b
u
ild

 en
v
iro

n
m

en
t

Toolchain used to

compile the target

system

Glibc

User customization system

Linux kernel GCC, binutils, other basic kit Glibc User needs tools

GCC source code, binutils source code make

source code, common tools source code

Temporary toolchain

(GCC, binutils, make and other commonly

used tools independent of the host system)

Glibc source code

GCC source code, binutils source code make

source code, common tools source code

Source code (include linux kernel, glibc and

toolkit)

Source code of software and service user needs

T
arg

et sy
stem

Linux kernel

GCC, binutils, other

basic kit

Glibc

FIGURE 1 LFS implementation process

1) Temporary tool chain compiled by source code of

the tool set on the host system;

2) Get an independent glibc library by compile the

glibc source code using the temporary tool chain?

3) Use the independent glibc library in the host

system environment to build independent toolchain,

independent build environment completed;

4) Compile the Linux source code package in the

independent build environment and build the Linux

kernel for the operating system.

5) Get the user request information and compiled

required software and services in the target system

according to user requests. Then generate customized

system image.

6) Finally, do some final changes work as removing

the source package, temporary toolchain, and

independent build environment, and restore the original

system parameters and configuration files.

The process of customizing VM image as showed in

Fig. 2:

User interface

User select

Management

interface

Update source list

User requirement

Source list

.

.

.

User Administrator

Configuration file

Customized VM image

Customized VM image

 generation process

FIGURE 2 LFS implementation process

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

64
Information and Computer Technologies

3.1 USER INTERFACE

It is easy to access and operate by using the interactive

interface of traditional web, and gives a list of application

software and services in a platform. User can log in the

platform for selecting their needs through a user

interactive interface, as showed in Fig. 3. Sent through

the network management process to the cloud platform,

and user request information is stored in the management

side.

Select applications and services

Please select applications and services you need from the list below.

To save changes you must click “submit” before you leave this window.

Search: Search Clear

[Matching terms display in red text]

Expand all Collapse all

Cancel Submit

Select->

<-Remove

Selected applications and services

File Manager

Office Software

Web Component

Apache

Tomcat

Resin

Jboss

WebSphere

Weblogic

Window Manager

DataBase

Development Tools

Media Player

Running Evironment

Computing Tools

Virtual Machine

Antivirus Softwares

Drawing Tools

Translating Softwares

Communicating Softwares

JDK

JRE

Tomcat

Mysql

X-Files

StarOffice

KDE

ClamAV

Chrome

FIGURE 3 User interface

Shown in Fig. 4, the applications and components

provided by the management side of the cloud platform

also can be dynamically updated when new applications

or components need to be updated to the cloud platform.

Administrators use an interface to upload applications or

components. When the list of components is missing

from the system components that applications relied on, it

needs administrators upload the missing system

components and the management process generated script

code used to complete the installation of the

customization process. Administrators of cloud platform

can dynamically update or delete the existing applications

and components. Management process records the

information when administrators upload applications and

components. The information mainly includes five parts:

(a) id of application or component, (b) name of

application or component, (c) size of application or

component, (d) components information that application

relied on, (e) installation script information.

Update applications and services

Upload or update applications and services.

To save changes you must click “submit” before you leave this window.

select classification ===== select classification =====

Brows

modify delete

Cancel Submit

applications and services list

Openoffice-i18n

aumix

Desktop-background-basic

festival

dia

gd-progs

kdemultimedia-kfile

bind

COM

File Manager

Office Software

Web Component

Apache

Tomcat

Resin

Jboss

WebSphere

Weblogic

Window Manager

DataBase

Development Tools

Media Player

Running Evironment

Computing Tools

Virtual Machine

Antivirus Softwares

Drawing Tools

LAus

HTML Parser

FOSS

X-Window

rhel

iftop
Expand all Collapse all

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify delete

modify

Add

application or service name

upload application or service

select component

FIGURE 4 Applications and services management interface

3.2 CONFIGURATION FILE

Users select their needs through user interface and send

the request information to the management process. The

management process receives the request information and

extracts it to form a customized XML configuration file.

The information of the configuration file mainly includes

three parts: (a) hardware requirements include CPU, hard

disk, memory, and number of computing nodes, (b)

applications requirements, (c) components requirements.

We use id to record applications and components that

user requested in configuration file. Configuration file

fragment is shown as follows:

1: <user-request>

2: <hardware name=”userid”>testuser</hardware>

3: <hardware name=”vmnum”>20</hardware>

4: <hardware name=”cpu”>1</hardware>

5: <hardware name=”ram”>1024</hardware>

6: <hardware name=”disk”>80</hardware>

7: <application name=”id”>2, 6, 8, 9, 11</application>

8: <component name=”id”>4, 7, 14</component>

9: </user-request>

Lines 3-6 record hardware requirements include the

size of virtual cluster, frequency of VM CPU, memory

size of VM and disk size of VM. Lines 7-8 record the id

of applications and components that satisfy the user

requirements.

3.3 CUSTOMIZED IMAGE

The management process extracts the information Iconf

from the configuration file. The information of Iconf

includes the user request. According to Iconf, user needs K

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

65
Information and Computer Technologies

VM nodes. There are N exist VM image copies stored on

cloud platform. The VM image copy is used to generate

VM image that users customized previously. The initial

minimized image is P0. The match degree is calculated by

matching configuration file information of VM image

copy with Iconf. The process traverses the copy and

matches the copy of node c (0 =< c < N) with Iconf. If the

copy node c exists other applications or services beyond

Iconf, the node cannot be a matching node. If the copy of

node c does not exist other applications or services and

the match degree is greater than the former one, then

Ptarget = Pc. If the copy node c matches exactly with Iconf,

then Ptarget = Pc, now finish the traversal process to get

customized VM image Ptarget. If there is not an exactly

matching node, we need to completely traverse the copy

in order to get Pc with the largest match degree to obtain

customized VM image Ptarget and to install the application

software and services in Iconf that Ptarget does not have to

get customized VM image Ptarget. Then we store it in a

virtual node and update the copy of the image to store

this node information in that copy. The customized VM

image generation process is as follows:

1: P0 ← initial VM image copy

2: S0 ← size of P0

3: I0 ← configuration file information of P0

4: M0 ← match degree of P0

5: Ptarget ← target VM image copy

6: Starget ← size of Ptarget

7: Mtarget ← match degree of Ptarget

8: Ptarget = P0, Starget = S0, Mtarget = M0

9: c = 0

10: While c < N do

11: If Ic exactly matches with Iconf

12: Ptarget = Pc

13: Break

14: Else

15: If Ic exist other applications or components

information beyond Iconf

16: Sc = 0, Mc = -1

17: Else

18: If Mc > Mtarget

19: Ptarget = Pc, Starget = Sc, Mtarget = Mc.

20: End if

21: If Mc = Mtarget and Starget < Sc

22: Ptarget = Pc, Starget = Sc, Mtarget = Mc

23: End if

24: End if

25: End if

26: c = c + 1

27: End while

28: If c == N

29: Ptemp ← According to Iconf, complete the Ptarget

installing

30: Ptarget = Ptemp

31: End if

32: store the Ptarget and Itarget on cloud platform, set the host

as target host

33: generate customize VM image through Ptarget, create K

VM nodes

Lines 1-4 give VM image copy P0 as input that has no

extra applications or components. P0 is generated by LFS

process. Lines 5-8 initialize the target VM image copy

Ptarget as output. Lines 10-27 find the target VM image

copy that mostly satisfies the user’s requirements. If the

VM image copy exists other applications or components

beyond the user’s requirements, it is not the VM image

we need. If there are two or more VM image copies

mostly satisfy the user’s requirements, we should

compare the size of these VM image copies and choose

the biggest one as the target VM image copy. Lines 28-30

show that if there is no VM image copy which exactly

satisfies the user’s requirements, we can get a VM image

copy that satisfies most the user’s requirements, then

according to user’s requirements, complete the target VM

image copy installation and get a new target VM image

copy. Lines 32-33 store the target VM image copy on

cloud platform and set the host that stored the target VM

image copy as target host. Finally we generate customize

VM image through the target VM image copy and create

K VM nodes that satisfy the user hardware requirements.

4 Experiment analysis

To establish a minimum system requires about 1.3GB of

the partition so as to have enough space to store and

compile all the source packages. A larger space (2~3GB)

is needed to install the application software and services

that the user needs. The LFS system itself does not

occupy so much space and most of the space required is

used to provide adequate temporary space for the

software compiler. It takes many temporary spaces to

compile the package. However, these temporary spaces

can be recycled after software installation done. We

would better to use a small hard disk partition as swap

space because memory (RAM) is not always enough

during the compilation process. The kernel uses swap

space to store the data in order to free up memory space

for running processes. The swap partition that LFS

system uses can be the same with the one that the host

system uses. Therefore, we do not have to create a new

one for the LFS system when the host system already has

a swap partition. In this paper, we suggest getting

customized VM image through LFS in order to achieve

the goal of reducing system and communication

consumption.

Experiment Environment: In our experimental

configuration, hosts with the same type are selected. We

use HP proLiant ML350 G6 (AU662A) as hosts in cloud

platform. These hosts are configured with Xeon E5506

2.13GHz four core processor, 8GB DDRIII RAM, 4TB

7.2K 6Gbps hard disk and NC326i PCI Express

1000Mbit/s NIC. In order to simplify the process of

customized VM image generation, we install LFS Live

CD 6.2-3 with kernel 2.6.16.26 on all hosts as host

system. Virtual Tool is Xen 4.1.1. We configure all VMs

with single core, 40GB VM hard disk. To ensure parent-

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

66
Information and Computer Technologies

VM boot successfully, we configure VM memory size

with 512M.

Experiment: To reduce system resource occupation

and to fundamentally solve the problem of too long

virtual machine downtime in the deployment process, the

VM image size should be as small as possible. We

compare the customized VM image generated by LFS

with current lite release version of Linux.

Experimental comparison results are showed in

Figure 5, 6. We customize VM image as web servers. We

can limit the size of customized VM image generated by

LFS at 38.63M. Comparing with other lite release version

of Linux, LFS visibly reduced the system consumption,

simplified customize process, and it is much easier in the

customize process. It also has advantage in booting speed

and system consumption. We configure VM memory size

with 512M. LFS takes only 6.76s to complete the booting

process. The boot speed of VM that load customized VM

image generated by LFS is faster than others. By

reducing the VM image size, we effectively reduce the

VMs communication consumption.

0

50

100

150

200

250

300

V
M

 i
m

ag
e

si
ze

 (
M

)

LFS debian suse ubuntu redhat

VM image

FIGURE 5 System space occupation comparisons

0

2

4

6

8

10

12

14

16

B
o

o
t

ti
m

e
(s

)

LFS suse redhat

VM image

FIGURE 6 System booting time comparisons

5 Conclusion

Cloud computing has a promising development prospects

and the related key technologies are growing rapidly. In

this paper, we give a summary of the existing VM image

customized technology and present the design,

implementation and evaluation of customized VM image

through LFS. We customize the VM image with LFS in

order to reduce the VM image size, thus decrease the

system overhead and communication overhead. The

customized VM satisfies the user’s request and consume

less space.

To further improve the performance of VM image

customized, there are still many problems that need to be

solved in the future. In customized VM image generation

process, it traverses the copy to find the target host. It is

not suitable for high real-time demanded cases. We plan

to design a faster matching method to find the target host.

We find that the target host takes only the match degree

in consideration. In a cloud platform with workload or in

a heterogeneous cloud platform, it is not enough and the

target host we find may be not the best one. We plan to

add the performance parameter for finding the target host.

References

[1] Beekmans G 2007 Linux From Scratch
http://www.linuxfromscratch.org/lfs/view/stable/

[2] Fröhlich A A, Schröder-Preikschat W 1999 Tailor-made operating

systems for embedded parallel applications Lecture Notes in
Computer Science 1361-73

[3] Hasan M Z, Sotirios S G 2008 Customized kernel execution on
reconfigurable hardware for embedded applications

Microprocessors and Microsystems 211-20

[4] Montgomery J, Brewster G B, Yee W G 2010 A customized Linux
Kernel for Providing Notification of Pending Financial Transaction

Information 7th IEEE Consumer Communications and Networking
Conference 1021-2

[5] APP-V [EB/OL]. http://www.microsoft.com/app-v

[6] ThinApp [EB/OL]. http://www.vmware.com/products/thinapp/
[7] XenApp [EB/OL]. http://www.citrix.com/xenapp

[8] Zhang Hanying, Wu Qingbo, Tan Yusong 2013 On demand
Customized Virtual Machine Instance System Computer

Technology and Development 23(4) 1-10

[9] Ert l M A, Gregg D, Krall A, et al. 2002 Vmgen: A Generat or of
Efficient Virtual Machine Interpreters Software-Practice &

Experience 32(3) 265-94
[10] Ert l M A, Gregg D 2004 The Structure and Performance of

Efficient Interpreters Proc of the 2004 Workshop on Interpreters,

Virtual Machines and Emulators
[11] Ouyang Xingming, Zhu Jinyin 2008 An Implementation Approach

to Custom-Built Virtual Machines and Their Dynamic Optimization
Computer Engineering & Science 30(1) 129-41

[12] GNU Binutils http://en.wikipedia.org/wiki/GNU_Binutils

Authors

Gaochao Xu, born in 1966, Xiaogan City, Hubei Province, China

Current position, grades: Professor, Doctor
University studies: Computer Science and Technology
Scientific interest: Distributed System, Grid Computing, Cloud Computing, Internet Things, etc.
Publications: 55
Experience: Professor and PhD supervisor of College of Computer Science and Technology, Jilin University, China.

http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558

COMPUTER MODELLING NEW TECHNOLOGIES 2014 18(4) 62-67 Xu Gaochao, Dong Yushuang, Sun Bingyi, Fu Xiaodong, Zhao Jia

67
Information and Computer Technologies

Yushuang Dong, born in 1983, Jixi City, Heilongjiang Province, China

Current position, grades: PhD
University studies: Computer Science and Technology
Scientific interest: Distributed System, Cloud Computing.
Publications: 8
Experience: PhD of College of Computer Science and Technology, Jilin University, China.

Bingyi Sun, born in 1991, Changchun City, Jilin Province, China

Current position, grades: Master Degree Candidate
University studies: Computer Science and Technology
Scientific interest: Distributed System, Cloud Computing.
Experience: Master Degree Candidate of College of Computer Science and Technology, Jilin University, China.

Xiaodong Fu, born in 1966, Changchun City, Jilin Province, China

Current position, grades: senior engineer
University studies: Computer Science and Technology
Scientific interest: Distributed System, Cloud Computing.
Publications: 14
Experience: senior engineer of College of Computer Science and Technology, Jilin University, China.

Jia Zhao, born in 1982, Changchun City, Jilin Province, China

Current position, grades: Doctor
University studies: Computer Science and Technology
Scientific interest: Distributed System, Cloud Computing.
Publications: 11
Experience: Doctor of College of Computer Science and Technology, Jilin University, China.

