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Editors’ Remarks 
 

 
This volume of journal comprises the papers selected 
at the First International Workshop “Modern Statistical 
Methods and Models”, which was hold in Riga on 
October 25-28, 2006. This Workshop has been 
affiliated in the program of the 6th International 
Conference “Reliability and Statistics in Transportation 
and Communication” devoted to memory of an 
outstanding mathematician and pedagogue Khaim 
B. Kordonsky (1919-1999).   

Professor Khaim B. Kordonsky has made 
significant contribution in the development and 
application of probabilistic and statistical methods. In 
the Soviet Union his monograph [1] is the first book 
considering probability methods, which has been 
addressed to engineers. Khaim Kordonsky devoted his 
life in advancing not only the science of reliability and 
mathematical statistics, but also the application to the 
solution of important problems in safety and 
operational efficiency. Main fields of his research 
activity are as follows: statistical quality control, 
statistical fatigue theory, theory of accuracy of 
machines, statistical reliability theory, probability 
methods in airline scheduling, statistical medical 
research. Last two fields will be considered further on. 

He was the research supervisor of computer systems development for the Soviet company 
“Aeroflot” which in the 20th century was the biggest aviation company in the world. Under the direction 
of professor Kh. Kordonsky Aeroflot Computer System of Central Airline Scheduling was created [4]. 
Amount the main results of Kh. Kordonsky’s research in medicine we can point out statistical analysis of 
the leucosis cattle diseases rate in Latvia and the sinus rhythm mathematical model creation. 

Almost all papers of the given volume are prepared by Khaim B. Kordonsky’s pupils or pupils of 
his pupils. The volume consists of two parts: “Probabilistic Models” and “Statistical Inferences”. 

The first part of issue begins with the paper by Yu. Paramonov and J. Andersons. It is purposed to 
reliability calculation of the system with complex structure, which is the main subject matter in 
Kordonsky’s works. Appropriate models and methods have continuation in the tasks of Inventory Control 
and Financial Risks. These tasks are considered correspondingly in the papers by E. Kopytov, L. Gringlaz, 
A. Muravjov, E. Puzinkevich and A. Sverchenkov. The interesting probabilistic treatment of the task of 
Spatial Arrangement of Service Stations is presented in the paper by A. Andronov and A. Kashurin.  

In the second part of the journal tasks purposed to statistical problems are gathered. As 
Kh. Kordonsky persistently has mentioned, probabilistic models are not of great importance, if good 
statistical estimates of them are absent. Therefore Khaim B. Kordonsky loved mathematical statistics very 
much. Many statistical tasks, which he has solved in order to apply them in aviation [2, 3, 5-8], 
subsequently have become popular in different mathematical and statistical researches, for instance, 
Censored Samples, the Best Time Scale for Reliability, etc. 

The second part of the issue begins with the paper by Michael S. Tikhov, Dmitriy S. Krishtopenko 
and Marina V. Yarochuk, which presents profound theoretical results on the kernel estimator of unknown 
distribution function on the base of indirect observations. The last is some generalization of the censored 
sample. Application of the Resampling approach in regression tasks is considered in the paper by 
A. Andronov. It should be noted that at present Resampling approach is one of the most popular intensive 
computer statistical methods. Other modern methods of regressions estimation on the base of the 
Generalized Linear Model and the Single Index Model are considered in the papers by Catherine 
Zhukovskaya and Diana Santalova. Numerical examples examined in these papers show the obvious 
preference of the proposed approaches, in other words the suggested approaches have given better results 
than the classical approach in cases of smoothing and forecasting.  

Khaim B. Kordonsky (1919-1999) 
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We hope that the presented issue of the journal will display to reader an idea of modern tendencies 
of the development and practical application of probabilistic and statistical methods. We also invite 
readership to take part in the next Workshops and in similar issues.  
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ANALYSIS OF FIBER STRENGTH DEPENDENCE ON LENGTH 

USING AN EXTENDED WEAKEST-LINK DISTRIBUTION FAMILY 
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An extended family of the weakest-link models based on the assumption of a two-stage failure process of a fiber specimen was 

developed in [1, 2]. A generalization of this family is presented in this paper. As in [1, 2] we consider the specimen as a chain of n 
elements (links). The fracture4 process is modelled as follows: in the first stage initiation of defects (before loading or during 
loading), and in the second stage a specimen fracture takes place. As distinct from our previous publications, the strength of items 
without defects is taken into account and two types of the influence of defect number on the specimen strength are considered. The 
comparison of the models and the choice of the best one are made using cross validation method. The offered models sometimes 
describe more adequately the experimentally observed fiber strength scatter and the strength dependence on fiber length than the 
traditional models do. 
 
Keywords: distribution function, composite, static strength 
 
 
1. Introduction 
 

The significant dependence of static strength of a composite on the scatter of static strength of its 
components can be illustrated by the following example. Let us consider three parallel items with 10 N, 
15 N and 30 N strength and identical stiffness. It may seem surprising that they will fail at the applied 
load of 30 N, as if the strength of every item is equal to 10 N. Why? 

The reason is that under 30 N load at first the weakest item will fail because its strength is equal to 
10 N. At the uniform distribution of total loads, its load is equal to 10 N also. Now the load acting on 
each “surviving” item is equal to 15 N. So the second item, the strength of which is equal to the same 
value of 15 N, will fail. Now the load for the last strongest item will be equal to 30 N. It will fail also 
because its strength is just equal to this load. This process (“domino phenomenon”) is shown on Fig.1. 
The same phenomenon takes place if element strengths are proportional to the terms of harmonic series: 
1, ½, 1/3, …, 1/n, see Fig. 2.  

So we see that the composite strength dependence on the strength scatter of its constituents can be 
very significant. 
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Power-Weibull (PW) model of distribution [3, 4, 5] 

))/()/(exp(1)( 11
αγ βslLsF −−= , (1) 

which has been intensively studied in literature, while providing a good empirical fit to the strength data 
of specimens with different length,  L,  lacks the theoretical appeal of the  weakest-link  models (It should 
be noted that here parameter 1β corresponds to 1lL = , 1β  changes if 1l  changes.). We derive a new 
weakest-link model family (WLMF) based on the assumption of a two-stage failure process. For 
modelling purposes we consider a specimen (fiber) as a chain of n elements (links) of length l1. First, the 
process develops along the specimen and defects appear in K elements. Here K is integer random 
variable, 0 ≤ K ≤ n. Two types of the second stage will be considered in this paper. First type: in every 
element (containing defects or intact) the development of fracture process takes place and the strength of 
the weakest item (link) defines the strength of the specimen. Second type: development of fracture 
process takes place only in one, critical element. Then only the probability that the second stage will take 
place depends on the number of elements but the strength distribution of this element (the process of 
accumulation of elementary damages in crosswise direction up to specimen failure) does not depend on 
this number. 

We consider two different versions of the first stage also. First version: defects appear before the 
loading and their number does not depend on the subsequent loading. Second version: defects appear 
during loading (instantly or gradually) and their number depends on the load. 
 
2. General Description of the Model Family 
 
2.1. The Fracture Process Takes Place in Every Element 
 
2.1.1. Models of instant fracture  
 

Let K, 0 ≤ K ≤ n be the number of elements in which defects appear. Let KYYY ,...,, 21  be 
independent random variables which are the strengths of these elements with the same cumulative 
distribution function (cdf) )(xFY ; KnZZZ −,...,, 21 , )(xFZ  are the same for the elements without 
defects. It seems reasonable to assume that the random strength of the specimen is the strength of the 
weakest item 

),...,,,...,min( 11 KnK ZZYYX −= , (2) 

with the corresponding cdf  

∑
=

−−=
n

k

k
knZ pxFxF

0
,1 ))(1(1)( δ ,  (3) 
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where 

))(1/())(1()( xFxFx ZY −−=δ ,  (4) 

n
ZnZ xFxF ))(1(1)(,1 −−= .  (5) 

Several different assumptions can be made here. Let us consider first the case of defects appearing 
before loading. It can be assumed that the probability of defect in one item, p, is some constant (and it is a 
parameter of the model). Then the corresponding binomial probability mass function (pmf) is 

( ) ( ) knk
k pp

knk
np −−
−

= 1
!!

! .  (6) 

If λ =np is large enough we can use (as an approximation) Poisson pmf:  

!/)exp( kp k
k λλ−= .  (7) 

In this case the equation (3) (approximately) can be written in the following way: 

)).(1(exp())(1(1)( ,1 xxFxF nZ δλ −−−−=   (8) 

If initiation of the defects depends on the applied load then it can be assumed that )(0 xFp = , 
where )(0 xF  is the cdf of  defect initiation stress. 
  
2.1.2. Models of gradual accumulation of defects  
 
We consider the process of accumulation of defects as an inhomogeneous finite Markov’s chain (MC) 
with finite state space },,...,,{ 2121 ++= nn iiiiI . MC is in state ki  if there are )1( −k  defects, k = 1, ..., n + 1. 
State 2+ni  is an absorbing state corresponding to the fracture of specimen. Usually we suppose that the 
Markov’s chain starts in state 1i  but in general case the initial distribution is represented by a row vector 
π  given by ),...,,( 2,121 ++= nn πππππ . We further assume that the loading (i.e. the process of nominal 
stress increase in the specimen cross section) is described by an ascending (up to infinity) sequence 

,...},...,,{ 21 txxx  and the process of MC state change is described by the transition probabilities matrix  
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

++++

++

++

++

10...0000
...0000

.....................
...00
...0
...

)2)(1()1)(1(

)2(3)1(33433

)2(2)1(2242322

)2(1)1(123131211

nnnn

nn

nn

nn

pp

pppp
ppppp
pppppp

P , 

 
which at the  tth-step is a function of tx , t = 1, 2, .... Let the sequence { tx } be fixed, then P is a function 
of t. Let us note that if ∞=n then the subscript (n + 2) is not a number but only a symbol, corresponding 
to the absorbing state 2+ni .  
In the new model the number of defects and the strength of specimens are random functions of time,  
 

)(tK , and  
),...,,,,...,,min()( )(21)(21 tKntK ZZZYYYtX −=  (9) 

correspondingly. The specimen fracture occurs when the strength of the specimen becomes equal to or 
less than the current load (stress). Ultimate strength 

*T
xX = , (10) 
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where  

))(:max(*
txtXtT >= .  (11) 

Cdf of X is defined by equation 

∏
=

=
m

j
m ujPxF

1
))(()( π , (12) 

where )( jP is the transition matrix for step number j, column vector )'1,0,...,0(=u  where only the last 
component is equal to 1 but all the others are equal to 0. 
 
2.1.3. Specifying models. The specimen strength without defect is very large  
 

For the purpose of specification of the models, the general description of which was given in the 
previous section, we additionally have to specify the cdf )(xFY , )(0 xF  (for models with defect number 
dependence on load), )(xFZ , and, additionally, for Markov models, a prior distribution, π , which, of 
course, in general case can differ from binomial or Poisson distribution. For Markov models we need to 
specify also the matrix P as a function of current stress, tx . 

In this paper we assume that )(xFY  and 0F (x) are the smallest extreme value (sev) distributions. 

For the case when location parameter 0θ = 0 and scale parameter 1θ = 1 it is assumed that 

))exp(exp(1)( xxFY −−= ,  (13) 

)()( 00 δ−= xFxF Y ,  (14) 

where )log(sx = , s is the strength (expressed in MPa). If 0δ > 0 then at the same probability of events 
the stress required for new defect initiation is larger than the stress required for the failure of an element 
with defect.  

For )(xFZ  we consider two assumptions in this paper. First, sev distribution can be assumed 
again: 

)()( ZYZ xFxF δ−= .  (15) 

Again we can say that if Zδ  > 0 then )()( xFxF YZ < . 
But the simplest is the assumption that  

⎩
⎨
⎧

≥
<

=
,,1
,,0

)(
Cx
Cx

xFZ  (16) 

where C is a very large constant. 
Then instead of (2) we have 

⎩
⎨
⎧

=
>

=
.0   ,

,0  ),,....min( 1

KC
KYY

X K  (17) 

The equation (3) can be written in the form 

⎪
⎩

⎪
⎨

⎧

≥

<−
= ∑

=

Cx

Cxp
xF

n

k

k
k

  ,1

,  ,1
)( 0

δ
 (18) 

where )(1 xFY−=δ . But equation (8) now has the following form 
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⎩
⎨
⎧

≥
<−−

=
.  ,1

,  )),(exp(1
)(

Cx
CxxF

xF Yλ
  (19) 

In [1, 2] was shown that the cdf  

}))(1(1{)( 1

0

+
∞

=

−−=∑ k
Y

k
k xFpxF  (20 a)  

or 

))(exp())(1(1)( xFxFxF YY λ−−−= ,  (20 b) 

where kp  is defined by (7) , λ = np, )(xFp Y= , )(xFY  is sev cdf, provides a good empirical fit to 
the strength data of specimens with  different length, L. Equation (20 b) can be considered as modification 
of (8): )(xFY  is used here instead of  )(

,1
xF

nZ . But now it is not only an approximation of the “binomial” 

model. Now we can consider the specimen as continuous one and define λ  by equation  

)/( 11 lLλλ = , 

where L is the specimen length, 1λ  is the intensity of defects (the defect number per length 1l ). Then 

function )(xFY can be regarded as an element-length-independent cdf of strength distribution in the 
cross section with defect, where the number of defective cross sections has the corresponding Poisson 
distribution. 

For Markov models we should specify the matrix P. In the case when parameter C is very large 
(the theoretical strength is much higher than the real strength) the probability that in some element the 
defect appears at the stress tx  under the condition that it has not appeared at the stress 1−tx  is 

))(1/())()(()( )1(0)1(00 −− −−= ttt xFxFxFtb . 

Consider the case of s defects present. The probability that r new defects appear, snkr −=≤≤0 , 
and the total number of defects is equal to m = s + r 

)!(!/!))(1())(()(~ rkrktbtbtp rkr
sm −−= −  

Conditional probability of element fracture at the nominal stress tx   

))(1/())()(()( )1()1( −− −−= tYtYtY xFxFxFtq . 

Corresponding probability that none of the elements fail  when  there are  defects in m elements is 

m
m tqtu ))(1()( −= . 

The probability of coincidence of these events, which we consider as independent, is the 
probability of transition from state i = s + 1 to state j = i + r 

)()(~)( 1)1)(1( tutptp jjiij −−−= , 

where  )1( +≤≤ nji . 
Conditional fracture probability at state i 

)(1)(
1

)2( tptp
n

ij
ijni ∑

+

=
+ −= . 

Of course, 0)( =tpij , if ij < , and 1)()2)(2( =++ tp nn . 
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2.2. The Fracture Process Takes Place Only in One Element 
 
2.2.1. The models of instantaneous failure  
 

In the previous models it is assumed that defects are uniformly distributed along the specimen 
length. But it is plausible that such uniformity is retained only at the initial stage of loading. More 
precisely, upon formation of the weakest link in a chain, the development of failure proceeds only in this 
link, and the specimen length is of no importance any more.   The simplest variant of such a model 
corresponds to the assumption that the law of strength distribution in the element where this process 
proceeds (in the cross section where the critical defect is formed) is independent of specimen length, 
which determines only the probability of formation of an element with defect. The mathematical 
formulation of this hypothesis is as follows  

⎩
⎨
⎧

=
>

=
.0,
,0,

KZ
KY

X  (21) 

Here, Y  and Z  are random variables, which are the strength of element where the failure process 
proceeds with or without defect, correspondingly. 

In this case 
 

)())(1()(}))(1(1{)( 00 xFxFxFxFxF Z
n

Y
n −+−−= .  (22) 

 
2.2.2. Model of successive formation of at least one defect  
 

The corresponding Markov’s chain has only three states. The first state corresponds to the absence 
of defective elements, the second one means the presence of at least one defective element, and the third, 
absorbing one, means failure of the specimen. The corresponding probabilities at a tth step are determined 
by the formulae 

,)](1[)(11
ntbtp −=   ))(1))((1()( 1112 tqtptp −−= ,  )())(1()( 1113 tqtptp −= , 

0)(21 =tp ,  )(1)(22 tqtp −= ,  0)()( 3223 == tptp ,  1)(33 =tp . 

Specification of the cdf and of elements of the matrix P can be made in the same manner as in section 2.1.3. 
 
3. The Processing of Test Data 
 

The maximum likelihood method can be used for parameter estimation but it is excessively labor-
consuming. The estimates of parameters 0θ  and 1θ  (at fixed other parameters) can be found easily using 
regression analysis of order statistics. Our purpose here is only the investigation of the possibility of using 
the considered models for prediction of fiber strength distribution changes when the fiber length is varied 
and the comparison of the models has been done as well. So we have limited ourselves by the use of 
regression analysis. 

Let ijx  be jth order statistic, inj ,...,2,1= , in  is the number of specimens with iLL = , 

Lki ,...,2,1= , Lk  is number of different Li  , )( ijXE  is the expected value of random order statistic ijX , 

)(
0

ijXE  is the same but for 0θ = 0 and 1θ = 1. 
Then we have the following linear regression model 

ijXE( )= 0θ + 1θ )(
0

ijXE ,  (23) 

where )(
0

ijXE  is a function of Li , in  and j. 

This equation can be used for estimation of 0θ  and 1θ  if all the other parameters are fixed.  
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We compare the above-mentioned models with the PW model (see equation (1)) and LW model (it 
is the original Weibull model: PW model with 1=γ ). If S is random strength of specimen with cdf (1) 
then for )log(SX = , 

)/)exp((exp(1)( 10 θθ−−−= xxFX ,  (24) 

where 

0θ = )/log()/()log( 11 lLαγβ − , 1θ =1/α . 

So for PW model we have equation with three unknown parameters 00θ = )log( 1β , 01θ =- αγ /  

and 1θ , 

ijXE( ) = 00θ  + 01θ  log( 1/ lLi ) + 1θ )(
0

ijXE . (25) 

For LW model we have an equation with two unknown parameters 0θ  and 1θ  

ijXE( ) = 0θ  + 1θ (– log( 1/ lLi ) + )(
0

ijXE ). (26) 

In (25) and (26) the value of )(
0

ijXE  is the expected value of jth order statistic for sample from 

sev distribution with sample size in . 

It is assumed that roughly )(
0

ijXE = ))(ˆ(
10

ijxFF
−

, where )4.0/()3.0()(ˆ +−= Lij kjxF  is 

an estimate of  )( ijxF . 
For comparison of different models, the glass fiber dataset described in [1,2] is used (four samples 

with specimen lengths ( 4,321 ,, LLLL )=(10, 20, 40,80 mm), sample sizes ( 4321 ,,, nnnn )=(78,74,50,60)). 
For parameter estimation a version of the cross validation method is applied.  At the fixed nonlinear 
parameters ( ,1l …) for the linear regression (LR) estimation of parameters 0θ  and 1θ  we use only the 
dataset corresponding to L= 10 mm and L=20 mm. We calculate also two additional statistics 
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where 2R  is standard statistic of LR analysis (the coefficient of determination). 
As nonlinear parameter estimates, the values of the parameters which correspond to the minimum 

of statistics OSPPt (Order Statistics Probability Plot Test) are taken. OSPPt is the measure of the error of 
order statistics prediction for sample with L4 = 80 mm: 
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For the convenience of the following references let us list the full number of specifications and 
assumptions which define the specific model in the considered family and make specific notations of the 
corresponding assumptions. 

We have to specify the conditions under which the initiation of defects takes place. By symbol 'T' 
we denote the assumption that the process of initiation of defects is a function of technology only, but 
symbol 'L' is used if this initiation depends on load. 

A prior distribution of defects needs to be specified for the models in which Markov’s chains 
theory is used. In general case we denote a prior distribution by π  but we use symbols 'B' or 'P' if 
binomial or Poisson distribution is used. 

If we consider the instantaneous fracture of specimen we use symbol 'B' for binomial distribution 
of defect number, K, symbol 'P' for Poisson distribution and symbol 'Pm' for 'truncated' Poisson 
distribution. 

 
(Remark. We use the words 'truncated in m  (discrete) distribution' if instead of discrete rv X we consider the rv  

⎩
⎨
⎧

>+
+<

=
. if 1,
1, if  ,

mXm
mXX

Xm  

The use of it can be convenient for calculation of the cdf of steps to absorption using formulae of finite Markov’s 
chains theory). 

 
We use simbols 'MB', 'MBm' (for truncated binomial distribution), 'MP' and 'MPm' (for truncated 

Poisson distribution) if the Markov’s chain is used for description of defect initiation process (Note. 
Formulae for transition probability matrix in this section are given only for MB case). 

ZF , YF  and 0F  have to be specified: 

- the cdf of strength of elements without defects, ZF ; 

- the cdf of strength of elements with defects, YF ; 

- the cdf of defect initiation stress 0F  (if the process of defect initiation is assumed to be a 

function of load). In general case we use symbols ZF , YF  and 0F  correspondingly but they 
should be specified by specific equations or by specific definitions. In this paper (Fig. 3-9) we 
use  symbol S if cdf is defined by equation (13), symbol St if cdf is defined by equation (14); 
symbol Zt, if cdf is defined by equation (15); symbol C, if cdf is defined by equation (16). 

If the Markov’s chain is used then the sequence of loads (stresses) }{ tx  should be specified also, 

but in this paper, as a rule, }{ tx  is a sequence of numbers uniformly distributed in some interval, which 

can be seen on Figures with )(xf  and )(xF  (see Fig. 3, …). 
We consider six models in total, but already preliminary investigation shows that the first two 

(T.B.Zt.S and T.P.C.S) are not appropriate for fiber strength distribution description although it seems 
that both are very natural. These models correspond to assumptions that there is binomial or Poisson 
distribution of technological defects which can appear during preparation of specimens. We show this by 
presenting some examples of calculations. 

The model T.B.Zt.S corresponds to assumption that during production of fiber specimens in every 
element (with length 1l ) of specimen one defect can appear with probability p. (Here and later on we 

presume that the ratio Li / 1l  is integer and it is equal to the number of elements in specimen with length Li  

(for every i = 1, …, 4)). The results of calculations of  )(xf , )(xF  for 0θ = 0 and 1θ = 1, estimates of 

order statistics, jx4ˆ , as function of ijx , estimates of  mean, ix̂ , as function of Li  (using LR estimates of 

0θ  and 1θ ) are shown on Fig. 3, which corresponds to 1l = 10 mm (it is the length of the shortest 

specimen), p = 0.5, Zδ = 7, 0θ = 7.5326, 1θ = 0.0562. We see that although the estimates of mean, ix̂ , 

are acceptable, the estimates of jx4ˆ  are less than satisfactory. 
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Figure 3 
 

 
 

Figure 4 
 

But if better agreement of the estimates jx4ˆ  is achieved (using parameters p = 0.99 (for 1l = 10 mm), 

Zδ = 7, 0θ = 7.7944, 1θ = 0.1660), then the estimates ix̂  deteriorate considerably (see Fig. 4).  
In accordance with the model T.P.C.S it is assumed that the number of defects in specimen with 

length Li has Poisson distribution with parameter 11 / lLiλ . Cdf )(xF  is defined by (19). Results of 
calculation for 1λ = 0.65 (for 1l = 10 mm), 0θ =7.5107, 1θ = 0.0389 and C = 10 are shown on Fig. 5. 
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Figure 5 
 

Again we see reasonable estimation of mean , ix̂ , but the estimates jx4ˆ  are less than satisfactory. 
And just as in the previous model, we can improve jx4ˆ , but then the estimates of  mean, ix̂ , deteriorate. 

More detailed search of parameter estimates was made for four models. 
For the Model Lmod.P.C.S.S. (see equation (20)), which in [2] was denoted by p-sev-sev), the 

following parameter estimates were determined (for C =∞ ): λ̂  = 1.1 (for 1l = 1 mm), 0̂θ = 8.1406, 

=1̂θ  0.2743. These estimates correspond to the minimum of LRR . Estimates jx4ˆ  and ix̂  are shown on Fig. 6. 
Although for this model the values of LRR , Q1 are better than for PW and LW model (see Table 1), the 
statistics OSPPt for prediction for L4 = 80 mm is better than for LW but worse than for PW. 

 

 
 

Figure 6 
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Figure 7 
 

The Model L.B1.C.S.St (which in [1] for 0δ = 0 is denoted by D1) corresponds to equations (21) 
for )(xF  and (16) for )(xFZ  with C = ∞. For parameter estimates: p = 0.9 (for 1l = 10), 0θ = 7.5398, 

1θ = 0.2605, 0δ = 0.9, corresponding results (which are very close to the results of Lmod.P.C.S.S.) can be 
seen in Fig. 7 and Table 1.  

The same can be said concerning the Model L.π .MB.C.S.S (see equation (12) for )(xF  and (16) 
with C = ∞ for )(xFZ ), which was denoted by MB in [1]. The estimates of the model parameters are:  

1l = 5mm, 0θ = 7.7578, 1θ = 0.236, π = (0,1,0,…,0)). The corresponding results (which are very close to 
the results of Lmod.P.C.S.S.) can be seen in Fig. 8 and Table 1. 
 

 
 

Figure 8 
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The best results, which are better than results of both LW and PW models (see Fig. 9 and Table 1), 
we obtained using L.Pm.MBm.C.S.S model (see equation (12) for )(xF  and (16) with C = ∞ for )(xFZ ). 
For this model a prior distribution of defect number is the (truncated at m = 2) Poisson distribution with 

11 / lLλλ = , where 1λ  is the defect intensity (defect number per specimen length unit), Parameter 
estimates of the model are 1λ = 0.15, 1l  = 5, 0θ = 7.7578, 1θ = 0.2346. In this paper we did not estimate the 
parameter 0δ . It was assumed that 0δ = 0. 

We see that the L.Pm.MBm.C.S.S model ensures the minimum of all three statistics.  
 
TABLE 1. The comparison of models 
 

Statistics L.Pm.MBm.C.S.S Lmod.P.S.S L.B1.C.S.St L.π .B.C.S.S PW LW 

OSSPt 0.1574 0.3094 0.2630 0.3202 0.2155 0.4760 

Q1 0.1032 0.1279 0.1441 0.1303 0.1644 0.6702 

LRR  0.1479 0.1509 0.2274 0.1545 0.1525 0.1855 

 

 
 

Figure 9 
 
4. Resume  
 

The Model L.Pm.MBm.C.S.S provides the best estimates of fiber strength for L = 80 mm using test 
data for L = 10 mm and L = 20 mm. All four WLMF models, including those in the Table 1, are providing 
better estimates of fiber strength dependence on specimen length than both LW and PW models (see 
statistics Q1). Common feature of these models is the presence of some form of limitation of this 
dependence. It is obvious for Model L.B1.C.S.St (C =∞ ), where (see (21)) only the probability of defect 
initiation depends on specimen length (or number of elements, 1/ lLn = ). It can be seen also for Model 
Lmod.P.S.S. The equation (20 a) corresponds to the assumption that initially there is one defect in 
specimen regardless of its length. The same is true for L.π .B.C.S.S where )0,...,0,1,0(=π . For the 
Model L.Pm.MBm.C.S.S the number of possible defects is deliberately limited by the number ( 1+m ). 
Both models T.B.Zt.S and T.P.C.S have no similar limitation and fail to capture the strength dependence 
on specimen length.  
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The Model L.Pm.MBm.C.S.S provides the best agreement with the experimental dataset among 
the considered models. But we should take into account that it has five unknown parameters: 0θ , 1θ , 1l , 

1λ  and m. PW model has three parameters only. Evidently we have random conclusions because we have 
random dataset. But it seems that the presented distribution family has great potential (for example, we 
have wide choice of )(xFZ , )(  ),( 0 xFxFY ,…) and deserves to be studied much more  thoroughly using 
much more test data. We should mention also that the considered distribution family can be applied not 
only to the fiber strength analysis but to the analysis of reliability of any series system with two types of 
elements as well. 
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The paper considers two multiple period single-product inventory control models with random parameters. These models are 

of interest because they illustrate real situations of the business. The first model is a model with fixed reorder point and fixed order 
quantity. The second model is the model with fixed period of time between the moments of placing neighbouring orders. Order 
quantity is determined as difference between the fixed stock level and quantity of goods in the moment of ordering. The considered 
models are realized using analytical and simulation approaches. The numerical examples of problem solving are presented. 
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1. Introduction 

Most inventory control situations of significance are complex. Decision-maker’s need to understand 
this complexity depends on his role within the business and the way he chooses to solve the problems. 
Mathematical models can provide a description of business situations that are difficult to examine in any 
other way. 

The search of the effective solutions of stock control in transport company should be based on a 
number of economic, social and technical characteristics [4]. In practice we have to investigate the 
stochastic models for different situations characterizing inventory control systems; a set of stochastic 
models are available to solve the inventory control problem [1, 5]. In the given paper two multiple period 
single-product inventory control models with random demand and lead time are considered.  

The first model is a model with fixed reorder point and fixed order quantity. This model describes 
dependency of average expenses for goods holding, ordering and losses from deficit per time unit on two 
control parameters – the order quantity and reorder point. The description of this model and analytical 
method of problem solving are examined in the previous authors’ work [2]. We have solved this problem 
using regenerative approach. 

The second model is a model with fixed time interval between the moments of placing 
neighbouring orders.  In this model the order quantity is determined as difference between the fixed stock 
level and quantity of goods in the moment of ordering. The analytical description of the second model is 
considered in the given paper. Note that in the second model we have used the same economical criteria – 
minimum of average total cost in inventory system.    

So, we have two inventory control models with continuously review inventory position (permanent 
stock level monitoring). The strategy of each model selection is based on the real conditions of the 
business. Thus, the first model can be used for the system with arbitrary time moment of placing the 
order; this situation takes place in inventory system used own means of transportation for order delivery. 
The second model is suggested for the system with fixed moment of placing the orders, where the order 
transportation depends on schedule of transport departure. 

The considered models can be realized using analytical and simulation methods. As it was shown 
in the previous works of these authors the analytical models are fairly complex. An alternative to solution 
by mathematical manipulation is simulation [3]. In the given paper analytical and simulation approaches 
are investigated. The numerical results of problem solving are obtained in simulation package Extend.  
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2. Description of the Models  
 
2.1. Model 1 
 

We consider a single-product stochastic inventory control model under following conditions. The 
demand for goods is a Poisson process with intensityλ . In the moment of time, when the stock level falls 
till certain level R, a new order is placed (see Figure 1). The quantity R is called as reorder point. The 
order quantity Q is constant. We suppose that RQ ≥ .The lead time L (time between placing an order and 
receiving it) has a normal distribution with a mean Lμ and a standard deviation Lσ . There is the possible 
situation of deficit, when demand LD during lead time L  exceeds the value of reorder point R. We 
suppose that in case of deficit the last cannot be covered by the expected order.  

 

 
Figure 1. Dynamics of inventory level during one cycle for Model 1 

 
Denote as Z the quantity of goods in stock in the time moment immediately after receiving of 

order. We can determine this quantity of goods Z as function of demand LD during lead time L: 
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Formula (1) is basic. It allows expressing different economical indexes of the considered process. 
Let T is the duration of a cycle. Length of the cycle consists of two parts: time T1 between 

receiving the goods and placing a new order and lead time L, i.e. LTT += 1 . 
We suppose that next economic parameters of the model are known:   
 the ordering cost 0C  is known function of the order quantity Q, i.e. )(00 QCC = ;  
 the holding cost is proportional to quantity of goods in stock and holding time with coefficient of 
proportionality HC ;  

 the losses from deficit are proportional to quantity of deficit with coefficient of proportionality 
SHC .  

Let us denote τD  as demand for goods within period of time τ . 
Principal aim of the considered model is to define the optimal values of order quantity Q and 

reorder point R, which are control parameters of the model. Criteria of optimization are minimum of 
average total expenses (costs) per time unit. We solve this problem using regenerative approach [5].  
 
2.2. Model 2 

Let us consider the Model 2 with fixed time T of the cycle, i.e. with fixed time between 
neighbouring moments of placing the orders. It is a single-product stochastic inventory control model 
under the following conditions. The demand for goods is a Poisson process with intensityλ . The lead 
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time L has a normal distribution with a mean Lμ and a standard deviation Lσ . We suppose that lead time 
is essentially less as time of the cycle: .3 TLL <<+ σμ   

There exists the possible situation of deficit, when the demand during time between neighbouring 
moments of receiving of order exceeds the quantity of goods in stock Z in the time moment immediately 
after receiving of order. Analogy Model 1 we suppose that in case of deficit the last cannot be covered by 
expected order.  

In Figure 2 the cycle with number k is presented. Let kR  is the rest of goods in stock at the start of 
the k-th period and Rk+1 is the rest of goods at the end of k-th cycle (or the rest at start of cycle with 
number k+1). We denote as S the goods quantity which is needed “ideally” for one period and it equals to 
the sum 0SDS T += , where TD  is the average demand for cycle time; 0S  is the safety stock. In the 
given sentence we suppose that “ideally” S gives us in future the minimum of total expenditure for 
ordering, holding and loses from deficit per unit of time.  

 

 
 

Figure 2. Dynamics of inventory level during k-th cycle for Model 2  
 

So, in the suggested model period of time T and stock level S are control parameters.  
The order quantity Q is the difference  

kRSQ −= . (2) 

We suppose that in the moment of time when a new order has to be placed it may be situation, 
when the stock level is so big that a new ordering doesn’t occur. However for generality of model we’ll 
keep the conception of lead time and quantity of goods at the time moment immediately after receiving of 
order in such case too. It corresponds to real situation when the customer uses the transport means, which 
depart at the fixed moments of time not depending on existence of the order and which have the random 
lead time; for example, transportation by trailers, which depart each first and fifteenth day of each month.  

Taking into account that in case of deficit it can’t be covered by the expected order, we can obtain 
the expression for goods quantity at the moment of time immediately after receiving of order 
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and using (2) we have:  
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The rest kR  at the start of the k-th period and the goods quantity Z at the moment of time 
immediately after receiving of order take values from interval [0; S]: 
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 kR  = 0, if in the previous cycle the demand during the time T1 between the receiving of order 
and placing of the new order is more or equal Z, i.e. ZDT ≥

1
; 

kR  = S, if in the previous cycle Z is equal S and there isn’t the demand during the time period T1, 
i.e. 0

1
=∧= TDSZ .  

 Z = 0, if the rest kR  to the moment of ordering is S (i.e. order quantity Q is 0) and demand DL 
during lead time L is more or equal S, i.e. ;SDSR Lk ≥∧=   
Z = S, if the rest kR  to the moment of ordering is 0 or demand DL during lead time L is absent, 
i.e. 00 =∨= Lk DR .   

In the next section we should determine the average total cost per cycle for the fixed rest of product 
in the moment of ordering.  

 
3. Analytical approach to creation of the models 

 
The analytical description of the Model 1 is presented in the previous paper of the authors [2]. In 

the given section we consider a detailed creation of Model 2 with fixed period of time between the 
moments of placing the neighbouring orders.  

   
3.1. Distribution of Demand during Lead Time 

 
As demand for goods is a Poisson flow with intensity λ , we can determine distribution for 

demand within fixed period of time τ  
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!
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If )(τLf  is a density function for lead time L, then distribution for demand DL within time L can be 
calculated by formula   
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In the case of normal distribution for L we obtain the formula  
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3.2. Holding Cost during One Cycle 

 
Calculation process of the holding cost during one cycle is divided in two stages: calculation for 

lead time L and calculation for time T1 between receiving the goods and placing a new order.  
Let τ  is the length of time from the last ordering and τ < T. If the demand τD during the time τ 

equals i, then the holding cost during the time interval (τ , τ + dτ) is 

τττττ diRCdiDTC kHH )()),(,( −=+=   (8) 

and expected holding cost during the lead time L is 

dxjRPiDPijdfCTCE k

S

j

j

i
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∞
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= =

τ

ττ , (9) 

where )( =iDP x  is define by formula (5). 
Let consider the expected holding cost during the time 1T . If j is the goods quantity Z at the 

moment of time immediately after receiving of order, τ is time interval after the receiving of order and 
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τ ≤ T1, and the demand τD during this time τ equals i, then the holding cost during the time (τ , τ + dτ) 
equals  

τττττ τ dijCdiDjZTTC HH )()),(,,,( 1 −=+==> . (10) 

Let’s note that ji ≤  and j takes values from interval ( kRS − , S). So, expected holding cost during 
the time 1T  is 
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where condition τ>1T is equivalent to condition τ−< TL ; 
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Average holding cost )( HTCE  within cycle T is the sum of the corresponding addendums: 

)()()(
1,, THLHH TCETCETCE += . (13) 

 
3.3. Losses from Deficit  

 
Similar to previous point the calculation process of the losses from deficit during one cycle is 

divided into two stages: calculation for lead time L and calculation for time T1 between receiving the 
goods and placing a new order.  

If within lead time L  the demand LD  exceeds the value of reorder point kR , then deficit of goods 
is present. Let =iDL and i > Rk, then losses from deficit are )( kSH RiC −⋅ . So, average shortage cost 
within lead time  

∑
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Let demand for time T1 equals i, =iDT1
, and the goods quantity Z at the moment of time 

immediately after receiving of order is j and i > j. Then losses from deficit are )( jiCSH −⋅ . Thus an 
average shortage cost during the time 1T  is 
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where ∫
T

LT dTfiDPiDP
0

)()()(
1

τττ −⋅===  and probability )( jZP = is calculated by formula (12). 

An average shortage cost )( SHTCE  within cycle is the sum of the corresponding addendums: 

)()()(
1,, TSHLSH TCETCETCE

SH
+= . (16) 

Finally an average total cost for a cycle is 

0)()()( CTCETCETCE SHH ++= ,  (17) 

where )( HTCE  and )( SHTCE  is calculated by formulas (13) and (16) accordingly, and  average total 
cost per time unit in inventory system is 

T
TCEACE )()( = .  (18) 
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Using the known distributions of demand and lead time and formula (4), applying recurrence 
method we can find the conditional distribution of the rest of product 1+kR  at the end of k-th cycle (start 
of cycle with number k+1) for the known value of rest kR : 
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and combining expressions (4) and (19) we have  
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In accordance with (19) we can calculate probability of event jRk =+1  for condition that the rest at 
the beginning of cycle equals to kR . As it is evident from (20) the rest 1+kR  takes values from interval  
[0; S]. In particular Rk+1 = S if demand DT during period of cycle T is absent, i.e. 0=TD . 

At first let’s consider the case jRk =+1 , where 0>j . According to condition of the task we can 
write TL ≤ . Let τ=L and demand τD  during time τ  equals to x and kRx < . In this case xSZ −= and 
the request 01 >+kR is equivalent to the condition jxSDT −−=−τ  accordingly the first line of the 
formula (20). Then probability of event that the rest of product Rk+1 at the end of cycle equals to j (where 

0>j ) under the condition that kRx < and ),( τττ dL +∈  is calculated by the formula: 
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Accordingly 
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Similarly, if τ=L and xD =τ , where kRx > , then kRSZ −=  and request 01 >+kR  is 
equivalent to condition jRSD kT −−=−τ , the probability )/( 1 kk RxjRP >=+ is calculated by formula  
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Finally, if  j > 0,  then 
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Reasoning by analogy it can be shown, that, if  j = 0, then 

( ) ττττττ dfRSDPxDPxSDPxDPRP L

T R

x Rx
kTTk

k

k

)()()()()(0
0

1

0
1 ⋅

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−>⋅=+−>⋅=== ∫ ∑ ∑

−

=

∞

=
−−+ . (25) 

For analytical solving of the considered problem we have created a complex of programs realized 
on the base of programming system DELPHI. For calculation there were used standard quantitative 
methods. 
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4. Simulation Approach  
As it was shown in the previous section the analytical inventory control model is rather complex. 

As alternative to analytical approach the authors have used simulation models realized in the simulation 
package Extend [3].  
 
4.1. Model 1 

Let us consider the model with two fixed control parameters: reorder point R and order quantity Q.  
The schema of the task simulation is shown in Figure 3.   
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Figure 3. Simulation model overview: inventory control with fixed reorder point and fixed order quantity 
 

Let us consider the main blocks of the simulation schema. In the block #1 the decision of a new 
ordering (Make Order) is generated using data about Reorder point (block #10) and quantity of goods in 
stock (Stock level). As the result variable Make Order takes value 1, it is transmitted to connector of block 
#2, and a new goods ordering is executed. In block #5 the process of order delivery is simulated. The 
value of random lead time is generated in block #4 (Input Random Number) using parameters Lμ and Lσ  
of normal distribution. The demand for goods is generated in block #9 as random value with Poisson 
distribution and known parameter λ. The warehouse is realized in hierarchical block #8, which schema is 
shown in Figure 4. Process of goods realization is simulated in block #11. Block #12 (dummy source of 
goods) and block #13 (Set Attribute) are used for good deficit calculation. The results of simulation are 
printed out in text file (block #17) and on the screen (block #16).  

 

 
 

Figure 4. Warehouse simulation model overview  
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Using the created simulation model we can find the optimal solution for inventory control problem 
with two control parameters – reorder point R and order quantity Q (see Example 1). 

Example 1. Let demand D for goods is a Poisson process with intensity 10 units per day; lead time 
L has a normal distribution with a mean 11 days and a standard deviation 3,5; ordering cost C0 equals to 
200 EUR, holding cost CH equals to 2 EUR per unit per year, losses from deficit CSH equals to 8 EUR per 
unit; unit time is 1 year. The period of simulation is one year and a number of realizations are 100.  

The results of simulation are shown in Table 1 and in Figure 5. Note that for the given steps of the 
control parameters changing the best result is achieved at the point Q = 950 units and R = 150 units, 
where for 100 realizations an average total cost for one year period equals 1889,34 EUR. 

 
TABLE 1. Average total cost per year in inventory system with fixed reorder point and order quantity (Model 1) 

 

 Reorder point, units 

Order quantity, units 100 150 200 250 300 

850 2430,32 1988,34 2026,22 2113,90 2209,30 

900 2224,99 2001,77 2051,28 2141,19 2235,84 

950 2241,90 1889,34 1953,86 2092,33 2236,53 

1000 2267,96 1960,65 1993,83 2071,15 2153,34 

1050 2387,28 2030,89 2048,83 2135,75 2216,93 
 

Model 2. Let us consider second strategy of inventory control with fixed period of time T between 
the moments of placing neighbouring orders. Note that in the suggested model period of time T and 
required stock level S are control parameters.  
 

 
 

Figure 5. Average total cost per year in inventory system with fixed reorder point and fixed order quantity 
 

For simulation of inventory control process we have created the schema shown in Figure 6. Let 
us consider the main blocks of schema. Block #1 generates the transactions in the fixed moments of time; 
these transactions are used for simulation of goods ordering during the considered time period. Block #2 
calculates the Order quantity  using data about Stock level in the moment of ordering and Required stock 
level (quantity of goods which is needed “ideally” for one period); this result is saved in block #3 (Set 
Attribute). Block #4 determines the moment of order delivery using the value of lead time generated in 
block #5 (Input Random Number) as random variable with normal distribution and known parameters. 
The demand for goods is generated in block #11 as random value with Poisson distribution and known 
parameter. Process of goods realization is simulated in block #10. Blocks #8 and #9 are used for goods 
deficit calculation. The results of simulation are printed out in text file and are shown on the screen.  
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Figure 6. Simulation model overview: inventory control with fixed time interval between placing neighbouring orders 

 
Example 2. Let us consider another strategy of inventory control accordingly Model 2 using initial 

data from Example 1. For problem solving we have used the simulation model shown in Figure 6. The 
results of simulation are shown in Table 2 and in Figure 7. For the given steps of control parameters 
changing the best result is achieved at the point S = 900 units of goods and T = 75 days, where for 100 
realization an average total cost for one year period equals 1965,9 EUR. 

 
TABLE 2. Average total cost per year in inventory system with fixed time interval between placing neighbouring orders (Model 2) 

 

  Time interval between placing neighbouring orders, days  

Level up to 
order, units 70 75 80 85 90 100 110 

850 2091,40 2206,92 2826,08 3512,02 3891,42 5213,66 7489,90 

900 2108,88 1965,99 2287,16 2287,16 3237,74 4365,35 6352,34 

950 2203,41 1985,33 2022,51 2341,89 2552,83 3643,92 5308,60 

1000 2300,46 2076,96 2044,00 2069,62 2212,28 2945,29 4403,56 

1050 2396,41 2179,56 2144,75 2079,61 2075,02 2497,04 3655,52 

 

 
 

Figure 7. An average total cost per year in inventory system with fixed time interval between placing neighbouring orders 
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Conclusions 
Principal aim of the proposed models is to define the exact order quantity and time of the ordering 

to achieve minimum expenses for holding, ordering goods and losses from deficit per time unit for 
transport companies. 

Two considered models of inventory control, based on different principles of ordering, give the 
closely related results near optimum solution. 

The main advantages of the considered methods of solving the inventory control problems for the 
suggested models are as follows: 

 simulation approach gives  
- the clearness of the presentation of results; firstly, it touches the case of analysis of total 

expenses dependence on one control parameter with fixing others; 
- the possibility of finding optimum solution of an inventory problem in the case when 

realization of analytical model is rather difficult; 
 analytical approach gives  
- the mathematical model of situation;  
- the various possibilities of analysis; 
- universality of usage. 

In the examined paper single-product inventory control models are considered. In the present 
research the authors investigate multi-product model with random correlated demands for different goods. 
In this research we use the simulation modelling in inventory system with a fixed moment of placing the 
order. In particular the random demand vector is generated using demand statistics and Holecky 
decomposition of correlation matrix.    
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1. Introduction  
 

Let us consider a real space X for that concrete point will be marked by х, for plane it is two-
dimensional vector (it is available to consider another dimension too). A distance *),( xxl  is determined 
for points x and x*, that satisfies usual conditional of distance axioms: 0),( =xxl , 0*),( ≥xxl , 

*),'()',(*),( xxlxxlxxl +≤ . 
Some objects are arranged in the space (for example men, animals, stationers). Let us name as х–

object, the object that is at the point х. The density of object arrangement is described by known density 
function f(x) ≥ 0, so  

∫
Χ∈

=
x

xxf .1)(  

Some service stations must be arranged in the space, their number is k. It is necessary to determine 
those coordinates .,...,, )()2()1( kxxx  If a х–object is serviced by i–th station then corresponding loss is 
equal to ( ))(i

x xg , for example ( ) ).( )()( ii
x xxgxg −=  Let us call )(oxg  as loss function and suppose 

that it is a symmetry according to zero ( )( )( i
x xg = )( )( i

x xg − ) and convex  (down). 
All amount of service for the х–object is deviated between various service stations according to 

inverse proportion of the distances from the х–object and the station. Most precisely, a part of х–object 
service that belongs to the i-th station is  

( )( )
( )( )∑ −

−

=

j

j

i

i
xxl

xxlx 1)(

1)(

,
,)(δ .  (1) 

Now a problem can be formulated as follows: to find coordinates )()2()1( ,...,, kxxx  of station 
arrangement that minimizes the total loss:  
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)()2()1( )()(,
,

1,...,, .  (2) 

The article is organized in the following way. At first one-dimensional case of space X and the 
corresponding example is considered. Then we consider two-dimensional case. The article ends by some 
conclusion remarks. The Appendix contains the analytical investigation of the simplest one-dimensional 
case when k = 1 and density f(x) and loss function )(oxg  are symmetric functions. 
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2. One-Dimensional Case 
 

At first we consider a case when space X is real axis R = (- ∞, ∞). We will use a gradient method 
for the minimization of criterion (2). For that aim let us calculate a corresponding gradient. For a partial 
derivative of (2) we have the following expression: 
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Now we are able to rewrite the gradient of D as 
T

k
k

kk xxxD
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To accelerate a convergence of the gradient method we use a two-stage procedure. At the first 
stage we use component-wise (coordinate-wise) modification of the gradient method. It means that a 
sequence of cycles is preformed. Each cycle contains k iterations. During the i-th iteration (j = 1, 2, …, k) 
function (2) is minimized with respect to coordinate )( jx , at the same time other coordinates do not 
change. For that minimization the gradient method with gradient (3) is used. The cycles end when the 
change of function (2) is mall. In the second stage we calibrate the obtained result by using the usual 
gradient method with gradient (4).   
 
3. Example of One-Dimensional Case 
 

Let density function be a mixture of normal distributions with means )()2()1( ,...,, rμμμ  and 

variances ( ) ( ) ( )2)(2)2(2)1( ,...,, rσσσ , and weighted coefficients rppp ,...,, 21  ( )1...21 =+++ rppp : 
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Further let us use the following distance function and loss function:   

zxzxl −=),( ,  (6) 

2)(),( zxzxg −= .  (7) 

Then we have the following derivatives: 
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Now we are able to use formula (3) for optimization.  
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Let us consider the following numerical data: k = 4,  r = 9 and  

( )Tp 17.013.004.006.01.005.015.02.01.0= , 

( )T17.1013.874.706.71.605.405.015.30=μ , 

( )T17.113.274.106.271.005.115.12.12.0=σ . 

The Figure 1 contains an according graphic of density function f(x). 
 

 
 

Figure 1. Plot of function f(x) for one-dimensional case 
 

We begin the first stage of the optimization procedure with the values of coordinates 
( )Txxxxx )4()3()2()1( ,.,=  = ( )T7421 . It corresponds to D = 9.766 value of criterion (2). Table 1 contains 

the results of sequential cycles.  
 
TABLE 1. Results of sequential cycles for one-dimensional case 
 

Iteration number 0 1 2 3 4 5 
)1(x  1 1 1 1 0.174 0.174 

)2(x  2 2 2 3.259 3.259 3.259 

)3(x  4 4 6.207 6.207 6.207 6.207 

)4(x  7 9.809 9.809 9.809 9.809 10 

( ))4()3()2()1( ,., xxxxD  9.766 9.327 8.818 7.727 7.494 7.468 
 

We see that minimal value of criterion (2) is equal to D = 7.468 that is calculated by 

x = ( )T10207.6259.3174.0 . 

Further we perform the second stage of the optimization procedure and finally get minimal value  
D = 7.445 that corresponds to coordinates  

x = ( )T035.10428.6176.3193.0 . 

 
4. Two-Dimensional Case 
 

Now we consider a case when space X is real plane ),(),(2 ∞−∞×∞−∞=R . Then the coordinates 

of an object are ( )Txxx 21= , coordinates of the j-st station are ( )Tjjj xxx )(
2

)(
1

)( = . Now instead of 
scalar derivative (3) we have two-dimensional vector  
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Analogously to (3) we have for partial derivative (i = 1, 2): 
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Now instead of (4) we have the (2×k)-matrix of the partial derivatives  
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For the optimization we again use the two-stage procedure. At the first stage the component-wise 
(coordinate-wise) modification is used as follows. During the j-th iteration (j = 1, 2, …, k) function (2) is 
minimized with respect to both coordinates of the j-st station ( ))(

2
)(

1
)( jjj xxx = , at the same time other 

coordinates do not change. According to the gradient method we move along the gradient with respect to 
( ))(

2
)(

1
jj xx , recalculating the one continually. At the second stage we work with the full gradient (11). 

 
5. Example of Two-Dimensional Case 
 

As before, let density function be a mixture of two-dimensional normal distributions with means 
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Further let us use the following distance function and loss function:   
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Then we have the following derivatives (i = 1, 2): 

( ) ( )
( )qq

q

zx
zxzx

zxl
z

−
−+−

−=
∂
∂

2
22

2
11

1),( ,  (15) 



 
 

Part I. Probobabilystic Models 
 

 35

⎩
⎨
⎧
−

<
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

.1
,1

,),(
2

1

2

1

otherwise
zxif

z
z

x
x

g
z

zxg
z

qq

qq

  (16) 

Now we are able to use formula (3) for optimization.  
Let us consider the following numerical data: k = 4, r = 9 and 

( )17.013.004.006.01.005.015.02.01.0=p , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

761.3638123
2.1013.874.706.71.605.415.320

μ , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

7.26.15.17.13.18.014.03.1
2.113.274.176.11.27.015.12.12.0

σ , 

( )17.013.074.006.06.07.015.02.00 −−−−=ρ . 

The Figure 2 contains an according graphic of density function f(x). 
 

 
 

Figure 2. Plot of function f(x) for two-dimensional case 
 

Table 2 contains the results of sequential cycles of the optimization procedure.  
 
TABLE 2. Results of sequential cycles for two-dimensional case 
 

Iteration number 0 1 2 3 4 5 
)1(

1x  0 0.961 1.099 1.134 1.212 1.190 
)1(

2x  0 1.545 2.240 1.874 2.072 1.945 
)2(

1x  3 2.703 2.944 3.130 3.099 3.079 
)2(

2x  3 0.845 1.444 2.221 1.813 2.085 
)3(

1x  6 6.115 6.170 6.303 6.361 6.487 
)3(

2x  6 5.398 5.206 4.889 4.737 4.404 
)4(

1x  8 8.141 8.194 8.303 8.335 8.381 
)4(

2x  8 7.251 7.053 6.742 6.640 6.466 

D 5.173 4.616 4.391 4.328 4.304 4.296 
 

From the Table we can see how the gradient method improves the criterion of value continually.  
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Conclusion 
 

A problem of service station arrangement in spatial space is considered. The elaborated algorithm 
of the problem solution is based on the gradient method. The considered numerical examples show its 
efficiency. The authors intend to apply the suggested approach to solving the practical arrangement 
problems.  
 
 
APPENDIX 
 

Now we will consider the simplest one-dimensional case when k = 1 (one station only) and density 
f(x) and loss function )(oxg are symmetric functions. Let f(x) have a maximal value at the symmetry 

point x = m and ( ) )( )1()1( xxgxg x −=  have minimal value g* at the symmetry point 0. Now instead of 
(2) we have the following criteria: 

( ) ∫∫
∞

∞−

∞

∞−

+−+=−= .)()()()( )1()1()1( dxxmfxxmgdxxfxxgxD    (17) 

As f is a symmetric function respectively m,  f (m + x) = f (m – x), then for the sum of two points 
m+ x and m – x, we have the following sum of the integral expression in (17): 

( ).)()()(
)()()()(

)1()1(

)1()1(

xxmgxxmgxmf
xmfxxmgxmfxxmg

−−+−++=

=−−−++−+
 

The convexity of function g gives us 

( ) ( ) .2)(2
2
1

2
12

)(
2
1)(

2
12)()(

)1()1()1(

)1()1()1()1(

zxmgxxmxxmg

xxmgxxmgxxmgxxmg

≥−=⎟
⎠
⎞

⎜
⎝
⎛ −−+−+≥

≥⎟
⎠
⎞

⎜
⎝
⎛ −−+−+=−−+−+

 

The lower limit is obtained if )1(x = m. Therefore, 

( )

( )∫

∫ ∫∫
∞

∞ ∞∞

∞−

≥−−+−++=

=−−−++−+=−=

0

)1()1(

0 0

)1()1()1()1(

,)()()(

)()()()()()(

zdxxxmgxxmgxmf

dxxmfxxmgdxxmfxxmgdxxfxxgxD
 

which is obviously clear.  
 

Taking derivative with respect to )1(x and equate one to zero, we get 

( ) 0)()()()( )1(
)1(

)1(
)1(

)1(
)1( =+−+

∂
∂

=−
∂
∂

−=
∂
∂

∫∫ dxxmfxxmg
x

dxxfxxg
x

xD
x

. 

As function g has the minimum at the point 0, and then the derivative from g(x) is negative for  
x < 0 and is positive for x > 0. Therefore, 

.)()()()(
)1(

)1(
)1(

)1(
)1(

)1(

∫∫
∞

−

−

∞−

+−+
∂
∂

=+−+
∂
∂

mx

mx

dxxmfxxmg
x

dxxmfxxmg
x
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Obviously, the unique solution is )1(x = m. Therefore, for optimal value we have the following 
expression:  

( ) ∫∫
∞

∞−

∞

∞−

+=−= .)()()()( dxxmfxgdxxfmxgmD      
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A modification of the classical ruin problem is considered.  Novelty consists of a consideration of nongomogeneous Poisson 

flow of claims, arbitrary distribution of claim costs and existence of lower level of necessary capital for any time moment t.  The 
problem is to calculate probability that this lower level is not to be passed. A numerical method has been elaborated for the 
probability evaluation. The considered method is based on Markov’s chain theory and Edgeworth expansion for the probabilistic 
density function.  
 
Keywords: ruin problem, Edgeworth expansion, Markov’s chain, numerical method  
 
 
1. Introduction 
 

We consider some modification of the classical ruin problem (Grandell (1991), Ross (1992)). An 
insurance company has initial capital u. The claims occur according to nonhomogeneous Poisson process 
with intensity function λ(t) [Ross: 24]. The costs of the claims are independent and identically distributed 
random variables { ,...,2,1, =iiη }, having distribution function F(x). The Poisson process and sequence 
{ ,...,2,1, =iiη } are assumed to be independent. The premium income density function of the company is 
defined by positive function c(y) of current capital value y.  

The risk process, Y, is defined by 

∑∫
=

−=
),0(

10

))(()(
tN

i
i

t

dYctY ηςς ,  (1) 

where N(s, t) is a number of Poisson events that have place in the interval (s, t), Y(0) = u, u is initial capital. 

The ruin probability till time moment t for the company having initial capital u is defined by  

( ){ }tzmomentsomeforzYPu ,00)()( ∈<=ψ .   (2) 

Now let l(t) be the known function of time t that determines lower level of the necessary capital. 
Then we define the probability to have overdue payment in the interval (0, t) as 

( ){ }tzmomentsomeforzlzYPut ,0)()(),( ∈<=Ψ .  (3) 

Our aim is to calculate this probability.  
 
2. Some Useful Relationships 
 

Let us remind some known relationships. Those will be used below. Let ( )),(),( Δ+=Δ+ ttNEttm  
be an average number of the events of Poisson process on interval (t, t + Δ). It is well known that  

( ) ∫
Δ+

=Δ+=Δ+
t

t

dzzttmttNE )(),(),( λ  (4) 

and N(s, t) has the Poisson distribution with this parameter: 
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( ){ } ( ) ,...1,0,),(exp),(
!

1, =Δ+−Δ+==Δ+ nttmttm
n

nttNP n .   (5) 

Let us remind that  

∑
=

=
),0(

1
)(

tN

i
itX η .  (6) 

from formula (1) is said to be a compound nonhomogeneous Poisson process.  

We generalize the last notation, letting 

∑
Δ+

+=

=Δ+
),(

1),0(
),(

ttN

tNi
ittX η .  (7) 

Obviously it is a total cost of the claims during interval (t, t + Δ). 
Let us rewrite a generating function of the moments for ),( Δ+ttX : 

( ) ( )( )),(exp),(; Δ+=Δ+ ttsXEttXsM ,  (8) 

using a generating function of the moments forη : 

( ) ( )( )ηη sEsM exp; = . (9) 

Repeating proof from [Ross,1992: 22] we can rewrite  

( ) ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

−=Δ+ ∫
Λ+t

t

dzzsMttXsM )(1;exp),(; λη ,  (10) 

Now we are able to write an expression for cumulant generating function: 

( ) ( )( ) ( )( ) ∫
Λ+

−=Δ+=Δ+
t

t

dzzsMttXsMttXsK )(1;),(;ln),(; λη .  (11) 

By differentiation of the above, we obtain cumulants of ),( Δ+ttX distribution: 

( ) ( ) ∫
Λ+

=Δ+=Δ+
∂
∂

=Δ+
t

t
rrr

r

r dzzttmttXK
s

ttk )(),(),(;0, λνν , (12) 

where ( ) ( )ηην ;0M
s

E r

r
r

r ∂
∂

==  is the r-th order moment of η. 

For example, 

( ) ( )( ) ( ) ),(,,, 11 Δ+=Δ+=Δ+=Δ+ ttmtttkttXEtt νμ ,  (13) 

( ) ( )( ) ),(),(,, 22
2 Δ+=Δ+=Δ+=Δ+ ttmttkttXDtt νσ .  (14) 

These cumulants will be used for approximation of density f and distribution F functions for 
),( Δ+ttX . For that we use Edgeworth expansion [Barndorf-Nielsen; Cox, 1989]. For normalized 

random variable 

( )
( )( )),(),(

),(
1),(~ Δ+−Δ+

Δ+
=Δ+ ttXEttX

ttXD
ttX . (15) 

the Edgeworth expansion is determined as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +Δ+Δ+Δ+=Δ+ ...,

72
1,

24
1,

6
11),(~; 6

2
34433 xHtxHtxHtxttXxf ρρρφ     

where φ is density function of standard normal distribution,{ })(xH i  are Edgeworth polynomials: 

,154515)(,1510)(

,36)(,3)(,1)(
246

6
35

5

24
4

3
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2

−+−=+−=

+−=−=−=

xxxxHxxxxH

xxxHxxxHxxH
 

{ }rρ  are normalized cumulants: 

( ) ( )( ) r
rr ttkt −Δ+=Δ ,, σρ .  (16) 

The Edgeworth expansion for density function of ),( Δ+ttX  is 
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(17) 

We will use the received expressions to evaluate ruin probability.  
 
3. Suggested Approach 
 

As earlier Y(t) is a capital at the time moment  t. Let ( )txG ,  be a probability that Y(t) not greater 
then x and till time t overdue payment absents: 

( )
⎭⎬
⎫

⎩⎨
⎧ ∈≥≤= tzforzlzYxtYPtxG ,0)()(,)(),( . 

We will consider a described process at the time moments ....0 10 tttt n =<<<=   
By that we assume the following conditions: 
1. A premium for the interval ( )1, +ii tt  is calculated with respect to initial capital at the time it : 

one equals ( )( )iii tttc −+1 . 

2. A random event “overdue payment” during interval ( )1, +ii tt  is determined for the final time 

moment 1+it : ( )( ) ( )111 ,)()()( +++ −−+= iiiiiii ttXtttYctYtY  less then ( )1+itl . 

According to our assumptions, sequence { ( )itY } produces the Markov’s chain. For original time 
moment t = 0 we suppose l(0) < u and have Y(0) = u: 

⎩
⎨
⎧

>
≤

=
.,1
,,0

)0,(
ux
ux

xG  

Other values of ( )itxG , are calculated by using ordinary Markovian technique: 

for 1t : 

( ) ( ) )(,)(1, 111 tlxtucxuFtxG ≥+−−= ,  (18) 
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for 1+it , i  = 1, 2, …; x > l( 1+it ) : 

( ) ( )( )( ) ( )i
tl

iii tzdGttzcxzFtxG
i

,)(1,
)(

11 ∫
∞

++ −+−−= .  (19) 

Obviously 

( )∞−=Ψ ;1);( tGut .  (20) 

 
4. Numerical Example 
 

Our aim is to illustrate wide possibilities of the considered model. At first we take the following 
input date: λ(t) = 1; c(y) = c y = 0.15y; l(t) = 5. Distribution function of claim cost F(x) is described by the 
Edgeworth expansion for density function (17). Here ( ) Δ=Δ+=Δ+ λ),(),( ttNEttm  and analysis of 
statistical date gives the following values of ( )r

r E ην = : 21 =ν ; ,122 =ν 483 =ν ; 3844 =ν . It allows getting 

such values of cumulants Δ=Δ+ λν rr ttk ),(  and normalized cumulants ( ) ( )( ) r
rr ttkt −Δ+=Δ ,, σρ : 

( ) ( )( ) ( ) Δ=Δ+=Δ+=Δ+=Δ+ 2),(,,, 11 ttmtttkttXEtt νμ , 

( ) ( )( ) Δ=Δ+=Δ+=Δ+=Δ+ 464.3),(),(,, 22 ttmttkttXDtt νσ , 

Δ=Δ+=Δ+ 48),(),( 33 ttmttk ν , Δ=Δ+=Δ+ 384),(),( 44 ttmttk ν , 

2/13
33 155.1),(/),(),( −Δ=Δ+Δ+=Δ+ ttttktt σρ ,  

14
44 667.2),(/),(),( −Δ=Δ+Δ+=Δ+ ttttktt σρ . 

Using this data we wish to calculate values of the probability Ψ(t; u) to have overdue payment in 
the interval (0, t), see formula (3). For that we use the suggested approach and consider time moments 

,  ,00 Δ== itt i  i = 1, 2, … .We set Δ = 1.  
Table 1 contains probabilities ( )uxG  ,9 ;  that current capital Y(t) at the time moment t = 9 not 

greater then x and till time t = 9 overdue payment absents, if initial capital equals u. The last row contains 
probability =Ψ )  ;9( u 1 – G(∞; t; u). Analogous data corresponds to the initial capital values u from 11 
till 16. 

Table 2 contains analogously probabilities for a case when the lower level of necessary capital at 
the time moment t is defined as l(t) = 5 + t. We see that for this case the probabilities are changed 
essentially. 
 
TABLE 1. Probabilities ( )uxG  ,9 ;  and Ψ(9; u)  (the last row) as functions of initial capital u (l(t) = 5) 
 

x u  = 11 u  = 12 u  = 13 u  = 14 u  = 15 u  = 16 

5 0.009 0.009 0.008 0.008 0.007 0.006 
7 0.035 0.035 0.033 0.030 0.027 0.024 
9 0.068 0.067 0.064 0.059 0.054 0.047 

11 0.105 0.104 0.099 0.092 0.084 0.074 
13 0.143 0.142 0.137 0.128 0.117 0.104 
15 0.181 0.182 0.176 0.166 0.152 0.136 
17 0.219 0.221 0.216 0.205 0.189 0.171 
19 0.255 0.260 0.256 0.245 0.228 0.207 
21 0.289 0.289 0.296 0.285 0.267 0.244 
23 0.321 0.334 0.335 0.325 0.307 0.283 
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The continuation of Table 1 

x u  = 11 u  = 12 u  = 13 u  = 14 u  = 15 u  = 16 

25 0.351 0.368 0.372 0.365 0.348 0.323 
27 0.378 0.400 0.408 0.403 0.388 0.363 
29 0.401 0.429 0.442 0.441 0.427 0.404 
31 0.422 0.455 0.473 0.476 0.466 0.444 
33 0.440 0.478 0.501 0.509 0.502 0.483 
35 0.454 0.498 0.526 0.539 0.537 0.521 
37 0.467 0.514 0.549 0.567 0.570 0.557 
39 0.476 0.529 0.568 0.592 0.599 0.592 
41 0.484 0.540 0.584 0.613 0.626 0.623 
43 0.490 0.549 0.597 0.632 0.650 0.652 
45 0.494 0.556 0.608 0.647 0.671 0.678 
47 0.497 0.562 0.617 0.660 0.689 0.701 
49 0.499 0.566 0.624 0.670 0.703 0.721 

Ψ(9; u) 0.495 0.424 0.359 0.299 0.246 0.200 

 
TABLE 2. Probabilities ( )uxG  ,9 ;  and Ψ(9; u) as functions of initial capital u  (l(t) = 5 + t) 
 

x u  = 11 u  = 12 u  = 13 u  = 14 u  = 15 u  = 16 

13 0 0 0 0 0 0 
15 0.019 0.021 0.021 0.021 0.020 0.019 
17 0.045 0.049 0.051 0.051 0.049 0.046 
19 0.076 0.083 0.087 0.087 0.084 0.079 
21 0.108 0.119 0.125 0.126 0.123 0.116 
23 0.139 0.154 0.163 0.165 0.162 0.154 
25 0.168 0.188 0.200 0.205 0.202 0.194 
27 0.195 0.219 0.235 0.243 0.242 234 
29 0.218 0.248 0.269 0.280 0.282 0.274 
31 0.239 0.274 0.300 0.315 0.320 0.314 
33 0.256 0.297 0.328 0.348 0.357 0.353 
35 0.271 0316 0.353 0.379 0.391 0.391 
37 0.283 0.333 0.375 0.406 0.424 0.428 
39 0.293 0.347 0.395 0.431 0.453 0.462 
41 0.300 0.359 0.411 0.452 0.480 0.494 
43 0.306 0.368 0.424 0.471 0.504 0.523 
45 0.310 0.375 0.435 0.486 0.525 0.549 
47 0.313 0.380 0.444 0.499 0.543 0.572 
49 0.315 0.384 0.450 0.509 0.558 0.592 
51 0.317 0.387 0.455 0.518 0.570 0.609 
53 0.318 0.389 0.456 0.524 0.580 0.624 
55 0.318 0.391 0.462 0.528 0.587 0.635 
57 0.319 0.391 0.464 0.532 0.593 0.644 
65 0.320 0.393 0.467 0.538 0.604 0.664 
67 0.320 0.393 0.467 0.538 0.605 0.666 
69 0.320 0.394 0.467 0.539 0.606 0.667 
71 0.321 0.394 0.467 0.539 0.607 0.668 
73 0.321 0.394 0.468 0.539 0.607 0.669 
75 0.321 0.394 0.468 0.540 0.607 0.669 
77 0.321 0.394 0.468 0.540 0.607 0.670 
79 0.321 0.394 0.468 0.540 0.608 0.670 

Ψ(9; u) 0.679 0.606 0.532 0.460 0.392 0.330 
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Conclusion 
 

A modification of the classical ruin problem has been considered.  The suggested modifications 
allow taking into account additional factors. A numerical method of a probability of interest has been 
elaborated. Examples show that various factors influence on this probability essentially. 
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The goal of this paper is to establish the asymptotic normality of the 2L -deviation of the kernel distribution function estimator 

( )nF x  defined by 2( ( ) ( )) ( )n nI F x F x x dxω= −∫ , where ( )F x  is the unknown distribution function of a random variable X , 

( )xω  is the weight function in dose-response dependence on the sample }1),,{()( niYWU ii
n ≤≤= , )( iii uXIW <=  is the 

indicator of even )( ii uX <  and Y  is a random variable, iu  is fixed values. This result is useful for constructing the test goodness-
of-fit for the distribution function ( )F x . 
 
Keywords: dose-response dependence, indirect observation, integrated square error 
 
 
1. The Nonparametric Estimation of Distribution Function 
 

Let nX,...X,X 21  be a random sample with a distribution function )(xF . We consider a sample 

}1),,{()( niYWU ii
n ≤≤= , where )( iii uXIW <=  is the indicator of event )( ii uX <  and iY  is 

charactetistic metering error of iu . We shall illustrate this case taking iiuY ε+=i  so measured error is 

collided for iu  as additive; nεεε ,...,, 21  are independent distributed random variables with a density 

0)( >xq , 1Rx∈ , further }{ iX  and }{ iY  are independent distributed random variables. In [1], [4] iu  is 
treated as inserted for organism nonrandom dose decides beforehand and iX  is treated as minimal 
working dose, which the organism response begins. 

The most nonparametric )(nU  – sample estimator of )(xF  may be written in the form (see [2], [3]).  

)(

)(
)(~

1

2
n

xS

xS
xF

n

n= , 

where 

∑
=

−=
n

i
ihn xYK

n
xS

1
1 )(1)( ,   ∑

=
−=

n

i
ihin xKW

n
xS

1
2 )Y(1)( ,  (1) 

and 0)( ≥⋅K  is a kernel function, 0)( >= nhh  is a sequence of constants ( 0→h  and ∞→nh  as ∞→n ) 

and ⎟
⎠
⎞

⎜
⎝
⎛=

h
xK

h
xKh

1)( . 

We use the following conditions ( А ). 
( А0 ) )(||max 1

1
−

− =− nOuu ii
i

, as ∞→n . 

( А1 ) 0)( ≥xK  is a bounded even function on R  and ∞<= ∫ dzzKK )(|||| 22 . 

( А2 ) 0)( =xK  for ]1,1[−∉x . 

( А3 ) ∫ =1)( dxxK , ∞<= ∫ dzzKz )(22υ . 
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( А4 ) ∫ = 0)( dxxKxk , 3,1=k . 

( А5 ) )(xf ′ is a continuous function, ∞<′∫ dxxf 2))((  and )(xf ′′  is a bounded function. 

( А6 ) )()( xFxf , )()()( xFxfxf ′  are bounded integrand and ∞<′∫ dxxf 4))(( .  

It is known (see [4]), that under conditions (K) )(xFn  is asymptotically normal. Observed that, 
)(xFn  is an asymptotically biased estimator.  
In [5] a simple two step estimator of distribution function with zero asymptotic bias and the same 
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We reduce the next result from [7], which will be necessary to us in the future. 
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The result of theorem 2 follows immediately using the theorem Lindeberg-Feller.     
 
2. Integrated Square Error of the Nonparametric Distribution Function Estimation 
 

Let nXXX ,..., 21  be a random sample with a distribution function )(xF . We consider a sample 
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measured error is collided for iu  as an additive. We shall illustrate this case taking iii uY ε+=  so 
measured error iε  with a density 0)( >xq  is collided for iu  as an additive. 

Let )()( 2 xSxF nn =  be nonparametric estimator if the distribution function )(xF . 
Integrated (weighted) square error of estimator )(xFn  is given by 
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where )(xw  is a weight function.  
Without loss of generality we may assume that 1)( ≡xw . We consider every term of the sum nI  
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It is easy to see, that ∫ Φ− dxxwxxEFn )())()(( 2  is purely deterministic in character. 
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Lindeberg-Feller theorem has given the result of Lemma 1. 
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Our aim is to prove a central limit theorem for 3nJ . 
Let 
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To prove a central limit theorem it suffices that (see [9])  
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If we apply the obtained result, we find that 
2 2 2 2 2( ) ( ) ( )n nE V s C nA F t q x t dxdt− ≤ ⋅ ⋅ −∫∫ , 
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The relation ( b ) follows from inequalities 
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Finally from ( a ) and ( b ) and [13] it follows that 
3nJ  is asymptotically normal 2

3(0, )N σ . 
 

Remark 2. For the Epanechnikov kernel )1|(|)1)(43()( 2 ≤−= xIxxK  the convolution is 

⎪⎩

⎪
⎨
⎧

<≤−+−−

≤≤−+−
==

02),204032)(3603(
20),204032)(3603(

))(*()(
532

532

2 xxxx
xxxx

xKKxK . 

Then  

( )( ) 434.0387167)()(
22

2 ≈=+= ∫∫∫ duvuKuKdvdxxK . 

( iv )     ∫ ++=Φ−− 321
2 2))()(( nnnnn IIIdxxxEFI . 

Let  

2
2

1122 ))()(())()(()( σμ −−+Φ−=Φ−= ∫∫ hndxxxEFdxxxFEn nn .  

This means that 1nI  and 2nI  are asymptotically independent. Combined the results from Lemmas 
1-3, we get the following theorem.  
 

Theorem 4. Under the conditions ( А ), 0→h  and ∞→nh  as ∞→n ,  
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( ii ) If 05 →nh , then  )2,0())(( 2
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d
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Thus, in this paper Nadaray-Watson estimators have been considered. Using them we have proved 
that the integrated square errors of these estimators are asymptotically normal. Also, we have been proved 
asymptotical normality of the offered asymptotically unbiased estimator (see [5]). Observe that, the result 
of Theorem 4 takes place also for this unbiased estimator. These results may be used for constructing 
goodness-of-fit test for this problem. 
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A nonparametric regression model E(Y) = m(x) is considered where Y is a dependent variable, x is d – a dimensional vector of 
independent variables (regressors)  and m is an unknown function. A sequence of independent observations (Yi, xi,) i = 1, 2, …, n, is 
available. Our aim is to construct an upper confidence bound for m(x) that corresponds to probability γ. The resampling approach is 
used. The suggested method allows calculating true cover probability. 
 
Keywords: nonparametric regression, interval estimation, resampling 
 
 
1. Introduction 
 

We consider nonparametric regression 

( ) ε+= xmY ,  (1.1) 

where Y  is a dependent variable, ( )om  is an unknown regression function, x  is a d -dimensional 
vector of independent variables (regressors), ε  is a random term.  

It is supposed that the random term has zero expectation ( ( ) 0=εE ) and variance 

( ) )(2 xwVar σε =  where 2σ  is an unknown constant and )(xw  is a known weighted function. 

Furthermore we have a sequence of independent observations ),( ii xY , ni ..,,2,1= . On that base we 

need to construct an upper confidence bound ( )xm~  for ( )xm  at the point x  corresponding to 
probability γ : 

( ) ( ){ } γ≥≤ xmxmP ~ . (1.2) 

Usual way [DiCicco and Efron, 1996] consists of using a consistent and asymptotic normal 
distributed estimate ( )xm)  of ( )xm . A final expression contains derivatives ( )xm′ , ( )xm ′′  and 

variance 2σ  that are replaced by the corresponding estimators.  
The resampling approach [Wu, 1986], [Andronov and Afanasyeva, 2004] gives an alternative way 

that can be described as follows. For the fixed point x  we take k  nearest neighbours •••
kxxx ...,,, 21  of 

x  among nxxx ...,,, 21  (in some sense, for example using any kernel function ( )•− iH xxK , 
Mahalanobis or other distance): 

{ } { })(:,...,, 21 xIixxxx cik ∈=••• , 

where  

{ }},...,,:{)( 21 nic xxxamongxofneighboursnearestktheofoneisxixI = . 

Now we have sample ( ) ( ) ( )••••••
kk YxYxYx ,...,,,,, 2211  instead of ( ) ( ) ( )nn YxYxYx ,...,,,,, 2211 . 

Then we derive sample without replacement { riii ...,,, 21 } of size r  ( kr < ) from set {1, 2, …, k}, 

form resample ( ) ( ) ( )oooooo YxYxYx r ,...,,,,, 2211 , where •=
jij xx o  and  •=

jij YY o , and calculate estimate 
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)(xm)  of our function of interest ( )xm . Then we return all selected elements into initial samples and we 
repeat this procedure R  times. As a result the sequence of estimators ( ) ( ) ( )xmxmxm R

))) ...,,, 21  takes 

place. After ordering we have the sequence ( ) ( ) ( )xmxmxm R)()2()1( ...,,, )))
, where ( ) ( )xmxm ii )1()( +≤ ))

. 

Let the number R  is selected so that γR  is an integer. Then we set ( ) ( )xmxm R )(~ γ)= . 
In the presented paper averaging method of estimator ( )xm)  forming is considered. Our main aim 

is to elaborate a numerical method for cover probability calculation: 

( ) ( ){ }xmxmPx ~)(Pr ≤=γ .  (1.3)  

It means that we have to know a distribution of the γR -th order statistics ( )xm R )( γ)
. This is a 

main problem that is necessary to be solved.  
 
2. Averaging Method 
 

At first we consider the method of kernel regression estimation [Hardle et al., 2004]. Let )(oHK  
be any kernel function (Epanechnikov, Quartic and so on). Then Nadaraya-Watson estimator ( )xm)  is 
calculated by the following formula 
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,  (2.1) 

where o
ix  and 

o
iY  are a vector of independent variables and dependent variable for the i-th elements of 

the resample,  i = 1, 2, …, r. 
The resampling procedure gives us sequence ( ) ( ) ( )xmxmxm R

))) ...,,, 21 , 
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where )( jxi
o  and )( jYi

o  are a vector of independent variables and dependent variable for the i-th 
elements of the j-th resample,  i = 1, 2, …, r, j = 1, 2, …, R. 

With respect to (1.1) we have: 
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where the sums are taken on set Ω of all r-samples ( )rzzzz ,...,, 21=  without replacement from the  

set }.,.,,{ 21
•••
kxxx  

Analogous expression we can to write down for unconditional variance. At first let us calculate the 
second moment: 
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Now the variance can be calculated by the following formula 

( ) ( ) ( )( ) .)()()( 22 xmExmExmVar ))) −=   (2.4) 

Now we need to calculate the covariance between two various estimates ( )xm j
)

 and ( )xm j '
)

. We 

have for j ≠ j’: 
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To avoid the computational difficulties, it is possible to consider the following estimate instead of (2.1): 

∑
=

=
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i
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1

1)( o)
  (2.8) 

and the corresponding sequence ( ) ( ) ( )xmxmxm R
))) ...,,, 21 . 

Expectations, variances and covariance matrix for this sequence of random variables can be 
determined using the following lemmas.  
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Lemma 1.  
Let kZZZ ...,,, 21  be independent random variables with expectations kμμμ ...,,, 21 and 

variances 22
2

2
1 ...,,, kσσσ . Let ooo

rZZZ ...,,, 21  be a random sample of size r from kZZZ ...,,, 21  

without replacement and S be their sum: ooo
rZZZS +++= ...21 . Then 

( )kk
rSE μμμ +++= ...)( 21 , (2.9) 
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Lemma 2. 
For the conditions of the previous Lemma let the sample ooo

rZZZ ...,,, 21  be returned into the set 
{ kZZZ ...,,, 21 } and the described procedure be repeated, so that we have new sample 

•••
rZZZ ...,,, 21  and a corresponding sum •••• +++= rZZZS ...21 . Then the covariance between S 

and •S is calculated by the formula 
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In our case •
iY  and o

iY play the part of iZ and o
iZ correspondingly, ( )xm)  is equal to S/r. 

Furthermore ( )•= ii xmμ  and instead of 2
iσ  must be ( )•ixw2σ . 

With respect to the given suppositions, random vector ( ) ( ) ( )( )xmxmxm R
))) ...,,, 21  has multi-

dimensional symmetric distribution with characteristics determined by (2.3), (2.4), (2.7) or (2.9)-(2.11). 
Therefore to calculate cover probability (1.3) means to calculate the probability that at last R(1 – γ ) 
components of vector ( ) ( ) ( )( )xmxmxm R

))) ...,,, 21  will be greater than m(x). For this it is possible to use 
normal approximation of the distribution. Unfortunately again we are faced with a hard computational 
problem. Usually for that solving crude Monte Carlo method is used.  
 
 
APPENDIX 
 

Proof of Lemma 1. 
Let jχ  = 1 if the random variable jZ  belongs to the sample { ooo

rZZZ ...,,, 21 } and jχ  = 0 

otherwise. Of course kχχχ ,...,, 21  are dependent random variables because rk =+++ χχχ ...21 . We 

have: P{ jχ =1}= r/k, P{ jχ =0}= 1 – r/k,  E( jχ ) = P{ jχ =1}= r/k,  

Var( jχ ) = (1 –r/k) r/k, E( iχ jχ ) = P{ iχ = 1, jχ  = 1} = r (r - 1) / (k(k –1)) for i ≠ j. Furthermore  
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Random variables iχ  and iZ  are independent therefore 
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Random variables iZ , jZ  and iχ jχ  for i ≠ j are independent, too, therefore 
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Formulas (A.1) and (A.2) give formula (2.10).  
 
 

Proof of Lemma 2. 
Let 
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For i ≠ j random variables jiji ZZ ,,, •χχ  are independent, therefore ( )jjii ZZCov •χχ ,  = 0. Further  
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Some regression models to forecast the air passengers’ conveyances from EU countries are considered. Two different 
approaches for the above-mentioned task of forecasting are shown. The first one is the classical method of linear regression and the 
second one is its generalized approach. The considered regression models contain many explanatory factors and their combinations. 
The advantage of using the generalized linear model (GLM) in comparison with the classical linear regression model is shown. 
 
Keywords: air passengers’ conveyances, forecasting, generalized linear model 
 
 
1. Introduction 
 

Most the literature which is devoted to forecasting of transport flows contains only simple 
forecasting models on the base of the time series methods or linear regression methods with a small 
number of explanatory variables. Two approaches for the forecasting of air passengers’ conveyances from 
EU countries are considered in this article: the classical method of linear regression and its generalized 
approach. The difference of linear regression models considered in this article comparing with the models 
presented in other papers [6] (autoregression integrated moving average models) and [3, 4, 8] (multiple 
regression models) consists in using the greater number of the explanatory factors and their combinations. 
Some models on the base of GLM are considered in the article as well. The aim of this article is to 
illustrate the advantage of using the GLM comparing with the linear regression models. The verification 
of the models and the evaluation of the unknown parameters are included in the research as well.  

This article has the following structure. The second section contains the description of the 
informative base of the mentioned investigation. The used models for analyzing and forecasting of air 
passengers’ conveyances are considered in the third section. The elaboration of linear regression models 
and generalized linear models are presented in the fourth and fifth sections. In the fifth section the 
advantage of using GLM in comparison with the classical linear regression is shown. 
 
2. Informative Base 
 

In this article the number of carried air passengers was our index of interest and we intend to 
forecast their volumes. We use the following factors influencing the volumes of air passengers’ conveyances: 
t1 total population of the country (TP), millions of inhabitants; 
t2 area of the country (AREA), thousands of km2; 
t3 density of the country population (PD), number of inhabitants per km2; 
t4 monthly labour costs (MLC), thousands of euro; 
t5 gross domestic product (GDP) “per capita” in Purchasing Power Standards (PPS) (GDP_PPS);  
t6 gross domestic product (GDP), billions of euro; 
t7 comparative price level (CPL);  
t8 inflation rate (IR); 
t9 unemployment rate (UR); 
t10 labour productivity per hour worked (LPHW). 

The time interval of consideration was the period from 1996 to 2005. We consider the air 
passengers’ conveyances from EU countries. By the moment of data collection there were 25 countries in 
the EU, such as Belgium, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, 
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Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Slovenia, 
Slovakia, Finland, Sweden and the United Kingdom. All data for this investigation have been received 
from the electronic database “The Statistical Office of the European Communities” (EUROSTAT) [9]. 

Some of the considered above factors are to be commented: 
a) GDP per capita (Latin: for each head) in PPS is the value of all final goods and services 

produced within a nation in a given year divided by the average population for the same year. This 
volume index of GDP is expressed in relation to the European Union (EU25 = 100). 

b) Comparative price level is an index that used for cross-country comparison of price levels. If 
it is higher/lower than 100 (EU25 = 100), the country concerned is relatively expensive/cheap as 
compared with the EU average. 
For each considered country and for each year we have the volumes of all ten basic factors 

mentioned above and the volumes of raw conveyances of the air passengers’ carried. But during the data 
gathering we have collided with shortage of data on many countries, especially concerning the new 
members of EU; therefore the final number of the observation was 161. 

The data for the period from 1996 to 2004 have been used for the estimation and forecasting, i.e. 
for finding of coefficients of the regressional models (140 observations). The data of the 2005 (21 
observations) have been used to check out the quality of forecasting, the so-called the cross-validation 
(CV). Detailed description of CV approach is considered by Diana Santalova in the proceeding article [7]. 
 
3. The Used Models for Analyzing and Forecasting of the Air Passengers’ Conveyances 
 

The air passengers’ conveyances from EU countries were the main object of the consideration in 
our investigation. The data about concrete country for the concrete year were taken as the observation. 
All the considered models were the group models [1]. It means that we have the identical regressional 
model for the various similar objects. 

In our research the linear regression models and the generalized regression models have been 
used. In the simplest case the linear regression model can be expressed in the following form [5] 

( )( )( ) βxT=xYE k ,  (1) 

where ( )kY  is a dependent variable for the k -th considered model (regressand), ( )Tdxxx ...,,, 21=x  

is d -dimensional vector of regressors or explanatory variables, ( )Tdββββ ...,,,, 210=β  is a 

coefficient vector that has to be estimated from observations for ( )kY  and x . 
The great number of linear regressional models [3, 4, 8] offered in the literature contains small 

number of the explanatory variables. But just increasing their number does not lead to improving 
considerably the quality of the regressional models. So the generalized linear model can be applied [5]:  

( )( )( ) { }βxTGxYE k = ,  (2) 

where ( )oG  is the known link function of one dimensional variable.  
Firstly, we consider the linear regressional models. After that the generalized linear models are in 

focus of our research. 
 
4. Elaboration of Linear Models 
 

The big number of various models which differed with structure of factors and their combinations 
has been constructed and investigated. During the process of the models’ construction the received results 
have been constantly analyzed and the new complementary factors have been added to them. All the 
considered models in this investigation are the group models. 

As the basic criteria to choose the best model, the following ones were selected: the multiple 
coefficient of determination (R2), Fisher’s criterion (F), the sum of the squares of the residuals (SSRes) 
and the sum of the squares of residuals for the cross-validation (CV SSRes). In additional to these criteria 
the other ones have been considered as well, in particular the forms of bands of residuals have been 
analyzed. Let us note that for the checking of the statistical hypotheses we always used the statistical 
significance level 05.0=α . 
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In the models 1-3 as the regressand ( ) yY i =  (where 3,2,1=i ) the number of raw air 
passengers’ carried was taken. 

As the regressors in Model 1 all the considered above variables without their modification such as: 

11 tx = , 22 tx = , 33 tx = , 44 tx = , 55 tx = , 66 tx = , 77 tx = , 88 tx = , 99 tx =  and 1010 tx =  
were chosen. 

Model 1 gives the following estimate for )(YE : 

( ) ( )( )
.03.12.1

32.005.007.053.044.28.18516.077.014ˆ

109

87654321
1

xx
xxxxxxxxxYE

−−
−++++−++−=

 

Now we are going to consider some criteria for the used model. The value of the coefficient of 
determination for this model R2 = 0.831 is high enough. The value of the Fisher criterion F = 63.49 is 
considerably higher than its critical value Fk = 1.905. This value was calculated with the significance 
level 05.0=α  and with the degrees of freedom 101 == mdf  and ( ) 12912 =−−= mndf , where m  
is a number of predicted values and n  is a number of observations [2]. The critical level of model 
significance (p-level) p = 0.000000, so this model is adequate. 

For each factor of model 1 table 1 contains factor estimates (b) and the results of the check of their 
significance: the calculated values of the Student t-criterion (t) and p-level. Some factors for this model 
are nonsignificant. The critical value of the 2-tailed Student criterion tk = 1.979 which was calculated with 
the significance level 05.0=α  and with the degrees of freedom ( ) 1291 =−−= mndf  [2]. The 
significant explanatory variables are the variables 2x , 3x , 6x  and 10x , so, the greatest influence on the 
air passengers’ conveyances is provided by the aria of the country, the density of the country population, 
the value of the gross domestic product and the comparative price level. The positive and the negative 
signs for all regressors in this model correspond to physical sense of regressors. Such statistical procedure 
was used for all linear regression models considered below.  
 
TABLE 1. The estimates of the coefficients and their significance level for Model 1  
 

Variable Factor b t(129) p-level 
 Intercept 14.00 0.84 0.405 

x1 TP -0.77 -1.56 0.121 
x2 AREA 0.16 5.60 0.000 
x3 PD 185.80 4.67 0.000 
x4 MLC -2.44 -0.44 0.660 
x5 GDP_PPS 0.53 1.68 0.096 
x6 GDP 0.07 3.81 0.000 
x7 CPL 0.05 0.37 0.710 
x8 IR 0.32 0.29 0.771 
x9 UR -1.20 -1.59 0.114 
x10 LPHW -1.03 -3.75 0.000 

 
The analysis of the form of the band of residuals for Model 1 has shown the necessity of adding 

into the regression model the new explanatory factor 11t  (ON). This factor takes 2 meanings: “0” if the 
considered country is the old member of EU, and “1” if the considered country is the new one. 
Additionally we remove some nonsignificant factors from Model 1. 
Therefore the regressors in Model 2 are the following: 21 tx = , 32 tx = , 63 tx =  104 tx =  and 115 tx = . 

Model 2 gives the following estimate for )(YE : 

( )( )( ) 54321
2 36.2968.005.001.13409.056.13ˆ xxxxxxYE +−+++= . 

The obtained results for Model 2 are shown in the Table 2. We see that our modification allows 
improving some characteristics of regressional Model 1. In this model R2 = 0.829 but despite the decrease 
of it we see that the value of F = 129.85 has considerably increased comparing with the previous model. 
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TABLE 2. The estimates of the coefficients and their significance level for Model 2  
 

Variable Factor b t(134) p-level 
 Intercept 13.56 2.45 0.016 

x1 AREA 0.09 4.45 0.000 
x2 PD 134.01 4.32 0.000 
x3 GDP 0.05 10.34 0.000 
x4 LPHW -0.68 -5.12 0.000 
x5 ON 29.36 4.21 0.000 

 
The next step for improving the characteristics of the regressional models consists in adding to 

regressional models the modified basic factors and their different combinations, such as: 1t , 2
1t , 2t , 

12 tt , 12 tt , 16 tt , ( )216 ttt ⋅ , ( )216 ttt ⋅ . We begin with Model 3, where: 31 tx = , 62 tx = , 

103 tx = , 2
14 tx =  and 25 tx = .  

This model gives the following estimate for )(YE : 

( )( )( ) 54321
3 03.303.052.014.026.11334.6ˆ xxxxxxYE +−−++−= . 

The analysis of the obtained results for Model 3 (Table 3) also shows the rightful appliance of this 
approach because it allows us to improve considerably the characteristics of the regressional model. 
Moreover, the comparison of the received results with the results which have been obtained for the 
models considered above shows that their input allows to improve two characteristics of the regression 
model at the same time: R2 = 0.867 and F = 174.078. 
 
TABLE 3. The estimates of the coefficients and their significance level for Model 3  
 

Variable Factor b t(134) p-level 
 Intercept -6.34 -1.05 0.296 

x1 PD 113.26 4.00 0.000 
x2 GDP 0.14 10.66 0.000 
x3 LPHW -0.52 -5.80 0.000 
x4 sq(TP) -0.03 -7.56 0.000 
x5 sqrt(AREA) 3.03 5.74 0.000 

 

The observed and predicted values of the air passengers’ conveyences in Country-Year order for 
Model 3 are shown on Figure 1, the results of the cross-validation for this model are shown on Figure 2. 
The “Country-Year order” for all values which is shown on Figure 1 means that, firstly, they are sorted by 
the country name and for each country they are sorted by year. 
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Figure 1. Plot of the observed and predicted values for Model 3 
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Figure 2. Plot of the observed and predicted values for the CV for Model 3 

 
But in Figures 1 and 2 we can see considerable inconvenience of the 3 Model, which consists in 

the fact that some predicted values for this model, lies in the negative area. Models 1 and 2 have the same 
disadvantage. Therefore as the next step for the improving of the regressional model was the transfer to 
the new forecasting variables. 

So in the Models 4-5 as the regressand we considered the ratio between the total number of air 

passenger carried and the number of inhabitants of the country ( )
1tyY i = , 5,4=i .  

As the regressors in Model 4 we used the following variables: 21 tx = , 32 tx = , 43 tx = , 

64 tx = , 115 tx = , 16 tx = , 27 tx = , 128 ttx = , 128 ttx =  and 169 ttx = . 

Model 4 gives the following estimate for )(YE : 

( ) ( )( ) 87654321
4 17.004.00004.076.1001.002.004.133.256.0ˆ xxxxxxxxxYE ++−++−−+= . 

The obtained results for Model 4 are shown in the Table 4 (R2= 0.760, F = 45.81). 
 
TABLE 4. The estimates of the coefficients and their significance level for Model 4  
 

Variable Factor b t(131) p-level 
 Intercept -5.67 -6.25 0.000 

x1 AREA -0.02 -6.73 0.000 
x2 PD 10.37 6.19 0.000 
x3 MLC -0.73 -4.19 0.000 
x4 ON 0.83 8.30 0.000 
x5 sqrt(TP) -1.02 -7.32 0.000 
x6 sqrt(AREA) 1.06 7.10 0.000 
x7 AREA/TP -0.12 -6.98 0.000 
x8 sqrt(AREA)/TP 0.94 5.84 0.000 

Variable Factor b t(131) p-level 
 

The analysis of the obtained results doesn’t show the improvement of the characteristics of this 
model. Therefore we decide to enter one more variable 12t  (HL), which expresses the relative value of the 

conveyances. It takes 2 meanings: 0 if the value of 1ty  for the considered country is small (less than 2) 
and is equal 1 if this value is larger than 2  

As the regressors in Model 5 we used the following variables: 41 tx = , 52 tx = , 83 tx = , 

94 tx = , 105 tx = , 116 tx = , 127 tx =  and 168 ttx = . 
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Model 5 gives the following estimate for )(YE : 

( ) ( )( ) 87654321
5 07.015.127.101.002.002.002.046.099.0ˆ xxxxxxxxxYE ++++−−−−= . 

The obtained results for Model 5 are shown in the Table 5 (R2 = 0.864, F = 104.174).  
 
TABLE 5. The estimates of the coefficients and their significance level for Model 5  
 

Variable Factor b t(131) p-level 
 Intercept 0.99 3.93 0.000 

x1 MLC -0.46 -3.41 0.001 
x2 GDP_PPS -0.02 -3.81 0.000 
x3 IR -0.02 -1.33 0.187 
x4 UR -0.02 -1.90 0.056 
x5 LPHW 0.01 3.72 0.000 
x6 ON 1.27 9.21 0.000 
x7 HL 1.15 15.30 0.000 
x8 GDP/TP 0.07 3.41 0.001 

 
The data for all considered models and for the four mentioned above criteria have been brought in the 

Table 6. For each model and for each criterion the rank Ri (where i = 1, 2, 3, 4) has been calculated. Here, 
the rank of a model is its i -th criterion position number among all values of this criterion. The sum of the 
ranks (Sum R) for all four criteria and the total rank (Total R) has allowed us to define the best model. In 
order to compare the results obtained for the Models 4-5 with the previous ones (Models 1-3), for the 
Models 4-5 the recalculated data for SSRes and CV SSRes have been used. These data were multiplied by 
the value of the country population. So according to the sum of ranks for all considered models and taking 
into account the inconvenience of the first three models we can conclude that the best model is Model 5. 
 
TABLE 6. Pivot results for the first three models 
 

Model R2 R1 F R2 SSRes R3 CV SSRes R4 Sum R Total R 
Model 1 0.8311 3 63.49 4 52651.33 5 17232.75 5 17 5 
Model 2 0.8289 4 129.85 2 53343.53 5 16458.41 4 15 3 
Model 3 0.8666 1 174.1 1 41598.60 2 7417.482 1 5 1 
Model 4 0.7603 5 45.81 5 35064.04 3 8596.43 3 16 4 
Model 5 0.8642 2 104.2 3 12774.59 1 7717.23 2 8 2 

 
Figure 3 shows the recalculated observed and predicted values for the air passengers’ conveyances 

for Model 5 in the order Country-Year. The result of the cross-validation for this model is shown in Figure 4.  
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Figure 3. Plot of the recalculated observed and predicted values for Model 5 
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Figure 4. Plot of the recalculated observed and predicted values for the CV for Model 5 

 
5. Elaboration of Generalized Linear Models 
 

Tempting to improve the characteristics of the received linear regression models (1) the 
generalized linear model (2) has been used. 

For the further investigation the best linear regression model (Model 5) has been chosen. Two 
different GLM are considered. In both of them the value of the regressand ( ) ( )

1
5 tYY GLM =  and the 

collection of the regressors are the same as for Model 5.  
The first GLM (GLM1) is the modification of the logit model [5] which can be written in the 

following form: 

( ) ( )( )
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,  (3) 

where ih  is the total population number, ix  is vector-columns of the independent variables, i  is the 
observation number, ni ...,,2,1= . 

The second of the investigated GLM (GLM2) has the following form: 

( ) ( )( )
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jij

ii
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hxYE
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2
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1
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where a  is the additional parameter (constant). 

The unknown parameter vector ( )Tdβββ ...,,, 21=β  for both GLM is estimated by the use of 
the least squares (LS) criterion: 

( ) ( )∑
=

→−=
n

i
ii YYR

1

2
0 min~

β
β ,  (5) 

where iY  and iY~  are observed and calculated values of Y . 
Note, that linearization of the logistics models is the traditional way for the estimation of their 

unknown parameters. Let us show that it gives bad results.  
After GLM linearization their liniarizated forms (LM) LM1 for the model (3) and LM2 for the 

model (4) correspondingly were obtained: 
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for the model (3) the LM1 

∑=
− j

jij x
Y

Y
,*

*

1
ln β , (6) 

and for the model (4) the LM2 
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,*

1ln β , (7) 

where hYY =* . 
Here the dependent variables are situated in the left side of the formulas, and their parameters’ β  

estimation is not difficult to do. 
The models LM1 and LM2 gives the following estimate for )(YE : 

( )( )( )
987654321

987654321

64.081.729.044.08.487.002.068.6001.078.13

64.081.729.044.08.487.002.068.6001.078.13
1

1
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xxxxxxxxx
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( )( )( )
987654321 11.041.02.067.196.1781.004.07.163.165.11
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xxxxxxxxx
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e
hxYE
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= . 

The values of SSRes and CV SSRes for the Models LM1 and LM2 comparing with Model 5 are 
calculated and shown in the Table 7. 
 
TABLE 7. The value of SSRes and CV SSRes for the Models 5, LM1 and LM2 
 

SSRes CV SSRes  
Model 5 LM1 LM2 Model 5 LM1 LM2 

nR0  12 775 27 447 21 834 7 717 676 576 229 554 
 

We can see that linearization gives bad results. Making attempts to improve the obtained results a 
two-stage estimation procedure is developed. The first stage corresponds to the considered linearization. 
As the second step we use the procedure of calibration when we precise the gotten estimates by using the 
well-known gradient method.  

The gradients with the respect to the unknown parameter vector β  for the GLM1 and GLM2 can 
be written in the following forms: 
for the model (3) 
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and for the model (4) 
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For the GLM2 we found the optimum value of 0R  not only from the values β  but from the 
parameter a  also. Firstly, we fix the value of a  and search the optimum values of β  according to (5). 
After that we fix the founded values of β  and search the optimum values of 0R  by changing the value of 
parameter a . This procedure has been repeated many times until 0R  reaches its minimum. 
The GLM1 and GLM2 have the following estimates for )(YE : 

( )( )( )
987654321

987654321

15.068.011.026.177.576.002.022.105.105.7

15.068.011.026.177.576.002.022.105.105.7
1

1
ˆ

xxxxxxxxx

xxxxxxxxx
GLM

e

ehxYE
+−−+++−+−−

+−−+++−+−−

+
= , 

( )( )( )
987654321 06.013.01.012.181.782.002.078.009.126.7

2

3.6

1ˆ
xxxxxxxxx

GLM

e
hxYE

−++−−−+−++
= . 

Figure 5 shows the observed values of air passengers’ conveyances and predicted values obtained 
by using of the generalized linear regression models GLM1 and GLM2 in the order to Country-Year. The 
results of the cross-validation for the models GLM1 and GLM2 are shown in Figure 6.  
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Figure 5. Plot of the observed and predicted values for the GLM1 and GLM2 
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Figure 6. Plot of the observed and predicted values for the CV for the GLM1 and GLM2 

The SSRes for the CV for the Models 5, GLM1 and GLM2 are shown in the Table 8. 
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TABLE 8. The value of SSRes for the CV for the Models 5, GLM1 and GLM2 
 

CV SSRes  

Model 5 GLM1 GLM2 
nR0  7 717 7 171 5 185 

 
The comparison of the data from Tables 7 and 8 allows stating the following: generalized linear 

models give better results for the forecasting of air passengers’ conveyances in comparison with 
traditional linear regression models; simple linearization gives considerably worse results for the 
forecasting and needs in its optimization. For this purpose the two-stage estimation procedure which is 
shown in this article can be used. 

Besides this for the GLM2 the dependence of values SSRes and CV SSRes on the value of 
parameter α  is investigated. The obtained results are shown in Figure 7. The optimal value for analysis 
of SSRes is obtained, then 2=α , but the best result for the analysis of CV SSRes is obtained, then 

6=α . 
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Figure 7. The values of SSRes and CV SSRes as a function of parameter α  for GLM 2 

 
Conclusion 
 

The linear and generalized linear regressional models for the forecasting of air passengers’’ 
conveyances from EU countries are considered. These models contain a big number of explanatory 
factors and their combinations. For the estimation of the unknown parameters of the linear regressional 
models we use the standard procedures. For the estimation of unknown parameters of GLM the special 
two-stage procedure has been elaborated. The cross-validation approach has been taken as the main 
procedure for the check out the adequacy of all considered models and choosing the best model for the 
forecasting. The advantage of GLM application has been shown.  
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considered in the investigation. The models contain such factors for each country as: total length of railways, gross domestic product 
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index model. Various tests for hypothesis of explanatory variables insignificance and model correctness have been carried out, and 
the cross-validation approach has been applied as well. The analysis has shown obvious advantage of the single index model.  
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1. Introduction 
 

In this paper we consider the problem of forecasting of rail freight conveyances from the member 
countries of the European Union on the basis of EUROSTAT YEARBOOK 2005 data [5]. For that the 
linear regression model [4] and the single index model (SIM) [3] are used. The object of consideration is 
rail freight conveyance expressed in million tonne-kilometres. We call observation the data about an 
object for a concrete year from 1996 till 2000. The following countries were considered: Austria, 
Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, 
Portugal, Spain, Sweden and the United Kingdom. The main difficulty is to choose the set of convenient 
factors influencing the rail freight conveyances. The task of research is to construct various regression 
models, i.e. models with different combinations of explanatory factors, and then to choose from them the 
ones, that give the best forecasts of conveyances. We use the following well known criteria for comparing 
the elaborating models: the coefficient of multiple determination R2, Fisher’s and Student’s criteria and 
the residual sum of squares R0 [1, 4]. The described below cross-validation approach is used as well. 
Especially for the single index model the series of experiments is carried out with the aim to determine 
the optimal value of bandwidth h. In the present paper a lot of attention is paid to this problem. 

The paper is organized in a following way. First of all the used regression models are considered 
from theoretical point of view, then the used data are described. After that we consider the suggested 
group models for the forecasting of conveyances. The results of the carried out estimation and the 
comparative analysis of these models are presented as well. 
 
2. Structure of the Used Models  
 

In this research all investigated models are group models [1]. The main object of consideration is 
named an object. It is a freight conveyance from some EU country. The data about an object for a definite 
period of time is called observation. We talk about the individual model if one object corresponds to 
another object for various observations, and about the group model if one corresponds to various objects. 
In other words we are able to forecast rail freight conveyances for all considered countries using one and 
the same model.  

With respect to used mathematical model we consider linear regression models and semiparametric 
regression models. 

In general the regression model can be described as 

( ) iii xmY ε+= ,  (1) 

where iY  is a dependent variable in the i-th observation, ( )om  is an unknown regression function, ix  is a 

d -dimensional vector of independent variables, iε  is a random term.  
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It is supposed that the random term has zero expectation ( ( ) 0=εE ) and the variance 

( ) ( )xVar ψσε 2= , where 2σ  is an unknown constant and ( )xψ  is a known weighted function. 
Furthermore we have a sequence of independent observations ( )ii xY , , ( )diiii xxxx ,2,1, ...,,,= , 

ni ...,,2,1= . On that base we need to estimate the unknown function ( )xm . 
In the simplest case the linear regression model is used:  

i
T

didiii xxxxxm βββββ =++++= ,2,21,10 ...)( ,  (2) 

where ( )d
T ββββ K10=  is vector of unknown coefficients, ( )Tdiii xxx ,1,1 K= is a 

vector of independent variables in i-th observation. 
As it is known the forecasts obtained using the linear regression models are not very good. So, for 

rail conveyances forecasting we use the single index regression model [3] as well: 

( ) ( )iT
didiii xgxxxgxm βββββ =++++= ,2,21,10 ...)( , (3) 

where ( )og  is an unknown link function of one dimensional variable and i
T

i xβτ =  is called an index. 
 
3. Informative Base 
 

For experiments we will use the below-described statistical data. All necessary data have been 
received from “The Statistical Office of the European Communities” electronic database (EUROSTAT) 
[5]. First of all, the variable of interest is the rail freight conveyance, expressed in million tonne-
kilometres. Let us denote it by t0. 

The following factors have been selected as explanatory variables: 
t1 – country area, in thousands of km2; 
t2 – Gross Domestic Product per capita in Purchasing Power Standards; 
t3 – comparative price level;  
t4 – total length of railways, in thousands of km; 
t5 – number of locomotives, in thousands; 
t6 – number of goods wagons, in thousands. 
Let us comment on some of the described factors. 
Gross Domestic Product is a measure for the economic activity. It is defined as the value of all 

goods and services produced less the value of any goods or services used in their creation. The volume 
index of GDP per capita in Purchasing Power Standards (PPS) for each country is expressed in relation to 
the European Union (EU-25) average set to equal 100. 

Comparative price level is the ratio between Purchasing Power Parities (PPPs) and market 
exchange rate for each country. 
 
4. Considered Models 
 

Now let us describe four investigated regression models. Two of them are linear regression models 
and other two ones are SIM.  

The first model is a simple linear regression model (2). The dependent variable ( )
0

1 tY L =  is 
conveyance of rail freight transport in millions tonne-kilometres. Note, that superscript by Y is introduced 

just for identification of models. Explanatory variables are 21 tx = , 32 tx = , 
3

2
3 t

tx = , 44 tx = , 55 tx = , 

66 tx = . The ratio 
3

2

t
t

 enables us to see how these two factors in aggregate influence conveyances. 

The second model is modification of the previous one. The dependent variable ( )

1

02

t
t

Y L =  is the 

ratio between the conveyance and the square root of the country area. Explanatory factors are 

21 tx = , 32 tx = ,
3

2
3 t

tx = , 44 tx = , 55 tx = , 66 tx = . In addition we introduce here the factor 7t , which 



 
 

Part II. Statistical Inferences 
 

 75

is the index of the country area, by which we are able to consider gradation of the countries’ areas. It is 
equal to 1 for relatively small countries (with areas less than 40 000 km2 or equal to 40 000 km2), and it is 
equal to 0 for countries with areas larger than 40 000 km2. For example, this index is equal to 1 for 
Belgium, Luxembourg and Austria, because the areas of these countries are smaller than 40 000 km2.  

Finally we consider two variants of the Single Index Model (3). In the first variant the value of the 

dependent variable ( )

1

01

t
t

Y SIM =  is the ratio between the conveyance and the country area for a concrete 

year. In the second variant the dependent variable ( )

1

02

t
t

Y SIM =  coincides with a dependent variable 

from the second linear Model L2. 
The sets of explanatory variables for the models SIM1 and SIM2 coincide with the set for the first 

linear Model L1.  
Thus, we have four regression models. Our task is to estimate the unknown coefficientsβ for the 

models, to compare the suggested models and to choose the best ones taking in account their significance. 
All calculations are performed using Statistica 6.0 and MathCad 12 packages. 
 
5. Estimation of the Linear Models 
 

Firstly, we analyse all the suggested models in case of data smoothing. It means we estimate the 
unknown coefficientsβ  by all the observations. Thus, we are able to evaluate, how the considered 
models can only smooth the known conveyances and what variables have the greatest influence upon the 
conveyances. 

Let us describe the obtained results.  
The estimated Model L1 has the following form: 

( ) ( )( ) 654321
1 158549879769 1126118713 3ˆ xxxxxxxYE L +++−++−= . 

The estimates of the coefficients and calculated values of the Student’s criterion for the Model L1 
are presented in Table 1. Here iβ

~
 is an estimate of iβ , t(68) is the calculated value of Student’s criteria 

for 68 degrees of freedom, p-level is the error of the second kind (or level of insignificance of variable). 
The theoretical value of Student’s criterion for 68 degrees of freedom and level of significance (or error 
of the first kind) α = 5% is equal to 1.67. Taking into account the fact that the hypothesis of insignificance 
of explanatory variable is tested, we can see that calculated value of Student’s criterion exceeds its 
theoretical value for two variables only, i.e. these two variables cannot be recognized as insignificant. 
Thus, the most significant explanatory variables are 4x  and 6x , so, the greatest influence on conveyances 
is rendered by the total length of railways and the number of wagons. The positive sign for these variables 
corresponds to the physical sense of the regressors. The coefficient R2 for this model is equal to 0.985 and 
the calculated value of Fisher’s criterion is 383.69. The theoretical value of Fisher’s criterion for 6 and 68 
degrees of freedom and level of significance α = 5% is equal to 2.23. Comparing the theoretical and 
calculated values of Fisher’s criterion we can conclude that the estimated Model L1 cannot be recognized 
as insignificant. So, Model L1 is adequate.  
 
TABLE 1. Estimates of coefficients of Model L1 and their insignificance levels 
 

Coefficients iβ
~

 t(68) p-level 

0β  -3 713 0.149195 0.881842 

1β  118 0.480762 0.632229 

2β  26 0.109604 0.913046 

3β  -11 769 -0.462115 0.645474 

4β  879 6.866741 0.000000 

5β  549 0.799173 0.426973 

6β  158 8.375650 0.000000 
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The estimated Model L2 is as follows: 

( ) ( )( ) 7654321
2 2.293.09.52.02.1104.12.14.120ˆ xxxxxxxxYE L ++++++−−= . 

The results of the analysis of Model L2 are presented in the Table 2. As we can see, almost all 
explanatory variables are recognized to be significant by Student’s criterion. Only total length of railways 
does not influence the dependent variable. We obtain the positive signs for all significant variables with 
the exception of GDP; that means the positive correlation between these explanatory variables and the 
dependent variable. The coefficient R2 for this model is equal to 0.985 and the calculated value of Fisher’s 
criterion is 313.78. The theoretical value of Fisher’s criterion for 7 and 67 degrees of freedom and level of 
significance α = 5% is 2.15, so, this regression model is significant as well. 
 
TABLE 2. Estimates of coefficients of Model L2 and their insignificance levels 
 

Coefficients iβ
~

 t(68) p-level 

0β  -120.4 -3.00514 0.003732 

1β  -1.2 -3.11117 0.002738 

2β  1.4 3.55818 0.000692 

3β  110.2 2.68390 0.009160 

4β  0.2 1.03172 0.305913 

5β  5.9 5.42836 0.000001 

6β  0.3 9.33665 0.000000 

7β  29.2 12.79621 0.000000 
 

Figures 1 and 2 demonstrate how the investigated models smooth the observed true data. The 
observations are arranged in “country-year” order: every five points correspond to conveyances of some 
country during the analysed period from 1996 till 2000, i.e. for five years. Moreover, countries are sorted 
in alphabetical order. Horizontal axis reflects the number of observations, arranged in the above-
mentioned order. Vertical axis reflects the corresponding conveyances, expressed in thousands. It is 
obvious that both linear models show the similar smoothing.   
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Figure 1.  Smoothing by Model L1 
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Figure 2. Smoothing by Model L2 

 
6. Estimation of the Single Index Models 
 

Now we will consider the suggested single index Models SIM1 and SIM2. 
The estimation of these models consists of two steps: we have to estimate the unknown coefficients 

vector β and the link function g. For the latter the Nadaraya-Watson kernel estimator can be applied [3]: 

( )
( )

( )∑
∑ =

=

=
n

i
iihn

i
ih

YK
K

xg
1

1

1~ τ
τ

, (4) 

where ( ) βτ T
ii xx −=  is a value of index for the i -th observation, Yi is a value of the dependent 

variable for i-th observation and ( )ohK  is the so-called kernel function. 

We use the Gaussian function as ( )ohK : 

( ) ,
2
1exp
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1 2
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⎠
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π
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where h is a bandwidth.  
The unknown parameter vector β  is estimated using the least squares criterion: 

( ) ( )( )∑
=

→−=
n

i
ii xgYR

1

2 min~
β

β .  (6) 

For that we use the gradient method. The corresponding gradient is the following: 
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where 
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( )∑
=

=
n

j
jjhi YKY

1

~ τ   (8) 

and 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−=

∂
∂ 2

2 2
1exp

2 hh
K ii

ih
i

τ
π

ττ
τ

 (9) 

is the derivative of the Gaussian kernel. 
We are able to compare single index models by the residual sum of squares R0 only. We calculate 

the residual sum of squares as follows: 

( )∑
=

−
−

=
n

i
ii YY

dn
R

1

2

0 ,ˆ1
  (10) 

where n is a number of observations, d is a number of estimated coefficients, Yi is an observed value and 
( )ii xgY ~ˆ =  is an estimated value. 

The estimates of coefficientsβ , i.e. the values of coefficients β optimizing the object function (6), 

for both single index models have been obtained from the same starting point ( )0β  and with bandwidth 
h = 7 for SIM1 and h = 6 for SIM2. Note that these values of bandwidth are optimal and have been 
obtained as a result of the series of experiments using our own program written in MathCad12 package.  

The estimated Model SIM1 has the following form: 
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xxxxxxxxxxxxK

xxxxxxxxxxxxKY
xYE

)  

The estimated Model SIM2 can be written in the following way: 

( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
.

871628534101716

871628534101716

1
,6,5,4,3,2

3
,1

1
,6,5,4,3,2

3
,1

)2(

∑

∑

=

=

−−−+−+−−−×−−
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i
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i
iiiiiihi

SIM

xxxxxxxxxxxxK

xxxxxxxxxxxxKY
xYE

)  

Figures 3 and 4 represent smoothing by these models. Obviously, the estimates of conveyances 
almost in all observations coincide with the true conveyances.  
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Figure 3. Smoothing by Model SIM1 
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Figure 4. Smoothing by Model SIM2 
 

As both linear models and both single index models give approximately similar results in data 
smoothing, we have to consider how precise the forecasts are which are given by analysing models. For 
this purpose we use the residual sum of squares R0 (10). Table 3 involves the values of the residual sums 
of squares for all the models. 
 
TABLE 3. Values of R0 in case of smoothing 
 

Model L1 L2 SIM1 SIM2 
R0 11 543 065 4 830 576 894 265 565 407 

 
So we can conclude that the linear Model L2 and the single index Model SIM2 have the minimum 

value of R0 that means greater significance of these models in comparison with two others. As it was 
supposed, in general SIM gives the most precise estimates. 
 
7. Cross-Validation Analysis 
 

Now we will consider the suggested models from the other point of view. We use the cross-
validation approach. That means we estimate the unknown coefficients β  for the models on the basis of 
a part of the data. Then using the obtained estimates of β  we forecast the conveyances for a remained 
part of the data and compare these forecasted conveyances with the real ones, i.e. we calculate R0 for each 
model. Also the optimum value of bandwidth h is found for both single index models.  

We estimate the coefficients β on the basis of the period from 1996 till 1999 and perform the 
forecast for the year 2000. Table 4 contains the estimates of β  for the considered linear regression models. 
The signs of estimates correspond to physical sense of explanatory factors. 
 
TABLE 4. Estimates of coefficients for the linear models 
 

Coefficients L1 L2 

0β  4 154.4 -119.7 

1β  197.7 28.7 

2β  45.4 -1.2 

3β  -20 555.8 1.4 

4β  898.5 110.0 

5β  531.6 0.2 

6β  148.1 6.0 

7β  – 0.3 
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The residual sum of squares R0 for Model L1 is 18 509 464 and for Model L2 is 8 941 875. 
Obviously, forecasts of rail freight conveyances obtained by the second linear model have to be much 
better than those obtained by the first one. Moreover, the first linear model gives negative forecasts of 
some small conveyances. The true observed values of conveyances and the corresponding forecasts are 
displayed in Figures 5 and 6. We can see that Model L2 is more sensitive to the small conveyances which 
belong to the countries with small areas. Obviously this effect is achieved by using the above-mentioned 
additional gradation factor. 
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Figure 5. Forecasting by Model L1 
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Figure 6. Forecasting by Model L2 

 
Now we will analyze SIM in detail. We begin with a choice of the bandwidth size. Our task is to 

find the optimal value of bandwidth h0 that gives a minimal value of R0 (see [3]). The series of 
experiments was performed and the different estimates of β  and values of R0 depending on various h 
were obtained as well. The corresponding results for Models SIM1 and SIM2 are shown in Tables 5 and 6 
respectively. We can see that all β  estimates differ from each other depending on h in spite of the fact 
that they were obtained from the same initial value 0β . The values of R0 (expressed in millions) 
corresponding to various h for both SIM are represented in Table 7. Thus, the best result for R0 is 
achieved for h0 = 7 and h0 = 8 for SIM1 and for h0 = 6 for SIM2. As it was supposed the sum of squared 
residuals increases if h is bigger and smaller than the optimal value. The forecasted conveyances by SIM1 
with h0 = 7 and by SIM2 with h0 = 6 and observed conveyances are shown on the Figures 7 and 8, respectively. 
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TABLE 5. The estimates of β for SIM1 
 

Bandwidth h 
Coefficients 

1 5 6 7 8 9 10 15 20 

1β  22.8 566.4 248.6 33 160.0 344.5 721.2 3 530.0 1 327.0 -901.7 

2β  26.6 299.9 216.7 -22 420.0 -95.8 -24.1 -512.5 358.2 1 304.0 

3β  -0.04 1.9 -0.03 565.5 4.4 7.2 38.4 8.6 -19.7 

4β  0.13 257.9 88.9 19 870.0 120.5 207.1 1 310.0 550.0 1 011.0 

5β  4x10-5 62.9 17.9 3 996.0 25.3 37.7 174.4 119.2 198.3 

6β  1x10-5 885.7 252.2 56 310.0 356.9 572.7 3 832.0 3 058.0 724.6 

 
TABLE 6. The estimates of β  for SIM2 

 
TABLE 7. The values of R0 for SIMs 
 

Bandwidth h  

1 5 6 7 8 9 10 15 20 

SIM1 676.9 24.3 2.0 1.9 1.9 2.5 24.3 24.3 44.5 

SIM2 676.9 24.2 1.9 1.9 1.9 2.4 3.0 7.5 7.3 
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Figure 7. Forecasting by SIM1 

Bandwidth h 
Coefficients 

1 5 6 7 8 9 10 15 20 

1β  29.3 859.9 962.7 1.7x103 1.2x103 697.5 618.7 757.1 -4.5x103 

2β  18.3 462.3 1.2x103 1.0x103 654.8 578.5 276.8 791.3 3.4x103 

3β  0.1 3.4 -2.4 7.5 6.0 1.9 3.3 -0.2 -73.6 

4β  -0.2 440.7 604.3 1.2x103 636.6 664.1 525.1 737.1 4.0E+3 

5β  4x10-5 103.7 49.0 97.1 61.0 24.1 12.1 17.3 916.8 

6β  1x10-5 1.5x103 690.0 1.4x103 859.7 851.7 672.9 1.2x103 1.9x104 
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Figure 8. Forecasting by SIM2 

 
Obviously, the forecasted values are very close to the observed values almost in all the observations. 
Table 8 contains the values of R0 for four investigated models. As we can see, values of R0 for 

single index models are in a number of orders less than for linear models. This fact gives evidence of 
greater accuracy of SIM models. 
 
TABLE 8. The values of R0 in case of forecasting 
 

Model L1 L2 SIM1 SIM2 

R0 18 509 464 8 941 875 1 894 237 1 896 287 
 

From Figure 9 we can also visually evaluate behaviour of R0 with respect to bandwidth h for both 
single index models. 
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Figure 9. R0 depending on bandwidth for SIMs 
 
Conclusions 
 

In the presented paper two kinds of models for forecasting of inland rail freight conveyances are 
considered: linear regression model and single index regression model. Four different regression models 
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were constructed and tested, two of them are linear regression models and two others are single index 
models. For the estimation of unknown coefficients in case of SIM the Nadaraya-Watson estimator and 
Gaussian kernel function were used. The efficiency of these models was investigated through the 
consideration of conveyances for the 15 member countries of the European Union. All the considered 
models include a great number of explanatory factors. The performed investigations show that the single 
index regression model gives more precise forecasts than classical methods of linear regression. For this 
purpose all the models have been estimated and compared by the criterion of the residual sum of squares 
in case of data smoothing and in case of forecasting as well, that required the cross-validation approach. 
Moreover, the optimal values of smoothing parameter h for the considered single index models have been 
obtained experimentally.  
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COMPUTER MODELLING and NEW TECHNOLOGIES, volume 11, No. 1, 2007 
(Abstracts) 

 
Yury Paramonov, Janis Andersons. Analysis of Fiber Strength Dependence on Length Using 
an Extended Weakest Link Distribution Family, Computer Modelling and New Technologies, 
vol. 11, No 1, 2007, pp. 8-20. 

An extended family of the weakest-link models based on the assumption of a two-stage failure 
process of a fiber specimen was developed in [1, 2]. A generalization of this family is presented in 
this paper. As in [1, 2] we consider the specimen as a chain of n elements (links). The fracture process 
is modelled as follows: in the first stage initiation of defects (before loading or during loading), and in 
the second stage a specimen fracture takes place. As distinct from our previous publications, the 
strength of items without defects is taken into account and two types of the influence of defect 
number on the specimen strength are considered. The comparison of the models and the choice of the 
best one are made using cross validation method. The offered models sometimes describe more 
adequately the experimentally observed fibre strength scatter and the strength dependence on fibre 
length than the traditional models do. 

Keywords: distribution function, composite, static strength 
 

Eugene Kopytov, Leonid Greenglaz, Aivar Muravyov, Edvin Puzinkevich. Modelling of 
Two Strategies in Inventory Control System with Random Lead Time and Demand, Computer 
Modelling and New Technologies, vol. 11, No 1, 2007, pp. 21-30. 

The paper considers two multiple period single-product inventory control models with random 
parameters. These models are of interest because they illustrate real situations of the business. The 
first model is a model with fixed reorder point and fixed order quantity. The second model is the 
model with fixed period of time between the moments of placing neighbouring orders. Order quantity 
is determined as difference between the fixed stock level and quantity of goods in the moment of 
ordering. The considered models are realized using analytical and simulation approaches. The 
numerical examples of problem solving are presented. 

Keywords: inventory control, demand, lead time, order quantity, reorder point, analytical model, 
simulation  

 
Alexander Andronov, Andrey Kashurin. On a Problem of Spatial Arrangement of Service 
Stations, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 31-37. 

A problem of service station arrangement on spatial space is considered. A density function of 
serviced object location and a function that describes the corresponding loss are known. As criteria of 
the arrangement is an average total loss. For optimisation the gradient method is used. Numerical 
examples illustrate the suggested approach to setting problem solution.  

Keywords: spatial arrangement, service stations, gradient method  
 
Andrey Svirchenkov. Practical Method of Ruin Probability Calculation for Finite Time 
Interval, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 38-43. 

A modification of the classical ruin problem is considered.  Novelty consists in a consideration 
of nonhomogeneous Poisson flow of claims, arbitrary distribution of claim costs and existence of 
lower level of necessary capital for any time moment t.  The problem is to calculate a probability that 
this lower level is not to be passed.. A numerical method has been elaborated for the probability 
evaluation. The considered method is based on Markov chain theory and Edgeworth expansion for the 
probabilistic density function.  

Keywords: ruin problem, Edgeworth expansion, Markov chain, numerical method  
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Mikhail S. Tikhov, Dmitriy S. Krishtopenko and Marina V. Yarochuk. Asymptotic Normality 
of the Integrated Square Error at the Fixed Plan of Experiment for Indirect Observations, 
Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 46-56. 

The goal of this paper is to establish the asymptotic normality of the 2L -deviation of the kernel 
distribution function estimator ( )nF x  defined by 2( ( ) ( )) ( )n nI F x F x x dxω= −∫ , where ( )F x  is the 

unknown distribution function of a random variable X ,. ( )xω  is the weight function in dose-response 
dependence on the sample }1),,{()( niYWU ii

n ≤≤= , )( iii uXIW <=  is the indicator of even 5. 
)( ii uX <  and Y  is a random variable, iu  is fixed values. This result is useful for constructing the test 

goodness-of-fit for the distribution function ( )F x . 
Keywords: dose-response dependence, indirect observation, integrated square error 

 
Alexander Andronov. On Nonparametric Interval Estimation of a Regression Function Based 
on the Resampling, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 57-61. 

A nonparametric regression model  E(Y) = m(x) is considered where Y is a dependent variable, 
x is a d -dimensional vector of independent variables (regressors)  and m is an unknown function. A 
sequence of independent observations  (Yi, xi,) i = 1, 2, …, n, is available. Our aim is to construct an 
upper confidence bound for m(x) that corresponds to probability γ.  The resampling approach is used. 
The suggested methods allow calculating true cover probability. 

Keywords: nonparametric regression, interval estimation, resampling 
 
Catherine Zhukovskaya. Use of the Generalized Linear Model in Forecasting the Air Passengers’ 
Conveyances from EU Countries, Computer Modelling and New Technologies, vol. 11, No 1, 
2007, pp. 62-72. 

Some regression models  to forecast the air passengers’ conveyances from EU countries are 
considered. Two different approaches for the above-mentioned task of forecasting are shown. The 
first one is the classical method of linear regression and the second one is its generalized approach. 
The considered regression models contain many explanatory factors and their combinations. The 
advantage of using the generalized linear model (GLM) in comparison with the classical linear 
regression model is shown. 

Keywords: air passengers’ conveyances, forecasting, generalized linear model 
 
Diana Santalova. Forecasting of Rail Freight Conveyances in EU Countries on the Base of the 
Single Index Model, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 73-83. 

There are the regression models which describe rail freight conveyances of the member 
countries of the European Union considered in the investigation.  The models contain such factors for 
each country as: total length of railways, gross domestic product per capita in Purchasing Power 
Standards and so on. All calculations were performed on the basis of the statistical data taken from 
EUROSTAT YEARBOOK 2005. Two estimation approaches were compared: the classical linear 
regression model and the single index model. Various tests for hypothesis of explanatory variables 
insignificance and model correctness have been carried out, and the cross-validation approach has 
been applied as well. The analysis has shown obvious advantage of the single index model.  

Keywords: freight conveyances, forecasting, single index model  
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COMPUTER MODELLING and NEW TECHNOLOGIES,  11.sējums, Nr.1, 2007 
(Anotācijas) 

 
Jurijs Paramonovs, Janis Andersons. Šķiedras stiprības atkarības no šķiedras garuma 
modelēšana, izmantojot paplašināto vājākā ķēdes posma sadalījumu kopu, Computer Modelling 
and New Technologies, 11.sēj., Nr.1, 2007, 8.-20. lpp. 

Iepriekšējos rakstos ir aprakstīta paplašināta vājākā ķēdes posma sadalījumu kopa, kas balstās 
uz pieņēmumu par divu stadiju sabrukšanas procesu šķiedrām. Šajā rakstā izklāstīts minētās kopas 
vispārinājums. Autori paraugu aplūko kā n elementu (posmu) ķēdi. Sabrukšana tiek modelēta 
sekojoši: pirmajā stadijā notiek defektu veidošanās (pirms slogošanas vai tās laikā) un otrajā stadijā – 
parauga sabrukšana. Atšķirībā no mūsu iepriekšējām publikācijām, tiek ņemta vērā arī no defektiem 
brīvo elementu stiprība un tiek aplūkoti divi mehānismi defektu skaita ietekmei uz parauga stiprību. 
Modeļu salīdzinājums un labākā modeļa izvēle balstās uz „krosvalidācijas” metodi. Piedāvātie modeļi 
dažkārt apraksta eksperimentāli novēroto šķiedru stiprības izkliedi un stiprības atkarību no šķiedras 
garuma, precīzāk nekā tradicionālie modeļi. 

Atslēgvārdi: sadalījuma funkcija, kompozīts, statiskā stiprība 
 
Jevgeņijs Kopitovs, Leonīds Gringlazs, Aivars Muravjovs, Edvīns Puzinkevičs. Divu stratēģiju 
modelēšana uzskaites kontroles sistēma ar nejaušu piegāzu laiku un pieprasījumu, Computer 
Modelling and New Technologies, 11.sēj., Nr.1, 2007, 21.-30. lpp. 

Rakstā tiek apskatīti divi daudzkārtīga perioda viena produkta uzskaites kontroles modeļi ar 
nejaušiem parametriem. Šie modeļi izraisa interesi tādēļ, ka tie parāda biznesa reālas situācijas. 
Pirmais modelis ir modelis ar fiksētu atkārtotu pasūtījumu punktu un fiksētu pasūtījumu kvantitāti. 
Otrais modelis ir modelis ar fiksētiem laika periodiem starp momentiem, kad tiek izvietoti blakus 
pasūtījumi. Pasūtījumu kvantitāte tiek noteikta kā diference starp fiksēto krājuma līmeni un preču 
kvantitāti pasūtījuma momentā. Apskatītie modeļi tiek īstenoti, lietojot analītisko un modelēšanas 
pieeju. Problēmas risināšanā tiek piedāvāti arī skaitliskie piemēri. 

Atslēgvārdi: uzskaites kontrole, pieprasījums, pasūtījuma kvantitāte, atkārtotu pasūtījumu 
punkts, analītiskais modelis, modelēšana 

 
Aleksandrs Andronovs, Andrejs Kašurins. Par apkalpošanas staciju novietošanas problēmu, 
Computer Modelling and New Technologies, 11.sēj., Nr.1, 2007, 31.-37. lpp. 

Ir apskatīta problēma par apkalpošanas staciju novietošanu. Apkalpojamo objektu dislokācijas 
blīvuma funkcija un izmaksas funkcija ir zināmas. Par novietošanas kritēriju ir pieņemtas vidējas 
kopīgas izmaksas. Optimizācijas gaitā ir izmantota gradienta metode. Skaitliskais piemērs ilustrē 
piedāvājumu pieeju apskatītās problēmas atrisinājumam.  

Atslēgvārdi: apkalpošanas staciju novietošana, blīvuma funkcija, gradienta metode  
 
Andrejs Svirčenkovs. Praktiskā metode izputēšanas varbūtības aprēķinam galīgā laika intervāla 
gadījumā, Computer Modelling and New Technologies, 11.sēj., Nr.1, 2007, 38.-43. lpp. 

Rakstā ir apskatīta klasiskās izputēšanas problēmas modifikācija. Novitātes ir šādas: apskatīta 
nestacionāra Puasona plūsma, patvaļīgs sadalījums pieprasījuma maksai un zemākā līmeņa eksistence 
nepieciešamam kapitālam katram laika momentam. Uzdevums ir aprēķināt varbūtību, lai tās līmeni 
nepārsniegtu. Skaitliskā metode bija izstrādāta šādas varbūtības aprēķinam. Metode ir balstīta uz 
Markova ķēžu teoriju un Edgeworth izvirzījumu varbūtiskai blīvuma funkcijai. 

Atslēgvārdi: izputēšanas problēma, Edgeworth izvirzījums, Markova ķēde, skaitliskā metode 
 

Mihails S. Tihovs, Dmitrijs S. Krištopenko, Marina V. Jaročuka. Integrētās kvadrāta kļūdas 
asimptotiskā normalitāte eksperimenta fiksētā projektā netiešajiem novērojumiem, Computer 
Modelling and New Technologies, 11.sēj., Nr.1, 2007, 46.-56. lpp. 

Šī darba mērķis ir noteikt sadales funkcijas kodola novērtētāja Fn (x) L2 -novirzes asimptotisko 
normalitāti, kas ir noteikta ar 2( ( ) ( )) ( )n nI F x F x x dxω= −∫ , kur Fn(x) nezināma sadales funkcija nejaušā 



 
 
Computer Modelling & New Technologies, 2007, volume 11, No1 *** CUMULATIVE INDEX 

 91

mainīgā X, ( )xω  ir svara funkcija dozas-atbildes atkarībā no modeļa }1),,{()( niYWU ii
n ≤≤= , 

)( iii uXIW <=  ir vienmērīgā )( ii uX <  rādītājs un Y ir nejaušais mainīgais, 
iu  ir fiksētās vērtības. Šis 

rezultāts ir noderīgs, lai veidotu izpētes-labuma-derīguma sadales funkciju F(x). 
Atslēgvārdi: dozas-atbildes atkarība, netiešā novērošana, integrētā kvadrāta kļūda 

 
Aleksandrs Andronovs. Par regresijas funkcijas, pamatotas uz resampling, neparametriskā 
intervāla novērtējumu, Computer Modelling and New Technologies, 11.sēj., Nr.1, 2007, 57.-61. lpp. 

Tiek apskatīts neparametriskais regresijas modelis E(Y) = m(x), kur Y ir atkarīgais mainīgais, x 
ir d -dimensionālo neatkarīgo mainīgo (regresoru) vektors un m ir nezināma funkcija. Neatkarīgo 
novērojumu secība (Yi, xi,) i = 1, 2, …, n, ir pieejama. Mūsu mērķis ir uzbūvēt augšējās pārliecības 
saikni  m(x), kas atbilst varbūtībai y. Tiek pielietota resampling pieeja. Piedāvātās metodes ļauj 
aprēķināt patieso virsmas varbūtību. 

Atslēgvārdi: neparametriskā regresija, intervāla novērtējums, resampling 
 

Jekaterina Žukovska. Vispārināto lineāro modeļu pielietošana pasažieru aviopārvadājumu 
prognozēšanai ES valstīs, Computer Modelling and New Technologies, 11.sēj., Nr.1, 2007,  
62.-72. lpp. 

Tika apskatīti dažādi regresijas modeļi pasažieru aviopārvadājumu prognozēšanai ES valstīs. 
Tika parādīti divi atsevišķi paņēmieni iepriekš minētam prognozēšanas uzdevumam. Pirmais 
paņēmiens ir klasiskā lineārā regresijas metode un otrais paņēmiens ir vispārinātā modeļa 
izmantošana. Apskatītie regresijas modeļi satur vairākus ietekmējošus faktorus un to kombinācijas. 
Tika parādītas vispārinātā regresijas modeļa priekšrocības salīdzinājumā ar klasisko regresijas modeli. 

Atslēgvārdi: pasažieru aviopārvadājumi, prognozēšana, vispārinātais lineārais modelis 
 
Diana Santalova. Dzelzceļu kravu pārvadājumu prognozēšana ES valstīs uz vienindeksa 
modeļa bāzes, Computer Modelling and New Technologies, 11.sēj., Nr.1, 2007, 73.-83. lpp. 

Šajā rakstā tiek apskatīti regresijas modeļi, kas apraksta dzelzceļa kravu pārvadājumus Eiropas 
Savienības dalībvalstīs. Modeļi satur tādus noteicošus faktorus katrai valstij, kā: dzelzceļu līniju 
garums, iekšzemes kopprodukts uz vienu iedzīvotāju cenu standartos utt. Visi aprēķini tika veikti, 
pamatojoties uz statistiskiem datiem, kas ņemti no EUROSTAT YEARBOOK 2005 gadagrāmatas. 
Tika salīdzinātas divas novērtēšanas pieejas: klasiskais lineārais regresijas modelis un vienindeksa 
modelis. Tika pārbaudītas hipotēzes par pavadmainīgo nenozīmību un regresijas modeļa korektumu 
un tika pielietota krustveida-pārbaudes pieeja. Izdarītā analīze parādīja vienindeksa modeļa 
neapšaubāmas priekšrocības. 

Atslēgvārdi: kravu pārvadājumi, prognozēšana, vienindeksa modelis  
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Figure 1. This is figure caption 
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with resolution not less than 300 dpi. Also formats *.CDR, *.PSD are possible. Combination of 
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PURPOSE 

 
The purpose of the conference is to bring together academics and 
professionals from all over the world to discuss the themes of the 
conference: 
• Theory and Applications of Reliability and Statistics 
• Reliability and Safety of Transport Systems 
• Rare Events and Risk Management 
• Modelling and Simulation  
• Intelligent Transport Systems  
• Transport Logistics   
• Education Programmes and Academic Research in Reliability 

and Statistics 
 

DEDICATION 
  

The Conference is devoted to the memory of Prof. Kh.Kordonsky.  
 

OFFICIAL LANGUAGES 
 
English and Russian will be the official languages of the 
Conference.   
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             DEADLINES AND REQUIREMENTS 
  
Submission of abstracts:       15 May           2007        
Acceptance of abstracts:               29 May           2007 
Submission of final papers:          3 July             2007 
Acceptance of final papers:          4 September  2007 
 

Abstracts (about 600 words in length) and papers submitted for 
review should be in English and, should present a clear and concise 
view of the motivation of the subject, give an outline, and include 
information on all authors (the full name, affiliation, address, 
telephone number, fax number, and e-mail address of the 
corresponding author). 
 Submitted abstracts and papers will be reviewed. Accepted 
and invited papers will be published in the proceedings of the 
conference and in the journal “Transport and Telecommunication” 
(ISSN 1407-6160). 
  Instruction for papers preparing can be found on the 
conference WWW page: http://RelStat.tsi.lv. 
  

INVITED SESSIONS (workshops) 
Proposals for invited sessions (workshops) within the 

technical scope of the conference are accepted. Each proposal 
should describe the theme and scope of the proposed session. The 
proposal must contain the title and theme of the session and a list 
of paper titles, names and email addresses of the corresponding 
authors. Session proposals and paper must be submitted by  
21 May 2007. 
 

REGISTRATION   FEE 
 
          The registration fees will be Euro 100 before 10 September 
2006, and Euro 150 after this date. This fee will cover the 
participation in the sessions, coffee breaks, daily launch, hard copy 
of the conference proceedings.   
 

VENUE 
 

 Riga is the capital of the Republic of Latvia. Thanks to its 
geographical location, Riga has wonderful trade, cultural and 
tourist facilities. Whilst able to offer all the benefits of a modern 
city, Riga has preserved its historical charm. It's especially famous 
for its medieval part – Old Riga. 

Old Riga still preserves many mute witnesses of bygone 
times. Its old narrow streets, historical monuments, organ music at 
one of the oldest organ halls in Europe attract guests of our city. In 
1998 Old Riga was included into the UNESCO list of world 
cultural heritage. 
 

ACCOMMODATION 
 

A wide range of hotels will be at the disposal of 
participants of the conference and accompanying persons 
(http://eng.meeting.lv/hotels/latvia_hotels.php).   
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Elena Rutkovska, Secretary, RelStat’07 
Transport and Telecommunication Institute 
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