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Editors’ Remarks

This volume of journal comprises the papers selected
at the First International Workshop ““Modern Statistical
Methods and Models, which was hold in Riga on
October 25-28, 2006. This Workshop has been
affiliated in the program of the 6™ International
Conference “Reliability and Statistics in Transportation
and Communication” devoted to memory of an
outstanding mathematician and pedagogue Khaim
B. Kordonsky (1919-1999).

Professor Khaim B. Kordonsky has made
significant contribution in the development and
application of probabilistic and statistical methods. In
the Soviet Union his monograph [1] is the first book
considering probability methods, which has been
addressed to engineers. Khaim Kordonsky devoted his
life in advancing not only the science of reliability and
mathematical statistics, but also the application to the
solution of important problems in safety and
operational efficiency. Main fields of his research
activity are as follows: statistical quality control,
statistical fatigue theory, theory of accuracy of
machines, statistical reliability theory, probability

Khaim B. Kordonsky (1919-1999) methods in airline scheduling, statistical medical
research. Last two fields will be considered further on.

He was the research supervisor of computer systems development for the Soviet company
“Aeroflot” which in the 20" century was the biggest aviation company in the world. Under the direction
of professor Kh. Kordonsky Aeroflot Computer System of Central Airline Scheduling was created [4].
Amount the main results of Kh. Kordonsky’s research in medicine we can point out statistical analysis of
the leucosis cattle diseases rate in Latvia and the sinus rhythm mathematical model creation.

Almost all papers of the given volume are prepared by Khaim B. Kordonsky’s pupils or pupils of
his pupils. The volume consists of two parts: “Probabilistic Models and “Statistical Inferences”.

The first part of issue begins with the paper by Yu. Paramonov and J. Andersons. It is purposed to
reliability calculation of the system with complex structure, which is the main subject matter in
Kordonsky’s works. Appropriate models and methods have continuation in the tasks of Inventory Control
and Financial Risks. These tasks are considered correspondingly in the papers by E. Kopytov, L. Gringlaz,
A. Muravjov, E. Puzinkevich and A. Sverchenkov. The interesting probabilistic treatment of the task of
Spatial Arrangement of Service Stations is presented in the paper by A. Andronov and A. Kashurin.

In the second part of the journal tasks purposed to statistical problems are gathered. As
Kh. Kordonsky persistently has mentioned, probabilistic models are not of great importance, if good
statistical estimates of them are absent. Therefore Khaim B. Kordonsky loved mathematical statistics very
much. Many statistical tasks, which he has solved in order to apply them in aviation [2, 3, 5-8],
subsequently have become popular in different mathematical and statistical researches, for instance,
Censored Samples, the Best Time Scale for Reliability, etc.

The second part of the issue begins with the paper by Michael S. Tikhov, Dmitriy S. Krishtopenko
and Marina V. Yarochuk, which presents profound theoretical results on the kernel estimator of unknown
distribution function on the base of indirect observations. The last is some generalization of the censored
sample. Application of the Resampling approach in regression tasks is considered in the paper by
A. Andronov. It should be noted that at present Resampling approach is one of the most popular intensive
computer statistical methods. Other modern methods of regressions estimation on the base of the
Generalized Linear Model and the Single Index Model are considered in the papers by Catherine
Zhukovskaya and Diana Santalova. Numerical examples examined in these papers show the obvious
preference of the proposed approaches, in other words the suggested approaches have given better results
than the classical approach in cases of smoothing and forecasting.
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We hope that the presented issue of the journal will display to reader an idea of modern tendencies
of the development and practical application of probabilistic and statistical methods. We also invite
readership to take part in the next Workshops and in similar issues.
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Computer Modelling and New Technologies, 2007, Vol.11, No.1, 8-20
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia

ANALYSIS OF FIBER STRENGTH DEPENDENCE ON LENGTH
USING AN EXTENDED WEAKEST-LINK DISTRIBUTION FAMILY

1 . 2
Yury Paramonov', Janis Andersons

!Aviation Institute, Riga Technical University
Lomonosova Str. 1, Riga, LV-1019, Latvia
Tel.: +371 7255394, Fax: +371 7089990, E-mail rauprm@junik.lv

’Institute of Polymer Mechanics, University of Latvia
Aizkraukles Str. 23, Riga, LV-1006, Latvia
Tel.: +371 7255394, Fax: +371 7089990; E-mail rauprm@junik.lv

An extended family of the weakest-link models based on the assumption of a two-stage failure process of a fiber specimen was
developed in [1, 2]. A generalization of this family is presented in this paper. As in [1, 2] we consider the specimen as a chain of n
elements (links). The fracture4 process is modelled as follows: in the first stage initiation of defects (before loading or during
loading), and in the second stage a specimen fracture takes place. As distinct from our previous publications, the strength of items
without defects is taken into account and two types of the influence of defect number on the specimen strength are considered. The
comparison of the models and the choice of the best one are made using cross validation method. The offered models sometimes
describe more adequately the experimentally observed fiber strength scatter and the strength dependence on fiber length than the
traditional models do.

Keywords: distribution function, composite, static strength

1. Introduction

The significant dependence of static strength of a composite on the scatter of static strength of its
components can be illustrated by the following example. Let us consider three parallel items with 10 N,
15 N and 30 N strength and identical stiffness. It may seem surprising that they will fail at the applied
load of 30 N, as if the strength of every item is equal to 10 N. Why?

The reason is that under 30 N load at first the weakest item will fail because its strength is equal to
10 N. At the uniform distribution of total loads, its load is equal to 10 N also. Now the load acting on
each “surviving” item is equal to 15 N. So the second item, the strength of which is equal to the same
value of 15 N, will fail. Now the load for the last strongest item will be equal to 30 N. It will fail also
because its strength is just equal to this load. This process (“domino phenomenon™) is shown on Fig.1.
The same phenomenon takes place if element strengths are proportional to the terms of harmonic series:
1, %, 1/3, ..., 1/n, see Fig. 2.

So we see that the composite strength dependence on the strength scatter of its constituents can be
very significant.

30N 30N 30N

™ ™ ™ ™ ™ M

30N I5N 10N = 30N I5N = 30N

W W W Wl AR WL

30N 30N 30N
Figure 1
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1 12 | 1/n = Im | ... 1/n

Figure 2
Power-Weibull (PW) model of distribution [3, 4, 5]
F(s)=1-exp(—(L/1) (s/ B)"). (D

which has been intensively studied in literature, while providing a good empirical fit to the strength data
of specimens with different length, L, lacks the theoretical appeal of the weakest-link models (It should
be noted that here parameter /3, corresponds to L =1/, [, changes if /, changes.). We derive a new
weakest-link model family (WLMF) based on the assumption of a two-stage failure process. For
modelling purposes we consider a specimen (fiber) as a chain of n elements (links) of length /;. First, the
process develops along the specimen and defects appear in K elements. Here K is integer random
variable, 0 <K <n. Two types of the second stage will be considered in this paper. First type: in every
element (containing defects or intact) the development of fracture process takes place and the strength of
the weakest item (link) defines the strength of the specimen. Second type: development of fracture
process takes place only in one, critical element. Then only the probability that the second stage will take
place depends on the number of elements but the strength distribution of this element (the process of
accumulation of elementary damages in crosswise direction up to specimen failure) does not depend on
this number.

We consider two different versions of the first stage also. First version: defects appear before the
loading and their number does not depend on the subsequent loading. Second version: defects appear
during loading (instantly or gradually) and their number depends on the load.

2. General Description of the Model Family
2.1. The Fracture Process Takes Place in Every Element

2.1.1. Models of instant fracture

Let K, 0<K<n be the number of elements in which defects appear. Let Y},Y,,...,Y; be
independent random variables which are the strengths of these elements with the same cumulative
distribution function (cdf) Fy (x);Z,,Z,,....2Z, k., F,(X) are the same for the elements without

defects. It seems reasonable to assume that the random strength of the specimen is the strength of the
weakest item

X =min(Y,,...Yx,Z,...Z, k)., )

with the corresponding cdf

F(0)=1-(1=Fy, ()Y pd". 3
k=0
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where
o(x) =(1-Fy (x))/(1 - F;(x)), ©)
Fy () =1=(1=F,(x))". (3)

Several different assumptions can be made here. Let us consider first the case of defects appearing
before loading. It can be assumed that the probability of defect in one item, p, is some constant (and it is a
parameter of the model). Then the corresponding binomial probability mass function (pmf) is

n!

M= p)t (©)
Py k!(n—k)!p ( p)
If A =np is large enough we can use (as an approximation) Poisson pmf:
P, =exp(-)A" /k!. (7

In this case the equation (3) (approximately) can be written in the following way:
F(x)=1-(1~-Fz  (x)exp(-A(1~5(x)). ®)

If initiation of the defects depends on the applied load then it can be assumed that p = F(x),

where Fy(x) is the cdf of defect initiation stress.

2.1.2. Models of gradual accumulation of defects

We consider the process of accumulation of defects as an inhomogeneous finite Markov’s chain (MC)
with finite state space J = (i, ) MC is in state iy if there are (k —1) defects, k=1, ..., n+ 1.

State ; ., is an absorbing state corresponding to the fracture of specimen. Usually we suppose that the

Lyseesbpslobng

n+2

Markov’s chain starts in state j; but in general case the initial distribution is represented by a row vector
7 given by g = (1,75, 7, 7,.,) - We further assume that the loading (i.e. the process of nominal

stress increase in the specimen cross section) is described by an ascending (up to infinity) sequence
{X,X,,..., X,,...; and the process of MC state change is described by the transition probabilities matrix

_pll P Pz Py - P Pin+2)
0 py Py Pu - Ponsny Pons2)
0 0 pyu Py - P3nsny P3ins2y |,

Pusyinsy  Pusyine2)
0 0 0 0o .. 0 1

which at the #th-step is a function of X, ,#=1, 2, .... Let the sequence { X, } be fixed, then P is a function
of ¢. Let us note that if n = cothen the subscript (# + 2) is not a number but only a symbol, corresponding
to the absorbing state 7, .

In the new model the number of defects and the strength of specimens are random functions of time,

K(¢t),and
X(t) = mln()/l,Yz ""’YK(t)921’Z29""Zn—K(t)) (9)

correspondingly. The specimen fracture occurs when the strength of the specimen becomes equal to or
less than the current load (stress). Ultimate strength

szT*, (10)

10
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where
T*zmax(t:X(t)>xt). (11)

Cdf of X is defined by equation

Flx) =2 [PG, (12

J=1

where P(j)is the transition matrix for step number j, column vector u = (0,...,0,1)’ where only the last
component is equal to 1 but all the others are equal to 0.

2.1.3. Specifying models. The specimen strength without defect is very large

For the purpose of specification of the models, the general description of which was given in the
previous section, we additionally have to specify the cdf F (x), F{(x) (for models with defect number

dependence on load), F,(x), and, additionally, for Markov models, a prior distribution, 7, which, of

course, in general case can differ from binomial or Poisson distribution. For Markov models we need to
specify also the matrix P as a function of current stress, x, .

In this paper we assume that F, (x) and F (x) are the smallest extreme value (sev) distributions.

For the case when location parameter ¢, = 0 and scale parameter g, = 1 it is assumed that

F, (x) =1—exp(—exp(x)), 13)
Foy(x)=Fy(x=6), (14)

where x = log(s), s is the strength (expressed in MPa). If §,> 0 then at the same probability of events

the stress required for new defect initiation is larger than the stress required for the failure of an element
with defect.

For F,(x) we consider two assumptions in this paper. First, sev distribution can be assumed

again:
F,(x)=F,(x-3,). (15)
Again we can say that if o, >0 then F,(x) < F,(x).
But the simplest is the assumption that
0,x<C,

where C is a very large constant.
Then instead of (2) we have

in(Y,,...Y,), K>0
— mm( 1» K)’ H (17)
C, K=0.

The equation (3) can be written in the form

1- p5k,x<C,
F(x)= ;) g (18)
1, x>C

where ¢ =1— F} (x). But equation (8) now has the following form

11
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1 —exp(—AF; (x)), x < C,

Fx) = 19
(*x) {1,xzc. (19

In [1, 2] was shown that the cdf

F)=Y pdl-(1- F, ()} @04
F(x) =1 (1= F (x))exp(—AF, (x)) @0b)

where p, is defined by (7), A=np, p = F,(x), F,(x) is sev cdf, provides a good empirical fit to

the strength data of specimens with different length, L. Equation (20 b) can be considered as modification
of (8): F,(x) is used here instead of F, (x). Butnow it is not only an approximation of the “binomial”

model. Now we can consider the specimen as continuous one and define A by equation
A=A4(L/1),

where L is the specimen length, /11 is the intensity of defects (the defect number per length 11 ). Then

function Fy (x)can be regarded as an element-length-independent cdf of strength distribution in the

cross section with defect, where the number of defective cross sections has the corresponding Poisson
distribution.

For Markov models we should specify the matrix P. In the case when parameter C is very large
(the theoretical strength is much higher than the real strength) the probability that in some element the

defect appears at the stress X, under the condition that it has not appeared at the stress x,_; is

b(1) = (Fo(x,) — Fy (x(py)) /(1= Fy (x1p)) -

Consider the case of s defects present. The probability that » new defects appear, 0<r<k=n-s,
and the total number of defects is equal tom = s + r

Pon (1) = ()" (1=b(@0)) ™ KL/ F(k = 1)
Conditional probability of element fracture at the nominal stress X,
q(t) = (Fy (x,) = Fy (xp)) /(1= Fy (x,1))) -
Corresponding probability that none of the elements fail when there are defects in m elements is

(1) = 1—q(0))".

The probability of coincidence of these events, which we consider as independent, is the
probability of transition from state i =s + 1 to state j =i + r

Py () = Py jny (Du ;4 (1),

where i< j<(n+1).
Conditional fracture probability at state i

n+l

Pim+2) ) =1- Z P (7).
=i

Of course, p; () =0,if j <i,and p(,i0)ns2) () =1.

12
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2.2. The Fracture Process Takes Place Only in One Element

2.2.1. The models of instantaneous failure

In the previous models it is assumed that defects are uniformly distributed along the specimen
length. But it is plausible that such uniformity is retained only at the initial stage of loading. More
precisely, upon formation of the weakest link in a chain, the development of failure proceeds only in this
link, and the specimen length is of no importance any more. The simplest variant of such a model
corresponds to the assumption that the law of strength distribution in the element where this process
proceeds (in the cross section where the critical defect is formed) is independent of specimen length,
which determines only the probability of formation of an element with defect. The mathematical
formulation of this hypothesis is as follows

Y,K >0,
X= (1)
Z,K =0.

Here, Y and Z are random variables, which are the strength of element where the failure process
proceeds with or without defect, correspondingly.
In this case

Fx) = {1=(1=F, ()"} Fy () + (1= F, ()" F, (x) . (22)

2.2.2. Model of successive formation of at least one defect

The corresponding Markov’s chain has only three states. The first state corresponds to the absence
of defective elements, the second one means the presence of at least one defective element, and the third,
absorbing one, means failure of the specimen. The corresponding probabilities at a tth step are determined
by the formulae

p”(t)=[1—b(l‘)]n, plz(t):(l_pll(t))(l_‘I(t))v Pls(f)=(1—19n(f))9(f),
Pu(®)=0, pp()=1-q(#), py®)=py,()=0, p,;@)=1.

Specification of the cdf and of elements of the matrix P can be made in the same manner as in section 2.1.3.

3. The Processing of Test Data

The maximum likelihood method can be used for parameter estimation but it is excessively labor-
consuming. The estimates of parameters 6’0 and 6, (at fixed other parameters) can be found easily using

regression analysis of order statistics. Our purpose here is only the investigation of the possibility of using
the considered models for prediction of fiber strength distribution changes when the fiber length is varied
and the comparison of the models has been done as well. So we have limited ourselves by the use of
regression analysis.

Let x; be jth order statistic, j=12,.,n, n, is the number of specimens with =L,

i=12,.,k, , k, is number of different ; , E( X;) is the expected value of random order statistic X' i

0 .
E(X ;) is the same but for 8,=0and 6, = 1.

Then we have the following linear regression model

0
E(X,;)=0,+6, E(Xy), (23)

0
where E(X ;) is a function of ;, n, and.

This equation can be used for estimation of &), and 6, if all the other parameters are fixed.

13
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We compare the above-mentioned models with the PW model (see equation (1)) and LW model (it
is the original Weibull model: PW model with » =1). If S is random strength of specimen with cdf (1)

then for X =log(S),
Fy(x) =1-exp(=exp((x—=6,)/6), (24)

where

6,=log(B)—(y/a)log(L/l), 6,=1/ .

So for PW model we have equation with three unknown parameters 6, =1og(f,), 6y,=-7/«
and 91 s

0
E(X;)=0y + Oy log(L, /1)) +6, E(X ). (25)

For LW model we have an equation with two unknown parameters 6, and &,
0
E(X;)=0, + 6, log(L, /1) + E(X y)). (26)

0
In (25) and (26) the value of E(X ;) is the expected value of jth order statistic for sample from
sev distribution with sample size 7, .

0 o1 | R
It is assumed that roughly E(Xj)=F (F(x;)), where F(x;)=(j—0.3)/(k, +0.4) is

an estimate of F'(x;;) .

For comparison of different models, the glass fiber dataset described in [1,2] is used (four samples
with specimen lengths (L,, L,, L; L,)=(10, 20, 40,80 mm), sample sizes (1,,7,,15,7,)=(78,74,50,60)).
For parameter estimation a version of the cross validation method is applied. At the fixed nonlinear
parameters (/,...) for the linear regression (LR) estimation of parameters &, and &, we use only the

dataset corresponding to L= 10 mm and L=20 mm. We calculate also two additional statistics

kL kL
0 = (Z()_Ci _)Aci)z /Z()_Ci _)_6)2)1/29 (27)
i=1 i=1

7 7; ~ ~ 0 ~ ~
where X; = inj In;; X, = Z)ACU. /n; X; =60,+60,E(X:;); 6yand 0, LR estimates of &, and
=] i=1

kL
0,, x :zxi/kL ,
i=1
and
D 241/2
where R? is standard statistic of LR analysis (the coefficient of determination).
As nonlinear parameter estimates, the values of the parameters which correspond to the minimum

of statistics OSPPt (Order Statistics Probability Plot Test) are taken. OSPPt is the measure of the error of
order statistics prediction for sample with L,= 80 mm:

n4 n4
OSPP=(D_ (x4, —£4;)7 /D (x4, = X)) (29)
j=l j=l

14
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For the convenience of the following references let us list the full number of specifications and
assumptions which define the specific model in the considered family and make specific notations of the
corresponding assumptions.

We have to specify the conditions under which the initiation of defects takes place. By symbol 'T"
we denote the assumption that the process of initiation of defects is a function of technology only, but
symbol 'L' is used if this initiation depends on load.

A prior distribution of defects needs to be specified for the models in which Markov’s chains
theory is used. In general case we denote a prior distribution by 7 but we use symbols 'B' or 'P' if
binomial or Poisson distribution is used.

If we consider the instantaneous fracture of specimen we use symbol 'B' for binomial distribution
of defect number, K, symbol 'P' for Poisson distribution and symbol 'Pm' for 'truncated' Poisson
distribution.

(Remark. We use the words 'truncated in 71 (discrete) distribution' if instead of discrete rv X we consider the rv

B X, if X<m+1,
m+1,if X >m.

The use of it can be convenient for calculation of the cdf of steps to absorption using formulae of finite Markov’s
chains theory).

We use simbols 'MB', MBm' (for truncated binomial distribution), 'MP' and 'MPm' (for truncated
Poisson distribution) if the Markov’s chain is used for description of defect initiation process (Note.
Formulae for transition probability matrix in this section are given only for MB case).

F,, Fy and F|, have to be specified:

- the cdf of strength of elements without defects, F', ;

- the cdf of strength of elements with defects, F7y ;

- the cdf of defect initiation stress [, (if the process of defect initiation is assumed to be a

function of load). In general case we use symbols F, , Fy and F{, correspondingly but they

should be specified by specific equations or by specific definitions. In this paper (Fig. 3-9) we
use symbol S if cdf is defined by equation (13), symbol St if cdf is defined by equation (14);
symbol Zt, if cdf is defined by equation (15); symbol C, if cdf is defined by equation (16).

If the Markov’s chain is used then the sequence of loads (stresses) {xt} should be specified also,
but in this paper, as a rule, {X,} is a sequence of numbers uniformly distributed in some interval, which

can be seen on Figures with f(x) and F'(x) (see Fig. 3, ...).

We consider six models in total, but already preliminary investigation shows that the first two
(T.B.Zt.S and T.P.C.S) are not appropriate for fiber strength distribution description although it seems
that both are very natural. These models correspond to assumptions that there is binomial or Poisson
distribution of technological defects which can appear during preparation of specimens. We show this by
presenting some examples of calculations.

The model T.B.Zt.S corresponds to assumption that during production of fiber specimens in every

element (with length /) of specimen one defect can appear with probability p. (Here and later on we
presume that the ratio  L;//; is integer and it is equal to the number of elements in specimen with length L;
(for every i = 1, ..., 4)). The results of calculations of f(x), F'(x) for 8,=0and 6,= 1, estimates of
order statistics, )24 ;o as function of X, estimates of mean, )21. , as function of L; (using LR estimates of
6, and 6,) are shown on Fig. 3, which corresponds to /=10 mm (it is the length of the shortest
specimen), p = 0.5, 52 =17, 90 =7.5326, 91 =0.0562. We see that although the estimates of mean, )Aci,

are acceptable, the estimates of )24 ; are less than satisfactory.
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But if better agreement of the estimates 3 "y is achieved (using parameters p =0.99 (for /=10 mm),
6,=17, 6,=7.7944, 6= 0.1660), then the estimates £, deteriorate considerably (see Fig. 4).

In accordance with the model T.P.C.S it is assumed that the number of defects in specimen with
length L; has Poisson distribution with parameter 47 /. Cdf F(x) is defined by (19). Results of

calculation for 2, = 0.65 (for /=10 mm), §,=7.5107, 6= 0.0389 and C = 10 are shown on Fig. 5.
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Again we see reasonable estimation of mean , %, , but the estimates x,, are less than satisfactory.
And just as in the previous model, we can improve % 4 but then the estimates of mean, %, , deteriorate.

More detailed search of parameter estimates was made for four models.
For the Model Lmod.P.C.S.S. (see equation (20)), which in [2] was denoted by p-sev-sev), the

following parameter estimates were determined (for C=00): 1 =1.1 (for /=1 mm), é0:8.1406,
é’l = 0.2743. These estimates correspond to the minimum of R, ,. Estimates 3 4 and 3, are shown on Fig. 6.

Although for this model the values of R,,, Q, are better than for PW and LW model (see Table 1), the
statistics OSPPt for prediction for L,= 80 mm is better than for LW but worse than for PW.
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The Model L.B1.C.S.St (which in [1] for §,= 0 is denoted by D1) corresponds to equations (21)
for F(x) and (16) for F,(x) with C=co. For parameter estimates: p = 0.9 (for /,=10), §,=7.5398,
6,=0.2605, §,= 0.9, corresponding results (which are very close to the results of Lmod.P.C.S.S.) can be

seen in Fig. 7 and Table 1.
The same can be said concerning the Model L. 7 .MB.C.S.S (see equation (12) for F(x) and (16)

with C=oo for F,(x)), which was denoted by MB in [1]. The estimates of the model parameters are:
[,= 5Smm, §,=7.7578, 6,=0.236, 7=(0,1,0,...,0)). The corresponding results (which are very close to
the results of Lmod.P.C.S.S.) can be seen in Fig. 8 and Table 1.
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The best results, which are better than results of both LW and PW models (see Fig. 9 and Table 1),
we obtained using L.Pm.MBm.C.S.S model (see equation (12) for F(x) and (16) with C = oo for F,(x)).

For this model a prior distribution of defect number is the (truncated at m = 2) Poisson distribution with
A=AL/1, where ] is the defect intensity (defect number per specimen length unit), Parameter

estimates of the model are 4,=0.15, [, =35, §,=7.7578, 6,= 0.2346. In this paper we did not estimate the
parameter &, . It was assumed that §,= 0.

We see that the L.Pm.MBm.C.S.S model ensures the minimum of all three statistics.

TABLE 1. The comparison of models

Statistics LPm.MBm.C.S.S Lmod.P.S.S | L.BI.C.S.St| L.7.B.CS.S PW LW
OSSPt 0.1574 0.3094 0.2630 0.3202 0.2155 | 0.4760
Q 0.1032 0.1279 0.1441 0.1303 0.1644 | 0.6702
ELR 0.1479 0.1509 0.2274 0.1545 0.1525 | 0.1855
8 T 1 I I
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4. Resume

The Model L.Pm.MBm.C.S.S provides the best estimates of fiber strength for L = 80 mm using test
data for L = 10 mm and L =20 mm. All four WLMF models, including those in the Table 1, are providing
better estimates of fiber strength dependence on specimen length than both LW and PW models (see
statistics Q;). Common feature of these models is the presence of some form of limitation of this
dependence. It is obvious for Model L.B1.C.S.St (C =00)), where (see (21)) only the probability of defect
initiation depends on specimen length (or number of elements, n = L/],). It can be seen also for Model

Lmod.P.S.S. The equation (20 a) corresponds to the assumption that initially there is one defect in
specimen regardless of its length. The same is true for L.z .B.C.S.S where 7 =(0,1,0,...,0). For the
Model L.Pm.MBm.C.S.S the number of possible defects is deliberately limited by the number (m +1).

Both models T.B.Zt.S and T.P.C.S have no similar limitation and fail to capture the strength dependence
on specimen length.
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The Model L.Pm.MBm.C.S.S provides the best agreement with the experimental dataset among

the considered models. But we should take into account that it has five unknown parameters: 6,, 6,, [,

A, and m. PW model has three parameters only. Evidently we have random conclusions because we have

random dataset. But it seems that the presented distribution family has great potential (for example, we
have wide choice of F,(x), Fy(x), F,(x),---) and deserves to be studied much more thoroughly using

much more test data. We should mention also that the considered distribution family can be applied not
only to the fiber strength analysis but to the analysis of reliability of any series system with two types of
elements as well.
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The paper considers two multiple period single-product inventory control models with random parameters. These models are
of interest because they illustrate real situations of the business. The first model is a model with fixed reorder point and fixed order
quantity. The second model is the model with fixed period of time between the moments of placing neighbouring orders. Order
quantity is determined as difference between the fixed stock level and quantity of goods in the moment of ordering. The considered
models are realized using analytical and simulation approaches. The numerical examples of problem solving are presented.
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1. Introduction

Most inventory control situations of significance are complex. Decision-maker’s need to understand
this complexity depends on his role within the business and the way he chooses to solve the problems.
Mathematical models can provide a description of business situations that are difficult to examine in any
other way.

The search of the effective solutions of stock control in transport company should be based on a
number of economic, social and technical characteristics [4]. In practice we have to investigate the
stochastic models for different situations characterizing inventory control systems; a set of stochastic
models are available to solve the inventory control problem [1, 5]. In the given paper two multiple period
single-product inventory control models with random demand and lead time are considered.

The first model is a model with fixed reorder point and fixed order quantity. This model describes
dependency of average expenses for goods holding, ordering and losses from deficit per time unit on two
control parameters — the order quantity and reorder point. The description of this model and analytical
method of problem solving are examined in the previous authors’ work [2]. We have solved this problem
using regenerative approach.

The second model is a model with fixed time interval between the moments of placing
neighbouring orders. In this model the order quantity is determined as difference between the fixed stock
level and quantity of goods in the moment of ordering. The analytical description of the second model is
considered in the given paper. Note that in the second model we have used the same economical criteria —
minimum of average total cost in inventory system.

So, we have two inventory control models with continuously review inventory position (permanent
stock level monitoring). The strategy of each model selection is based on the real conditions of the
business. Thus, the first model can be used for the system with arbitrary time moment of placing the
order; this situation takes place in inventory system used own means of transportation for order delivery.
The second model is suggested for the system with fixed moment of placing the orders, where the order
transportation depends on schedule of transport departure.

The considered models can be realized using analytical and simulation methods. As it was shown
in the previous works of these authors the analytical models are fairly complex. An alternative to solution
by mathematical manipulation is simulation [3]. In the given paper analytical and simulation approaches
are investigated. The numerical results of problem solving are obtained in simulation package Extend.
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2. Description of the Models

2.1. Model 1

We consider a single-product stochastic inventory control model under following conditions. The
demand for goods is a Poisson process with intensity A4 . In the moment of time, when the stock level falls
till certain level R, a new order is placed (see Figure 1). The quantity R is called as reorder point. The
order quantity Q is constant. We suppose that Q > R .The lead time L (time between placing an order and

receiving it) has a normal distribution with a mean g, and a standard deviation o, . There is the possible
situation of deficit, when demand D, during lead time L exceeds the value of reorder point R. We
suppose that in case of deficit the last cannot be covered by the expected order.

A o)
Z
0
t
0 >
T, L

Figure 1. Dynamics of inventory level during one cycle for Model 1

Denote as Z the quantity of goods in stock in the time moment immediately after receiving of
order. We can determine this quantity of goods Z as function of demand D, during lead time L:

R+0O-D if D; <R;
zz{ 0=by  if D<K 0

0, if D; >R

Formula (1) is basic. It allows expressing different economical indexes of the considered process.
Let T is the duration of a cycle. Length of the cycle consists of two parts: time 7 between
receiving the goods and placing a new order and lead time L, i.e. T=7, + L.

We suppose that next economic parameters of the model are known:

= the ordering cost C, is known function of the order quantity Q, i.e. C, = Cy(Q);

= the holding cost is proportional to quantity of goods in stock and holding time with coefficient of
proportionality C,, ;

= the losses from deficit are proportional to quantity of deficit with coefficient of proportionality
Cyy -

Let us denote D, as demand for goods within period of time 7 .

Principal aim of the considered model is to define the optimal values of order quantity Q and

reorder point R, which are control parameters of the model. Criteria of optimization are minimum of
average total expenses (costs) per time unit. We solve this problem using regenerative approach [5].

2.2. Model 2

Let us consider the Model 2 with fixed time 7 of the cycle, i.e. with fixed time between
neighbouring moments of placing the orders. It is a single-product stochastic inventory control model
under the following conditions. The demand for goods is a Poisson process with intensity 4 . The lead
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time L has a normal distribution with a mean 4, and a standard deviation o; . We suppose that lead time
is essentially less as time of the cycle: u; +30; <<T.

There exists the possible situation of deficit, when the demand during time between neighbouring
moments of receiving of order exceeds the quantity of goods in stock Z in the time moment immediately
after receiving of order. Analogy Model 1 we suppose that in case of deficit the last cannot be covered by
expected order.

In Figure 2 the cycle with number £ is presented. Let R, is the rest of goods in stock at the start of

the k-th period and Ry, is the rest of goods at the end of k-th cycle (or the rest at start of cycle with
number £+1). We denote as S the goods quantity which is needed “ideally” for one period and it equals to

the sum S =D, +S,, where D, is the average demand for cycle time; S, is the safety stock. In the

given sentence we suppose that “ideally” S gives us in future the minimum of total expenditure for
ordering, holding and loses from deficit per unit of time.

> 0
R
Rk ..\kﬂ
S~
v
tL
— L T g
T

Figure 2. Dynamics of inventory level during i-th cycle for Model 2

So, in the suggested model period of time T and stock level S are control parameters.
The order quantity Q is the difference

0=S-R,. @

We suppose that in the moment of time when a new order has to be placed it may be situation,
when the stock level is so big that a new ordering doesn’t occur. However for generality of model we’ll
keep the conception of lead time and quantity of goods at the time moment immediately after receiving of
order in such case too. It corresponds to real situation when the customer uses the transport means, which
depart at the fixed moments of time not depending on existence of the order and which have the random
lead time; for example, transportation by trailers, which depart each first and fifteenth day of each month.

Taking into account that in case of deficit it can’t be covered by the expected order, we can obtain
the expression for goods quantity at the moment of time immediately after receiving of order

R, +Q0-D if D; <Ry;

L 0-D; ’ L < R 3)
Q, if DL ZRk

and using (2) we have:
S-D if D; <Ry

Z = L . Lok )
S—Rk, if DL ZRk.

The rest R, at the start of the A-th period and the goods quantity Z at the moment of time
immediately after receiving of order take values from interval [0; ST:
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= R, =0, if in the previous cycle the demand during the time 7, between the receiving of order

and placing of the new order is more or equal Z, i.e. Dy 2Z ;

R, =8, if in the previous cycle Z is equal S and there isn’t the demand during the time period 77,
ie. Z=SADp =0.

= Z =0, if the rest R, to the moment of ordering is S (i.e. order quantity Q is 0) and demand D,
during lead time L is more or equal S,i.e. R, =SAD; = S;
Z =, if the rest R, to the moment of ordering is 0 or demand D, during lead time L is absent,
ie. R, =0v Dy =0.

In the next section we should determine the average total cost per cycle for the fixed rest of product
in the moment of ordering.

3. Analytical approach to creation of the models

The analytical description of the Model 1 is presented in the previous paper of the authors [2]. In
the given section we consider a detailed creation of Model 2 with fixed period of time between the
moments of placing the neighbouring orders.

3.1. Distribution of Demand during Lead Time

As demand for goods is a Poisson flow with intensity A, we can determine distribution for
demand within fixed period of time 7

_ (/11-) e -AT

P(D; =)=

, i=1,2,... 5

If f;(7) is a density function for lead time L, then distribution for demand D, within time L can be
calculated by formula

P(Dy =)= [P(D, =1)- fy(r)d7 . (6)
0

In the case of normal distribution for L we obtain the formula

_(7'/1L)2 . © _(7'/1L)2
J'z'ie'he 29 dr. @)

e -~
O'L\/Z i!aL\/EO

P, == [ e
1=

3.2. Holding Cost during One Cycle

Calculation process of the holding cost during one cycle is divided in two stages: calculation for
lead time L and calculation for time 77 between receiving the goods and placing a new order.
Let 7 is the length of time from the last ordering and 7 < T. If the demand D, during the time 7

equals 7, then the holding cost during the time interval (7, 7+ d7) is
ICy(D, =i,(r,7+d1))=Cy (R, —i)d7 ®)
and expected holding cost during the lead time L is
0 s
E(TCy )= Cy [ f()dz [ ZO.Z;U ~i)- P(D, =i)- P(Ry = j)dx, ©)
0 0j=0i=

where P(D,=i) is define by formula (5).
Let consider the expected holding cost during the time7;. If j is the goods quantity Z at the

moment of time immediately after receiving of order, 7 is time interval after the receiving of order and
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7< T}, and the demand D, during this time 7 equals i, then the holding cost during the time (7, 7+ d7)
equals

TC,(T, >7,Z =}, D, =i, (r, t+dr)) = Cpy (j—i)dz . (10)

Let’s note that i < j andj takes values from interval (S — R, , S). So, expected holding cost during

the time 7] is
T T S j
E(TCy ) =Cy [ f(T=0)dz[ 3 D (j=i)- P(Z = j)- P(D, = dx, (1)
0 0 j=S-ri=0
where condition 7} > 7 is equivalent to condition L <T —7;
P(Z=j)=P(D,=S~-j), if S-R,<j<S§;
s
P(Z=S5-r=1- Y P(Z=)). (12)
j=S—R; +1
Average holding cost E(TCy;) within cycle T is the sum of the corresponding addendums:

E(TCy)=E(TCy )+E(TCy 1) - (13)

3.3. Losses from Deficit

Similar to previous point the calculation process of the losses from deficit during one cycle is
divided into two stages: calculation for lead time L and calculation for time 7' between receiving the
goods and placing a new order.

If within lead time L the demand D; exceeds the value of reorder point R, , then deficit of goods

is present. Let D;=i and i> Ry, then losses from deficit are Cgy - (i — R;) . So, average shortage cost

within lead time
E(TCgy)=Cgy D P(Dy =0)-(i=Ry). (14)
i=R;+1
Let demand for time 7; equals i, D;=i, and the goods quantity Z at the moment of time

immediately after receiving of order is j and i >j. Then losses from deficit are Cgy -(i—j). Thus an

average shortage cost during the time 7 is

S )
E(TCg;1)=Cqy Y. P(Z=)) Y. (i-j)-P(Dy =i), (15)
j=S-R, i=j+1

where P(DT1 =i)= ?P(D, =i)- f;,(T —7)dr and probability P(Z = j) is calculated by formula (12).
An average slfortage cost E(TCgy) within cycle is the sum of the corresponding addendums:

E(TC,) = E(TCg )+ E(TCy 1) (16)
Finally an average total cost for a cycle is

E(TC)=E(TICy)+E(TCy)+Cy, a7

where E(TCy) and E(TCgy ) is calculated by formulas (13) and (16) accordingly, and average total

cost per time unit in inventory system is

E(AC) = %C)

(18)
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Using the known distributions of demand and lead time and formula (4), applying recurrence
method we can find the conditional distribution of the rest of product R, at the end of &-th cycle (start

of cycle with number k+1) for the known value of rest R, :

Z—DT_L, if DT—L <Z,
Rpy = . (19)
0, if DT*L >7Z
and combining expressions (4) and (19) we have
S—-D;, -D;_; =S-Dy, if D; <Ry, Dy_; <Z=8-Dy;
S—R,—Dr_;. if D, 2R, Dp_; <Z=S—-Ry;
Ry = . (20)
0, if D, <R, Dy_;2Z=8S-D;;
0, if D 2R, Dr_; 2Z=8S—-R,.

In accordance with (19) we can calculate probability of event R, ,; = j for condition that the rest at
the beginning of cycle equals to R, . As it is evident from (20) the rest R, ., takes values from interval
[0; S]. In particular Ry, = S if demand D7 during period of cycle T'is absent, i.e. Dy =0.

At first let’s consider the case R,,, =j, where j>0. According to condition of the task we can
write L <T .Let L =7rand demand D, during time 7 equals to x and x < R, . In this case Z =S —xand
the request R,,; >0is equivalent to the condition D;_. =S —x—j accordingly the first line of the
formula (20). Then probability of event that the rest of product Ry, at the end of cycle equals to j (where
J > 0) under the condition that x < R, and L € (7,7 + d7) is calculated by the formula:

Ry -1

PRy, =j/x<RynLe(r,r+dr))= Y P(D, =x)-P(D;_, =S—x-j)-f,(c)dr . 1)
Accordingly
R, -1
PR, =j/x<R,) I(ZP P(D; , =S-x- ])J-fL(r)dr. 22)

Similarly, if L=7randD,=x, where x>R;, then Z=S-R;, and requestR,,, >0 is
equivalent to condition Dy_, = § — R, — j , the probability P(R,,, = j/x > R, ) is calculated by formula

T( o
PRy = /x> R)= | { S P(D, =)-P(D;_. = SR, —j)]fL (e 23)
0\ x=R,

Finally, if j > 0, then

0| x=0 x=R;

TR
PRy = )= [ D P(D, =x)P(Dy_, =S-x~))+ ZP(D =0)P(Dy . =S-R, - J)}L(r)dr (24)
Reasoning by analogy it can be shown, that, if j = 0, then

T[ R,
P(R,,, =0)= j [ZP(D =x)-P(D;_, >S—x)+ ZP(D =x)-P(D;_, >S~— Rk)} f, (D). (25)
0] x=0 xX=R;

For analytical solving of the considered problem we have created a complex of programs realized

on the base of programming system DELPHI. For calculation there were used standard quantitative
methods.
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4. Simulation Approach

As it was shown in the previous section the analytical inventory control model is rather complex.
As alternative to analytical approach the authors have used simulation models realized in the simulation
package Extend [3].

4.1. Model 1

Let us consider the model with two fixed control parameters: reorder point R and order quantity Q.
The schema of the task simulation is shown in Figure 3.

7
@ @ . Demand
sy, @ @ Order quantity
uie . ;

il

. 40
[@lchange o Ug -
’ demand : Lu o [ = . ’—H‘ .
e e Discharge Terminal Inventory cost

Make order Lead time 1 Cost of Delivery Stock Level
Cost of Delivery
Inventory cost

Make order

@ E Stock Level
1"k Di

scharae Terminal

Reorder point Demand

e 4#- Reorder point

Stock Level

Lead time

Figure 3. Simulation model overview: inventory control with fixed reorder point and fixed order quantity

Let us consider the main blocks of the simulation schema. In the block #1 the decision of a new
ordering (Make Order) is generated using data about Reorder point (block #10) and quantity of goods in
stock (Stock level). As the result variable Make Order takes value 1, it is transmitted to connector of block
#2, and a new goods ordering is executed. In block #5 the process of order delivery is simulated. The
value of random lead time is generated in block #4 (Input Random Number) using parameters u,; and o,

of normal distribution. The demand for goods is generated in block #9 as random value with Poisson
distribution and known parameter 4. The warehouse is realized in hierarchical block #8, which schema is
shown in Figure 4. Process of goods realization is simulated in block #11. Block #12 (dummy source of
goods) and block #13 (Set Attribute) are used for good deficit calculation. The results of simulation are
printed out in text file (block #17) and on the screen (block #16).

Good:s Ot

Stock Level

Read Out
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LY. T |

Stock Level

@c!ge @ I& Count

Figure 4. Warehouse simulation model overview
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Using the created simulation model we can find the optimal solution for inventory control problem
with two control parameters — reorder point R and order quantity Q (see Example 1).

Example 1. Let demand D for goods is a Poisson process with intensity 10 units per day; lead time
L has a normal distribution with a mean 11 days and a standard deviation 3,5; ordering cost C, equals to
200 EUR, holding cost Cy equals to 2 EUR per unit per year, losses from deficit Csy equals to 8 EUR per
unit; unit time is 1 year. The period of simulation is one year and a number of realizations are 100.

The results of simulation are shown in Table 1 and in Figure 5. Note that for the given steps of the
control parameters changing the best result is achieved at the point Q =950 units and R =150 units,
where for 100 realizations an average total cost for one year period equals 1889,34 EUR.

TABLE 1. Average total cost per year in inventory system with fixed reorder point and order quantity (Model 1)

Reorder point, units
Order quantity, units 100 150 200 250 300
850 2430,32 1988,34 2026,22 2113,90 2209,30
900 2224,99 2001,77 2051,28 2141,19 2235,84
950 2241,90 1889,34 1953,86 2092,33 2236,53
1000 2267,96 1960,65 1993,83 2071,15 2153,34
1050 2387,28 2030,89 2048,83 2135,75 2216,93

Model 2. Let us consider second strategy of inventory control with fixed period of time 7 between
the moments of placing neighbouring orders. Note that in the suggested model period of time 7 and
required stock level S are control parameters.

Model 1
2500
2400 ~
Order
quantity,
® 2300 1 units
e
o
z —4— 350
E— 2200 900
% ——950
€ 2900 4 —— 1000
% —— 1050
.
<L 2000

1900

1800 T T T T
100 150 200 250 300

Rearder point, units

Figure 5. Average total cost per year in inventory system with fixed reorder point and fixed order quantity

For simulation of inventory control process we have created the schema shown in Figure 6. Let
us consider the main blocks of schema. Block #1 generates the transactions in the fixed moments of time;
these transactions are used for simulation of goods ordering during the considered time period. Block #2
calculates the Order quantity using data about Stock level in the moment of ordering and Required stock
level (quantity of goods which is needed “ideally” for one period); this result is saved in block #3 (Set
Attribute). Block #4 determines the moment of order delivery using the value of lead time generated in
block #5 (Input Random Number) as random variable with normal distribution and known parameters.
The demand for goods is generated in block #11 as random value with Poisson distribution and known
parameter. Process of goods realization is simulated in block #10. Blocks #8 and #9 are used for goods
deficit calculation. The results of simulation are printed out in text file and are shown on the screen.
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Figure 6. Simulation model overview: inventory control with fixed time interval between placing neighbouring orders
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Example 2. Let us consider another strategy of inventory control accordingly Model 2 using initial
data from Example 1. For problem solving we have used the simulation model shown in Figure 6. The
results of simulation are shown in Table 2 and in Figure 7. For the given steps of control parameters
changing the best result is achieved at the point § =900 units of goods and 7= 75 days, where for 100
realization an average total cost for one year period equals 1965,9 EUR.

TABLE 2. Average total cost per year in inventory system with fixed time interval between placing neighbouring orders (Model 2)

Time interval between placing neighbouring orders, days
Level up to
order, units 70 75 80 85 90 100 110
850 2091,40 2206,92 2826,08 3512,02 3891,42 5213,66 7489,90
900 2108,88 1965,99 2287,16 2287,16 3237,74 4365,35 6352,34
950 2203,41 1985,33 2022,51 2341,89 2552,83 3643,92 5308,60
1000 2300,46 2076,96 2044,00 2069,62 2212,28 2945,29 4403,56
1050 2396,41 2179,56 2144,75 2079,61 2075,02 2497,04 3655,52
Model 2
8000
7000
Level Up
to order,
T 6000 A Lnits
&
a —— 350
§ 5000 —m- 900
% —a— 950
kS 4000 4 —— 1000
Géj —#— 1050
£ 3000
2000
1000 T T T T T T
70 75 30 85 90 100 110
Time interval betwesn two neighbouring orders, days

Figure 7. An average total cost per year in inventory system with fixed time interval between placing neighbouring orders
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Conclusions

Principal aim of the proposed models is to define the exact order quantity and time of the ordering
to achieve minimum expenses for holding, ordering goods and losses from deficit per time unit for
transport companies.

Two considered models of inventory control, based on different principles of ordering, give the
closely related results near optimum solution.

The main advantages of the considered methods of solving the inventory control problems for the
suggested models are as follows:

= simulation approach gives

- the clearness of the presentation of results; firstly, it touches the case of analysis of total
expenses dependence on one control parameter with fixing others;

- the possibility of finding optimum solution of an inventory problem in the case when
realization of analytical model is rather difficult;

= analytical approach gives

- the mathematical model of situation;
- the various possibilities of analysis;
- universality of usage.

In the examined paper single-product inventory control models are considered. In the present
research the authors investigate multi-product model with random correlated demands for different goods.
In this research we use the simulation modelling in inventory system with a fixed moment of placing the
order. In particular the random demand vector is generated using demand statistics and Holecky
decomposition of correlation matrix.

References

1. Chopra, S. and P. Meindl. Supply Chain Management. London: Prentice Hall, 2001.

2. Kopytov, E. and L. Greenglaz. On a task of optimal inventory control. In: Proceedings of XXIV
International Seminar on Stability Problems for Stochastic Models, Sept. 9-17, 2004, Jurmala,
Latvia. Riga: Transport and Telecommunication Institute, 2004, pp. 247-252.

3. Kopytov, E., Muravjov, A., Greenglaz, L. and Burakov, G. Investigation of two strategies in
inventory control system with random parameters. In: Proceedings of the 21st European Conference
on Modelling and Simulation (ECMS 2007). June 4-6, 2007, Prague, Check Republic. Thomas Bata
University in Zlin, 2007, pp. 566-571.

4. Kopytov, E., Tissen, F., Greenglaz, L. Inventory Control Model for the Typical Railways Company.
In: Proceedings of the International Conference “Reliability and Statistics in Transportation and
Communication” (RelStat'03), 16-17 October 2003, Riga, Latvia, Riga: Transport and Telecommunication
Institute, Vol. 5 (1), 2004, pp. 39-45.

5. Ross, Sh. M. Applied Probability Models with Optimization Applications. New York: Dover Publications,
Inc., 1992.

30



Part 1. Probobabilystic Models

Computer Modelling and New Technologies, 2007, Vol.11, No.1, 31-37
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia

ON A PROBLEM OF SPATIAL ARRANGEMENT
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A problem of service station arrangement in spatial space is considered. A density function of serviced object location and a
function that describes the corresponding loss are known. As criteria of arrangement is an average total loss. For the optimisation
the gradient method is used. Numerical examples illustrate the suggested approach to setting the problem solution
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1. Introduction

Let us consider a real space X for that concrete point will be marked by x, for plane it is two-
dimensional vector (it is available to consider another dimension too). 4 distance [(x,x*) is determined
for points x and x*, that satisfies usual conditional of distance axioms: [(x,x) =0, /(x,x*)>0,
[(x, x*) < (x,x") +1(x', x*).

Some objects are arranged in the space (for example men, animals, stationers). Let us name as x—

object, the object that is at the point x. The density of object arrangement is described by known density
function f{x) > 0, so

[feox=1.

xeX

Some service stations must be arranged in the space, their number is k. It is necessary to determine
those coordinates x", x@ ... x®). If a x—object is serviced by i—th station then corresponding loss is
equal to g (x(’)), for example g _ (x(i)): g(x—x"). Let us call g (o) as loss function and suppose
that it is a symmetry according to zero (g _(x'")=g_(-x")) and convex (down).

All amount of service for the x—object is deviated between various service stations according to
inverse proportion of the distances from the x—object and the station. Most precisely, a part of x—object
service that belongs to the i-th station is

() !

Now a problem can be formulated as follows: to find coordinates x(l),x(z),...,x(k) of station

arrangement that minimizes the total loss:

D(x“),x(z),...,x“‘)):j . Zk:(( (i)))_lgx(x(i))f(x)dx. 2
Sl

The article is organized in the following way. At first one-dimensional case of space X and the
corresponding example is considered. Then we consider two-dimensional case. The article ends by some
conclusion remarks. The Appendix contains the analytical investigation of the simplest one-dimensional
case when £ = 1 and density f{x) and loss function g (o) are symmetric functions.
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2. One-Dimensional Case

At first we consider a case when space X is real axis R = (- o, o). We will use a gradient method
for the minimization of criterion (2). For that aim let us calculate a corresponding gradient. For a partial
derivative of (2) we have the following expression:

Opl0 ) ol e ) (60 e -
X

! (0=

i

gl e e et b

i

- ;[;(l(x,xw)r}2((_(l(x,xm)yz%l(x,xm)lz(l(x,x<f>)rgx<xa>)}-<x>dx. o

Now we are able to rewrite the gradient of D as

0

vD(x",x?,..,x") = (_ 0

T
D(x",x® ., x"),..,——Dx",x?,..., x(k))j : 4)

ox® " ox®

To accelerate a convergence of the gradient method we use a two-stage procedure. At the first
stage we use component-wise (coordinate-wise) modification of the gradient method. It means that a
sequence of cycles is preformed. Each cycle contains £ iterations. During the i-th iteration (j =1, 2, ..., k)
function (2) is minimized with respect to coordinate x" ), at the same time other coordinates do not
change. For that minimization the gradient method with gradient (3) is used. The cycles end when the
change of function (2) is mall. In the second stage we calibrate the obtained result by using the usual
gradient method with gradient (4).

3. Example of One-Dimensional Case

Let density function be a mixture of normal distributions with means ,u(l), ,u(z),..., /,l(r) and

. OP (+V ) ) - - —1)-
variances \O" \o yeees \O , and weighted coefficients py, p;,..., p, (p1 +py+..tp.= 1).

. 2
: 1 1 x—pu®
X)= ———eXp| ——| ——— | |, <x<o0. 5
() ;p, o P 2( 5 j )

Further let us use the following distance function and loss function:

I(x,z) =|x—z], (6)
glx,z)=(x-2)". @)
Then we have the following derivatives:

0 lifx<z,
—I = 8
Oz (*.2) {— 1 otherwise, ®

0
S gra)=2x2). ©)

Now we are able to use formula (3) for optimization.
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Let us consider the following numerical data: k=4, »=9 and

p=(0.1 02 015 0.05 0.1 0.06 0.04 0.13 0.17)",

u=(0 3.15 0.05 405 6.1 7.06 7.74 8.13 10.17),

o=(02 12 115 1.05 071 2.06 1.74 2.13 1.17)".

The Figure 1 contains an according graphic of density function f{x).

0% T T T T T T

o |

b '

on:r |

Figure 1. Plot of function f(x) for one-dimensional case

We begin the first stage of the optimization procedure with the values of coordinates

x= (x<1),x<2) ,xDx@ )T =(1 2 4 7)".Itcorresponds to D = 9.766 value of criterion (2). Table 1 contains
the results of sequential cycles.

TABLE 1. Results of sequential cycles for one-dimensional case

Iteration number 0 1 2 3 4 5
pu) 1 1 1 1 0.174 0.174
@ 2 2 2 3.259 3.259 3.259
() 4 4 6.207 6.207 6.207 6.207
@ 7 9.809 9.809 9.809 9.809 10
D(x?, %, xOx) 9.766 9.327 8.818 7.727 7.494 7.468

We see that minimal value of criterion (2) is equal to D = 7.468 that is calculated by
x=(0.174 3.259 6.207 10)".

Further we perform the second stage of the optimization procedure and finally get minimal value
D =7.445 that corresponds to coordinates

x=(0.193 3.176 6.428 10.035)".
4. Two-Dimensional Case

Now we consider a case when space X is real plane R* = (—o0,00) x (—o0,0) . Then the coordinates

of an object arex =(x, x,) , coordinates of the j-st station arex/) = (xfj) x )T. Now instead of
scalar derivative (3) we have two-dimensional vector
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T
0 0 0
: D(x(”,x(z),.. (k)) —D(x(”,x(z),...,x(k)) —D(x(l),x(z),...,x(k)) .

) ) ()
Ox ox, Ox,

Analogously to (3) we have for partial derivative (i =1, 2):

2 D)= Pl > 1 ) i(l(xax“’ ) g0 ) £ oy =
q X, X i=

ang )

i

- I (Zj:(l(xax("))fl]_l {gx (x(j))(_ (l(x,x(j) )TZJ axzf) l(x,xm )+ (l(x,x(j) )Tl ﬁxzj) . (x(j))] (x)dx
- [Z(l(x,x(i) )lez{z (l(x,x(i) )Tlgx (x(i))(— (l(x,x(f) )TZJ axzj) l(x,x(j) )}/(x)dx. (10)

i i

Now instead of (4) we have the (2 X k)-matrix of the partial derivatives

a 1 2 k a 1 2 k
o ——D(x,x?, . x®y WD(x( ) ox@ L x®)
VDV, x? .. x®) = x, x a1n
, X, P 3 .
1 2 k 1 2 k
20 D(xV,x? ., x®y . WD(X( ) ox@ L x®)
2 2

For the optimization we again use the two-stage procedure. At the first stage the component-wise
(coordinate-wise) modification is used as follows. During the j-th iteration (j = 1, 2, ..., k) function (2) is

minimized with respect to both coordinates of the j-st station x*/) = (xl(j b XY )) at the same time other
coordinates do not change. According to the gradient method we move along the gradient with respect to
(x](’ ) (’ ) ) recalculating the one continually. At the second stage we work with the full gradient (11).

5. Example of Two-Dimensional Case

As before, let density function be a mixture of two-dimensional normal distributions with means

T
D _ (f’l(l) ,ug))T,...,,u(’) :(,ul(r) ,ug))/ and variances o :(01(1) Gg))T,...,G(r) , = (al(r) O'g))r

and weighted coefficients p,, p,,..., p, (p1 +p,+..+p. = l):

1
S =fx x Pl 7—) x
1
1 - ﬂf’) =1 Y

A I (s ( o ) 2 f’) o ) 5”

Further let us use the following distance function and loss function:

2 2

1062) = =2, ) + (v, =2, (13
g(x,z):|x1 —zl|+|x2 —22|. (14)

Then we have the following derivatives (i = 1, 2):

0 1

% x,2) = 2 (x, - 2,). (15)

%, \/(xl 4 )2 +(x2 _Zz)
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0 0 x \(z lifx <z,
—gxz2)=—g , = . (16)
oz, oz, x, )\ z, —1 otherwise.

Now we are able to use formula (3) for optimization.
Let us consider the following numerical data: k=4, » =9 and

p=(0.1 02 0.5 005 0.1 006 0.04 0.13 0.17),

=
Il

(0 2 3.15 405 6.1 7.06 7.74 8.13 102}

3 2 8 3 6 3.1 6 7

02 12 1.15 0.7 21 176 1.74 2.13 1.2
o =

13 04 1 08 13 17 15 16 27

p=(0 02 -015 -0.7 0.6 0.06 —0.74 0.13 -0.17).

The Figure 2 contains an according graphic of density function f{x).

Figure 2. Plot of function f(x) for two-dimensional case

Table 2 contains the results of sequential cycles of the optimization procedure.

TABLE 2. Results of sequential cycles for two-dimensional case

Iteration number 0 1 2 3 4 5
x 0 0.961 1.099 1.134 1.212 1.190
x) 0 1.545 2.240 1.874 2.072 1.945
x? 3 2.703 2.944 3.130 3.099 3.079
x? 3 0.845 1.444 2.221 1.813 2.085
x 6 6.115 6.170 6.303 6.361 6.487
x$Y 6 5.398 5.206 4.889 4737 4.404
x¥ 8 8.141 8.194 8.303 8.335 8.381
x? 8 7.251 7.053 6.742 6.640 6.466
D 5.173 4.616 4.391 4.328 4.304 4.296

From the Table we can see how the gradient method improves the criterion of value continually.
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Conclusion
A problem of service station arrangement in spatial space is considered. The elaborated algorithm
of the problem solution is based on the gradient method. The considered numerical examples show its

efficiency. The authors intend to apply the suggested approach to solving the practical arrangement
problems.

APPENDIX

Now we will consider the simplest one-dimensional case when k = 1 (one station only) and density
f(x) and loss function g (o) are symmetric functions. Let f{x) have a maximal value at the symmetry

pointx =mand g (x(l) ) =g(x— x(l)) have minimal value g* at the symmetry point 0. Now instead of

(2) we have the following criteria:

D)= [ ge-2)f (e = gm+x-x) f(m + ). (7

As f'is a symmetric function respectively m, f(m + x) = f (m — x), then for the sum of two points
m+ x and m — x, we have the following sum of the integral expression in (17):

g(m+x—x(1))f(m+x)+g(m—x—x(l))f(m—x):
:f(m+x)(g(m+x—x(1))+g(m—x—x(l)))

The convexity of function g gives us
O O} 1 O} 1 M
gm+x—-x")+gm—-x—-x")=2 5g(m+x—x )+5g(m—x—x ) |2
1 M 1 © M
>2g E(m+x—x )+5(m—x—x ) =2g(m—-x") 22z

The lower limit is obtained if x "’ = m. Therefore,

D(x(l))z Tg(x—x(l))f(x)dx =Tg(m +x—x )f(m+x)dx+Tg(m —x—x") f(m—x)dx =

[ fon+ g+ x—x0) + glm—x— x> 2,

which is obviously clear.

Taking derivative with respect to x "’ and equate one to zero, we get

gm+x—x")f(m+x)dx=0.

0 0
oD D(x(l)): PO glx—xM) f(x)dx = PO

As function g has the minimum at the point 0, and then the derivative from g(x) is negative for
x < 0 and is positive for x > 0. Therefore,

0

f(m+x)dx = .[ %g(m+x—x(l))f(m+x)dx.

x(1)—m

M _py

J

—00

X

(m+x—x")

o 8
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Obviously, the unique solution is xV=m. Therefore, for optimal value we have the following

expression:

D(m)= [ g(x—m)f(x)dx = [ g(x)f (m+ x)dx.
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A modification of the classical ruin problem is considered. Novelty consists of a consideration of nongomogeneous Poisson
flow of claims, arbitrary distribution of claim costs and existence of lower level of necessary capital for any time moment ¢. The
problem is to calculate probability that this lower level is not to be passed. A numerical method has been elaborated for the
probability evaluation. The considered method is based on Markov’s chain theory and Edgeworth expansion for the probabilistic
density function.

Keywords: ruin problem, Edgeworth expansion, Markov’s chain, numerical method

1. Introduction

We consider some modification of the classical ruin problem (Grandell (1991), Ross (1992)). An
insurance company has initial capital u. The claims occur according to nonhomogeneous Poisson process
with intensity function A(z) [Ross: 24]. The costs of the claims are independent and identically distributed
random variables {n,,i =1,2,..., }, having distribution function F(x). The Poisson process and sequence

{n,,i=12,..,} are assumed to be independent. The premium income density function of the company is

defined by positive function ¢(y) of current capital value y.
The risk process, Y, is defined by

N(0,1)

V() = [e(X(e)ds = 3, ()

where N(s, £) is a number of Poisson events that have place in the interval (s, #), Y(0) = u, u is initial capital.

The ruin probability till time moment t for the company having initial capital u is defined by

w(u)= P{Y(z) <0 for some moment z € (O,t)}. )

Now let /() be the known function of time ¢ that determines lower level of the necessary capital.
Then we define the probability to have overdue payment in the interval (0, t) as

Y(t,u)= P{Y(z) <Il(z) for some moment z € (O,t)}. 3)
Our aim is to calculate this probability.
2. Some Useful Relationships

Let us remind some known relationships. Those will be used below. Let m(z,7 + A) = E(N(t,t + A))
be an average number of the events of Poisson process on interval (¢, ¢ + A). It is well known that

t+A

E(N(t,t+8)=m(t,t+A) = [ A(z)dz @)

and N(s, £) has the Poisson distribution with this parameter:
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P{N(t,t+A)=n}= l'm(t,t +A)" exp(—=m(t,t +A)),n=0,1,.... (5)
n.
Let us remind that
N(0,0)
X(@) = 2771. : (6)
i=1

from formula (1) is said to be a compound nonhomogeneous Poisson process.
We generalize the last notation, letting

N(t,t+A)

X@t+M)= Y7, %)

i=N(0,6)+1

Obviously it is a fotal cost of the claims during interval (¢, ¢ + A).
Let us rewrite a generating function of the moments for X' (z,7 + A):

M(s; X (1,6 + A)) = E(exp(sX (t,1 + A))), )
using a generating function of the moments for7 :

M (s317) = E(exp(s7)). ©)

Repeating proof from [Ross,1992: 22] we can rewrite
t+A
M (s; X (1,6 +A))= exp{[M(s;n)—l] | ﬂ(z)dz}, (10)

Now we are able to write an expression for cumulant generating function:

t+A

K(s; X (2,6 + A)) = In(M (5 X (1,6 + A))) = (M (s37) 1) [ A=)z (11)

By differentiation of the above, we obtain cumulants of X (¢,7 + A) distribution:

r +A

k(t,t+A)= %K(O;X(r,t +A)=v.m(t,t+A)=v, j Az)dz, (12)
wherev, = E(" )= aas M (0;77) is the r-th order moment of 7.

For example,

ult,t+A)=E(X(t,t+A)) =k, (t.t + At)=v,m(t,t + A) (13)
o’ (t,t+A)= D(X(t,t + A)) =k, (t,t + A) = vym(t,t + A). (14)

These cumulants will be used for approximation of density f and distribution F' functions for
X(t,t+A). For that we use Edgeworth expansion [Barndorf-Nielsen; Cox, 1989]. For normalized

random variable
1

STy (X(t,t+A)— E(X(t,t + A))). (15)

X(t,t+A) =

the Edgeworth expansion is determined as
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PTG 80)= 619, A )40 AV )52 080 .
where ¢ is density function of standard normal distribution, {, (x)} are Edgeworth polynomials:
H,(x)=x"-1, H,(x)=x"-3x, H,(x)=x"-6x"+3,

H,(x)=x"—10x" +15x, H (x)=x°"—-15x* +45x* —15,

{p, } are normalized cumulants:

p,(t,A)=k (o(t,t+A)) " (16)

The Edgeworth expansion for density function of X (¢, + A) is

) B 1 x—utt+A) B
FlaXx@t+n))= Yy f( St ,X(t,t+A)j—

1 ¢(x_'u(t’t+A)Hl+lp3(f,t+A)H3(—x_'u(t’t+A)]+

T o+ M)\ ot A) 6 o(6,i +A)

1 x—u(t,t+A) I » x—u(t,t+A)
+—paltt+A)Hy | — L — 3t + A)Hg| — 2D |+ (7
2 a4 4[ o(t,t+A) ] TPt +h) 6( o(t,t+A) )j } (47

We will use the received expressions to evaluate ruin probability.

3. Suggested Approach

As earlier Y(f) is a capital at the time moment ¢. Let G(x, t ) be a probability that Y(f) not greater
then x and till time ¢ overdue payment absents:

G(x,t) = P{Y(t) <x,Y(2)>(z) for ze (O,t)}.

We will consider a described process at the time moments?, =0 <¢, <...<f, =t.

By that we assume the followinf conditions:
¢

1. A premium for the interval |f;, , ) is calculated with respect to initial capital at the time?,:

i+l
one equals C(tl. )(tm -, )

2. A random event “overdue payment” during interval (ti N +1) is determined for the final time
moment?, ;s ¥(t741) = Y(t;) + (Y (1) Nti1 = 1) = X (11,2141 ) tess then I(z,., ).

According to our assumptions, sequence {Y (l‘l- ) } produces the Markov’s chain. For original time
moment ¢ = 0 we suppose /(0) <u and have Y(0) = u:
0,x<u,

Lx>u.

G(x,0) = {

Other values of G(x, L, ) are calculated by using ordinary Markovian technique:
for #;:

G(x,tl):1—F(u—x+c(u)t1),x21(tl), (18)
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fort,,i =1,2,..;x>1,):

1+

0

G(xstm): J-(I_F(Z_x"'c(z)(tm _ti)))dG(Zati)' (19)
1(t;)
Obviously
Y(tu) =1-G(t;0). (20)

4. Numerical Example

Our aim is to illustrate wide possibilities of the considered model. At first we take the following
input date: A(¢) = 1; ¢(y) = ¢ y = 0.15y; I(t) = 5. Distribution function of claim cost F(x) is described by the
Edgeworth expansion for density function (17). Here m(z,t + A) = E(N(t,t+A))= AA and analysis of

statistical date gives the following values of v, = E(;7 "): v, =25 v, =12, v5 =48; v, =384. Itallows getting

such values of cumulants k, (¢, +A) = v, AA and normalized cumulants p,(t,A) =k, (o(t,t + A)) "

wlt,t+A)= E(X(t,t+A)) =k, (t,¢ + At) = vm(t,t + A) = 2A,

olt,t+A)=D(X(t,t + A)) = Jky (1,1 + A) = \Jvym(t,t + A) =3.464A,
k3(t,t+A) = V3I7’l(t,t+A) = 48A, k4(t,t+A) = V4M(t,f+A) = 384A,
P31+ A) = ks (1,6 +A)/ o (t,t +A) =1.155A7"2,

pat,t+A) =k, (t,t+A)/ o(t,t+A)* =2.667A7"

Using this data we wish to calculate values of the probability ¥(z; u) to have overdue payment in
the interval (0, 7), see formula (3). For that we use the suggested approach and consider time moments
tg=0,t; =iA, i=1,2,... WesetA=1.

Table 1 contains probabilities G(x; 9,u) that current capital Y(#) at the time moment =9 not

greater then x and till time ¢ = 9 overdue payment absents, if initial capital equals ». The last row contains
probability ¥(9; u) =1 — G(o; #; u). Analogous data corresponds to the initial capital values u from 11
till 16.

Table 2 contains analogously probabilities for a case when the lower level of necessary capital at
the time moment ¢ is defined as /(f) = 5 +¢ We see that for this case the probabilities are changed
essentially.

TABLE 1. Probabilities G(x; 9, u) and ¥(9; u) (the last row) as functions of initial capital u (I() =5)

X u =11 u =12 u =13 u =14 u =15 u =16
5 0.009 0.009 0.008 0.008 0.007 0.006
7 0.035 0.035 0.033 0.030 0.027 0.024
9 0.068 0.067 0.064 0.059 0.054 0.047
11 0.105 0.104 0.099 0.092 0.084 0.074
13 0.143 0.142 0.137 0.128 0.117 0.104
15 0.181 0.182 0.176 0.166 0.152 0.136
17 0.219 0.221 0.216 0.205 0.189 0.171
19 0.255 0.260 0.256 0.245 0.228 0.207
21 0.289 0.289 0.296 0.285 0.267 0.244
23 0.321 0.334 0.335 0.325 0.307 0.283
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The continuation of Table 1

X u =11 u =12 u =13 u =14 u =15 u =16
25 0.351 0.368 0.372 0.365 0.348 0.323
27 0.378 0.400 0.408 0.403 0.388 0.363
29 0.401 0.429 0.442 0.441 0.427 0.404
31 0.422 0.455 0.473 0.476 0.466 0.444
33 0.440 0.478 0.501 0.509 0.502 0.483
35 0.454 0.498 0.526 0.539 0.537 0.521
37 0.467 0.514 0.549 0.567 0.570 0.557
39 0.476 0.529 0.568 0.592 0.599 0.592
41 0.484 0.540 0.584 0.613 0.626 0.623
43 0.490 0.549 0.597 0.632 0.650 0.652
45 0.494 0.556 0.608 0.647 0.671 0.678
47 0.497 0.562 0.617 0.660 0.689 0.701
49 0.499 0.566 0.624 0.670 0.703 0.721
Y(9; u) 0.495 0.424 0.359 0.299 0.246 0.200
TABLE 2. Probabilities G(x; 9, u) and (9; u) as functions of initial capital u (I(f)=5 +¢)
X u =11 u =12 u =13 u =14 u =15 u =16
13 0 0 0 0 0 0
15 0.019 0.021 0.021 0.021 0.020 0.019
17 0.045 0.049 0.051 0.051 0.049 0.046
19 0.076 0.083 0.087 0.087 0.084 0.079
21 0.108 0.119 0.125 0.126 0.123 0.116
23 0.139 0.154 0.163 0.165 0.162 0.154
25 0.168 0.188 0.200 0.205 0.202 0.194
27 0.195 0.219 0.235 0.243 0.242 234
29 0.218 0.248 0.269 0.280 0.282 0.274
31 0.239 0.274 0.300 0.315 0.320 0.314
33 0.256 0.297 0.328 0.348 0.357 0.353
35 0.271 0316 0.353 0.379 0.391 0.391
37 0.283 0.333 0.375 0.406 0.424 0.428
39 0.293 0.347 0.395 0.431 0.453 0.462
41 0.300 0.359 0.411 0.452 0.480 0.494
43 0.306 0.368 0.424 0.471 0.504 0.523
45 0.310 0.375 0.435 0.486 0.525 0.549
47 0.313 0.380 0.444 0.499 0.543 0.572
49 0.315 0.384 0.450 0.509 0.558 0.592
51 0.317 0.387 0.455 0.518 0.570 0.609
53 0.318 0.389 0.456 0.524 0.580 0.624
55 0.318 0.391 0.462 0.528 0.587 0.635
57 0.319 0.391 0.464 0.532 0.593 0.644
65 0.320 0.393 0.467 0.538 0.604 0.664
67 0.320 0.393 0.467 0.538 0.605 0.666
69 0.320 0.394 0.467 0.539 0.606 0.667
71 0.321 0.394 0.467 0.539 0.607 0.668
73 0.321 0.394 0.468 0.539 0.607 0.669
75 0.321 0.394 0.468 0.540 0.607 0.669
77 0.321 0.394 0.468 0.540 0.607 0.670
79 0.321 0.394 0.468 0.540 0.608 0.670
Y(9; u) 0.679 0.606 0.532 0.460 0.392 0.330
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Conclusion

A modification of the classical ruin problem has been considered. The suggested modifications
allow taking into account additional factors. A numerical method of a probability of interest has been
elaborated. Examples show that various factors influence on this probability essentially.
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ASYMPTOTIC NORMALITY OF THE INTEGRATED SQUARE
ERROR AT THE FIXED PLAN OF EXPERIMENT
FOR INDIRECT OBSERVATIONS
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The goal of this paper is to establish the asymptotic normality of the L, -deviation of the kernel distribution function estimator
F (x) defined by I = J.( F (x)-F( x))? @(x)dx » Where F(x) is the unknown distribution function of a random variable X,
w(x) is the weight function in dose-response dependence on the sample U™ ={W, YL <i<n}, W;=1(X; <u;) is the

indicator of even ( X; <u;) and Y is arandom variable, u ; is fixed values. This result is useful for constructing the test goodness-
of-fit for the distribution function F(x).

Keywords: dose-response dependence, indirect observation, integrated square error

1. The Nonparametric Estimation of Distribution Function

Let X,,X,,..X, be a random sample with a distribution function F'(x) . We consider a sample
v ={W;,Y;),1<i<n}, where W;=I1(X;<u;) is the indicator of event (X;<u;) and Y, is
charactetistic metering error of u;. We shall illustrate this case taking Y, =u; +¢&; so measured error is
collided for u; as additive; &,¢;,...,&, are independent distributed random variables with a density
qg(x)>0, x € R', further {X;} and {Y;} are independent distributed random variables. In [1], [4] u; is
treated as inserted for organism nonrandom dose decides beforehand and X, is treated as minimal

working dose, which the organism response begins.
The most nonparametric U (m _ sample estimator of F'(x) may be written in the form (see [2], [3]).

Fy ()= 220
Sln(x)
where
Sln(x>=%21<h<z-—x>, Sz,,<x>:%ZWiKh<Y,-—x>, (1
i=1 i=1

and K(-) >0 is akernel function, /# = 2(n) > 0 is a sequence of constants (2 — 0 and nh —> o as n—> )

and K,(x) = %K(%} .

We use the following conditions ( A ).
(A0) max |u;—u; | |=0(n""),as n— oo
i

(A1) K(x)=0 is a bounded even function on R and || K ||2: IK2(z)dz <o,
(A2) K(x)=0 for x¢[-L1].
(A3) jK(x)dle, % :jzzk(z)dz<oo.
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(A4) jx"K(x)dx=o, k=13.
(A5) f'(x)is a continuous function, I( f ’(x))zdx <oo and f"(x) is a bounded function.

(A6) f(x)/F(x), f'(x)f(x)/F(x) are bounded integrand and I(_f"(x))“dx <,

It is known (see [4]), that under conditions (K) F,(x) is asymptotically normal. Observed that,
F, (x) is an asymptotically biased estimator.

In [5] a simple two step estimator of distribution function with zero asymptotic bias and the same
asymptotic variance as usual kernel smoother in dependence dose-response is produced.
We investigate behaviour of these statistics in this case. Consider the first §;,,(x). Observe that

1 Z” X—uU; —&; 1 Z” X—u;—y
ES = — EK R S— = — K -t 7 d .
1n (%) nh P [ h j nh iZqu(y) [ h j 4

On condition (A0) this expression is an integral sum, so

ESy, (x) = %jdt j q( y)K(HT_yjdy + 0&) = j dt j q(x—t+zh)K(z)dz + 0(%] -
2252
= jdtj (G(x—1)+q'(x—)zh+q"(x — )

N
+q"(x—t)—+ —K(z)dz +
q" == —+q" (O K ()

1 22h? 4 1
+ O(—) = jdt j (G(x—0)+q¢'(x-)zh+q"(x— t)T}K(z)dz +O(h™) + 0[-) ,
n n
since | qW ) £C.
We notice that Iq(x —1)dt =1 hence it follows that Iq"(x —-1)dt=0.
As aresult and in conditions (A1-A3), we get

ES), (x) = jq(x—t)dH o)+ o(lj =1+0(h*), it h=Cn™"".
n
As DSy, (x) > 0,50 Sp,(x)=1+0,(h*) as n >

We consider the S;,,(x), determined by (1). The expectation value of S,,(x) has got the following
presentation as n — o

s LS55 o2
i=1

24,2
= IF(t)dtIq(x—t +zh)K (2 )z = IF(t)dtf {g(x—1)+zhq'(x—1) + z 2h q"(x—0)+
3,3 4,4 2,2
+q"(x— t)% +q! V(;)%}K(z)dz - j F(0)g(x —t)dt + 2 2h jF(t)q”(x — 0yt +o(h?).

Set M(x) = j F(t)q(x—t)dt , s0 ®"(x) = j F(t)q"(x—t)dt .

Hence

02 h?

ES,, (x) = ®(x) + D"(x) +o(h?).

The variance of S,,,(x) has the following asymptotic presentation

X—U; — &
h

1 n
DS =D{—>» W.K
20 () {nh; ; ( p

j} - 21 T 2P/ n)(l—F(i/n))K(mj N
n“h™ i

1 xX—1t— gl'
~ nh—sz(t)(l - F(t))DK(T] ,
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2
DK(—X_;_ 8’):_fq(y)Kz[—x_;_yjdy—(fq(y)K(x_Z_deyj =

= hIq(x —t+ zh)Kz(z)dz —h? ([q(x —t+ zh)K(z)dz)Z ~
~hq(x—=1) | K|* -h*q*(x= 1)+ o(h®) .
Thus,
2
DS, (x) = @ [F@oa-F@ae-nd+0om™).
n

As Sln(x)=1+0p(h4), so the UM — sample estimator of the averaging distribution function

may be written in the form F,(x) =S5, (x) .

Theorem 1. Under the conditions (A ) and h = cn3 ,

b (F (1) = ©(0) > N(a(x),07 (x),

where a(x) = (1/2)CY?0%®"(x) and o*(x)=| K | j F(t)g(x—t)dt.

Proof. You may see the proof of this theorem in [4]. This result follows immediately using the
theorem Lindeberg-Feller.
We use the following estimation:

1) Set iy =Cyn™* and compute

~ 1 < x-Y;
qo(x)—TZW,-K( " ]

n(),':]

2) Define A = C3n_l/ > and estimate p(x) by

E(X)ZL L WK[X—Y]J 1
nhy o ) ey

3) Consider next estimator

o _L” _ x_YjM
F, (X)—¢(?C)ﬂ’(x)—nh1 jZIWJK[ A ]G(Yj)'

Let

Fotn = Fun @ =0 Ky(x=Uy).

i=1

We reduce the next result from [7], which will be necessary to us in the future.

Theorem 2 [7]. Assuming (A ) and f(x) is a bounded function on R, we have for any ¢>0,
with probability 1:
Vnh J;n,h _Efn,h Lo

lim  sup =k(c)<o,
n—oclnn/n<h<l \/max(ln(l/h),ln Inn)

where ||K||OO =sup| K(x)|< .
X

The following theorem establishes the asymptotic normality of estimator F, (x).
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Theorem 3. Under the assumptions (A ) and 1/10 < <1/5,
* d
iy (F ()= @(x)—— N(0,67 (x).
n—>o0
Proof. Let ¢ (x) = E(¢(x)) . Then we obviously have

1500 )| [p@B0)-050)|

50 P | ey |
_|p)e@ -g@1+ 7@Ip ) -6
B G(r)p(Y;) B
PO |y

(Y P20+ 5 o P =P )

From theorem 2 it now follows that,

~ _ Inn
Ay =sup|@(x) - @ (x)| = Op( —] ,
x nhO

~ _ Inn
Aun =Sup\<0(Yj)—<o(Y,~)\ =0,{ —J
X nhO

The last bound obviously implies that /iy = Con™® (1/10<a <1/5)and by = Csn™ /3,
nhlAnl—p—>0, nhlAnz—p—)O
n—»0 00

Therefore we investigate the asymptotic behaviour of sum

1 & X—U; —&; o(x
S30(0) = Wl-K( : 'j_“") .
P 1 P(u; +¢&;)

First we consider the expectation value of S5, (x) .

ESy (x)= E(K| XY 5’] ?(x) E((X; _
3n(X) = 1,2;‘{( I 70+ [)}(( <u;))=

_ 1N , x-ui—& | @ox , 1 x—t=¢& | @(x) _
ok ;F(MI)E{K[ h Ja(“i +‘9i)} I IF(t)E{K[ Iy j@(”%’)}dt

P(x) xX—t—y 1
= [For q(y)K( : ]_

h )o@+
2 2
= [Fdt [ K(@)dztg(x—1)+ ¢'x~1)zhy + _ox
( + z hl)
Expanding ((p( l)z ) and ¢(x) in Taylor’s serie by Ayt and calculated their product, we receive
hZ
on condition (4)
G G R L )

P(x+mz)  F(x)+O(hd)
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Therefore
ES3,(x) = ®(x) +o(n” P72 )——— ().

Remark 1. It f"(x)/F(x), f()f"(x)/F2(x), f)f' () F2(x), (f'(x))*/F2(x) are bounded on R,
then we may demand 0 <« <1/5.

Then

1 & X—u; — & o (x)
DS3,(x)=—— D{W-K( L1 ) — =
T 22 ; ' b ) +e)

n 02 @
:%ZE{W,-K{’“‘”I"%J 9 }—F2<u,-)(E{K(x_”l’_giJ Py

n’hi 5 Mo )@ (u;+e) o )ow+e)
=LiF(ui>Iq(y>K2(x‘”l“y ] P02, q(y)K(x_”l‘_y ]_5()‘) a)? =
n*hi 5 hy P2 (u;+y) hy oW +y)
1 < 2y 9o (%)
= F(u; —u: +zh)K — e
nzhl ; (u,)Iq(x u; +zh) (2)52(x+zh1) z

B L
P2y ([ e +Zh1)K(Z)g$(ffrxz)hl) 2~ D e i

~F? (u;)hy (I q(x—u; )K(z)olz)2 ,as 52 (x+Myt) — 52 (x) uniform convergence for |¢[|< ¢, .
Thus,

2
&l

DS;, ~
3n I’lh1

j F(Oq(x—t)dt -~ j F2 (g (x—t)dt =
n

1

K12 _ LK .
= j F(t)g(x t)dt+0(n) i j F(t)g(x—1)dt .

The result of theorem 2 follows immediately using the theorem Lindeberg-Feller.

2. Integrated Square Error of the Nonparametric Distribution Function Estimation

Let X;,X5,...X,, be a random sample with a distribution function F(x). We consider a sample
U™ = {W;, Y;),1<i<n}, where W; =1(X; <u;) is indicator of event (X;<u;) and Y, =u;+¢; so
measured error is collided for u; as an additive. We shall illustrate this case taking Y; =u; +¢&; so
measured error ¢; with a density ¢g(x) >0 is collided for u; as an additive.

Let F,(x)=S,,(x) be nonparametric estimator if the distribution function F(x) .

Integrated (weighted) square error of estimator F, (x) is given by
Iy = [ (Fy() = @) w(x)d = [ (F, (1) = EF, (x)* w@)dx + [ (EF, (x) = D(x) w(x)dx +
+2 _[ (£ (%) = EE, (0))(EF, (x) = ©(x))w(x)dx ,

where w(x) is a weight function.
Without loss of generality we may assume that w(x)=1. We consider every term of the sum 7,
individually.
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It is easy to see, that I(EFn (x)— CD(x))2 w(x)dx is purely deterministic in character.

. 2 —1 1
(1)) ILy=hn"Jy, J,= 1/2hZanl , where

1 X—U; — & X—U; — &
= | {WiK(Tj - EW,.EK(T)} {EF,,(x) — ®(x)}dx .

Lemma 1. Under the conditions (A ),
T —> N©.07),
n—m
2 4 o2
where ot = (1/4)v j D(x)(1 - D(x)) (D" (x)) > dx <.

Proof. It is easy to see, that £Z,;; =0 . We consider the Lindeberg’s condition,

1
ZE{Zﬂlll(‘anl > ml/zh )< ZE{anl[q Zni > ‘9”1/2]’1 )}
sl nh* (enh®)
< (Z .
nh* (gnh )IZ;' i)

The next step is to derive the relations: DJ,; — 01 and EZnI, o).

n—»0

Note that Z,,; =Y,;; — EY,,;; , where

nli
1 —u—e
1Yy = ZJMK(%"%]{EFN)—@(@}% .

Define t,(,k) =F Ynkli for positive integers k. Since EF),(x)-®(x) = (1/ 2)h202®”(x) + o(hz) uniformly
in x, then

49 = B [ K[ 215 L, () - ol =
n* h

. 2,2
=P a0 K(%)[ () + o ~

2k 2k 2k 2k
v F(ui)J q(y)dy{J K(zb”(y +u; + zh)dx}k ~ h

Fu) [ a)i@" (v +up)i*dy .

The result EZ:} i = O(hg) follows immediately, on noting that

EZ! =tW — 491" + 612 (£0) =3¢y

nli

Further,

"

2 ZEanl

4,4
~{[ [F0a()@"(y +t)dydes*} = %{j [F (- 0(@" () didu -

" ”

~{[[Fa(u- 00" @wydydr*} = ©
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e [[ @)@ ()@ (v)duav} =

4h4

Lindeberg-Feller theorem has given the result of Lemma 1.

Now

> [mGom s,

1<i< j<n

1 & 2
[(Fux) = EF, (02 dx = —— " [ 7 () + ——
n"h” 5 n

where

X—U;— & _ ) X—U; — &
n;(x) =W;K (Tj F(u;)EK (—h j

(i) Lp=n"w',, J T = Zjn, (x)dx .

Lemma 2. Under the conditions (A ),
an L) 0'22 .
where o3 =|| K | j D(x)dx .

Proof. Observed, that

EJpy =LhZJ‘E77,~2(x)dx: ]
nhoy
:_ZJE{WK( j} -F*(u ){EK(T%)}de:
1 n 20 X—U; — Yy 2 X—u—& )
:EE‘[F(W){J‘(](J})K (T)dy}—F (ui){jq(y)K(Tjdy} dx ~

D[ K IP gl )~ ) x - ) ~
i=1

K |? j ®(x)dx — h j j F2()q2 (x —t)dxdt .

Let

X—u; —&;
T = |WK| —L—°L |gx,
= P =]
then

2
D(Jy3) = D{%Z(T,- —ETZ-)] _ #ZD(Z} _ET)? -
=1 i

3 [ZE(T ET)) —(E(T —ET)) )ZJ
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Using the fact that (a + b)4 < 8(a4 + b4) we obtain for large n,

8 < 4 4
D(J,) SWZ;‘(EY} +(ET,)") ~
1=

LI (T E S AW I
nzh;‘(F(ul)th( h )q(y)dy} nhIK (2)dz———0,

in view of condition ( Al ).

The result of this lemma follows from the Chebyshev’s inequality.

1, - 2
(iii) [I,3=n I 1/2Jn3, JnSZW Zj?]i(x)nj(x)dx.

1<i<j<n
Lemma 3. Under the conditions (A ),

J3—25 N(0,03),
n—»>0

where 0'32 = ijz ()c)q2 (y—x)dxdyj dvq Kw)K(u+ v)du)2 .

Proof. Define

i-1 L
G = (D7), &y = i) D0 (2).

J=1 J=i+1

Hence,
2 n-1 2 n
Ja=——=7) Eni=——=7) O -
n nh3/2 ; ni nh3/2 FZ% ni

Our aim is to prove a central limit theorem for J,3 .
Let 7 =o(X,, X,,... X,) is o -field, generated by Xi,X5,...,X}. Then{ank,yz}lgm, n>1, is

martingale.
To prove a central limit theorem it suffices that (see [9])

1 n-1
(2) nzig,zE(a:i | 7)o

i=1 n—wn

(b) _1 "ZIE(a%[q &[> Snh??)—2>0-

273 ni
nh 5

We consider the first (a ). Observed, that

h

({5 ({35

EQ, (x)m;(»)) = F(u; ) E( K( e ”;l — & ) K( y-u;i-g; j) ~

+ Fz(ul-)EK[x - ”;1 i jEK[y _”Z_‘gi ) ~ Fuph[qCc—u; + zh)K(z)K(y p A zjdz -

— F(up)h*m(x —u;)q(y —u;) = F(up)h*m(y —up)q(x —u;) + F2u)h*m(y —u;)m(x —u;) ~

~ F(u;)hq(x - ”i)J.K(”)K(y ; i ujdu + W2 F (up ) (F (u ym(x = up ym(y — ;) —

—m(x —u;)q(y —u;) — q(x —u))m(y —u;)).
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Further observe that
E(pi(x)n;(»)=0,as i#j and ns; = le(f,i-) = iE(a,%i) .
But - -
E&n) = E([[mom; () fn () ink (y)dxdy) =

Jj=i+l k=i+1

= [[EmCom®) Y >0 ()idxdy =

Jj=i+lk=i+l

= [[EmomG) Y n;00om; (»idxdy ~

j=i+l

n 2
~ 1 [[qCe=up)Fu) Y F(u)gCe—u; )UK(u)K[y : i quuJ dxdy =

J=i+l

= hsz(ui)q(x —u;) iF(uj)q(x - uj)dxjdqu(u)K(u + v)du)z

Jj=i+l

Therefore as n —

n n—1 n
= n g

j=i+l

x j g(x—1)g(x—u)dx———> j F(t) r F(z)jq(x—t)q(x—z)dxdzdz j dvq K@)K(u+ v)du)z ~
t

~ j j F2(x)q*(y - x)dxdy j dvq KW)K (u + v)du)z =03,
Since

EQ; () (y)m; ) ; (v)) ~

~ hF(u;)q(x — ui)fdt(K(t)K[ Y ; *_ tJK[u ; *_ t)K[ Y ; t_ tj) ,

then

E(n7; (x)n;(»)my )y (v)) = 0, as aset (i, /,k,I) has got if only two different elements.

Then

i-1 i-1 i1 i-1
E(an) = E([ [[ GOm0 om0 Ym0 2, () D i ()Y 9y (v)kelydudv) =
m=1 j=1 k=1 I=1

i—1
= B([[ [[m:Com i am )Y n;om; (o) (wym; (v)xdydudv) ~
j=1

B[Pt 3 -
Jj=1

2
x UK(t)K( 24 ; T th( U ; Sl th( d ; Sl tjdt} dxdydudy ~
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i-1
: AhSIF(u,.)q(x—u,.)le(uj)q(x—uj)dx,
=

where A= m dydudvq KOK(t+y)K (1 +u)K(t+ v)dt)z.

Consequently,

1 n 4 A & i—1
g L EG = = [Flupae—u) Yy F(u)g(x—u;)dx ~
nh 5 n'h;> Jj=1

A I 24 2.1 2
~Ejdu J.dv j F(u)g(x—u)F(v)q(x—v)dx = = j j F2 (g% (x — dxdt————0.
Let v? :z v, where v = E(a? |.7,)- Consequently as n — oo,

E(K’4):2 Z v’” "I+va <C nZA _”'Fz(t)q (.X' t)dxdt
2<i<j<n
If we apply the obtained result, we find that
E(} =5}y <C-nd-[[F*(t)q* (x—t)dxdt »
s*EW?-s))?—0 and ?p?_,] inprobability as n — oo, )
which proves (a).

The relation ( b ) follows from inequalities

2h32E(amI(|a | >Snh*?)) < = 4h62E(a;§)s
i=2

52 4hZIF(u)q(x U)ZF(H )q(x—u, )dx<

52 n f du j dvj F(u)q(x—u) F(v)g(x - v)dx— jqb (x)dx = 0-

2 zh n—»o

Finally from (a ) and (b ) and [13] it follows that J | is asymptotically normal y(0,07)-

Remark 2. For the Epanechnikov kernel K(x)=3/4)(1-x")I(|x|<1) the convolution is
. (3/360)(32 - 40x> +20x° —x°), 0<x <2
K,(x)=(K*K)(x) = , . s :
(3/360)(32 — 40x> —20x* + x°), —2<x<0
Then
fK% (xX)dx = j dv([K(u)K(u + v)du)z =167/387 ~ 0.434.
(V) Ly = [(EF,(x)=®(x) dr = 2Ly + Ly + 1,3
Let
u(n) = j E(F,(x)—®(x))*dx = j (EF,(x)-®(x))dx+n"'h o3 .

This means that /,; and /,, are asymptotically independent. Combined the results from Lemmas
1-3, we get the following theorem.

Theorem 4. Under the conditions (A ), h — 0 and nh — o as n — o,

(i) If nh® -, then n'*h=2(1,, - p(n))—s N(0,07).
Nn<—o0
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(ii ) If nh® >0, then nh™"*(I, - u(n))—2— N(0,207).
N¢—0

(iii ) If nh®> — A, Ae(0,00), then nh™*(I, — p(n))—2> N(0,43c2 +2471363).
n<—0

Thus, in this paper Nadaray-Watson estimators have been considered. Using them we have proved

that the integrated square errors of these estimators are asymptotically normal. Also, we have been proved
asymptotical normality of the offered asymptotically unbiased estimator (see [5]). Observe that, the result
of Theorem 4 takes place also for this unbiased estimator. These results may be used for constructing
goodness-of-fit test for this problem.
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A nonparametric regression model E(Y) = m(x) is considered where Y is a dependent variable, x is d — a dimensional vector of
independent variables (regressors) and m is an unknown function. A sequence of independent observations (¥;, x,) i = 1,2, ..., n, is
available. Our aim is to construct an upper confidence bound for m(x) that corresponds to probability y. The resampling approach is
used. The suggested method allows calculating true cover probability.

Keywords: nonparametric regression, interval estimation, resampling

1. Introduction

We consider nonparametric regression
Y =m(x)+e, (1.1)

where Y is a dependent variable, m(O) is an unknown regression function, X is a d -dimensional
vector of independent variables (regressors), & is a random term.
It is supposed that the random term has zero expectation (E(g) =0) and variance

Var(g) = o’w(x) where o is an unknown constant and W(x) is a known weighted function.

Furthermore we have a sequence of independent observations (Yl ,xi) ,i1=1,2,..,n.On that base we

need to construct an upper confidence bound %(x) for m(x) at the point X corresponding to

probability ¥ :

P{m(x)< m(x)}>y. (1.2)
Usual way [DiCicco and Efron, 1996] consists of using a consistent and asymptotic normal

distributed estimate rﬁ(x) of m(x) A final expression contains derivatives m'(x), m"(x) and

. 2 . .
variance 0~ that are replaced by the corresponding estimators.
The resampling approach [Wu, 1986], [Andronov and Afanasyeva, 2004] gives an alternative way

that can be described as follows. For the fixed point X we take k nearest neighbours X, X;, ..., X, of

X among X, X,,...,X, (in some sense, for example using any kernel function K, (x—x; ),

n
Mahalanobis or other distance):

{x;,x;,...,x,:}= {x, :iel (x)},

I.(x)={i:x; is one of the k nearest neighbours of x among {xl,xz,...,xn }}

Now we have sample (xl',Yl'), (x;,Yz'l oo (x,:,Yk') instead of (x1 LY ), ()62,Y2 ), oo (xn,Yn )
Then we derive sample without replacement {7, , i, , ..., I, } of size 7 (¥ < k) fromset {1, 2, ..., k},

form resample (xl ,Yl), (x;,Y;), ves (xr ,Y° ), where x'; = x; and Y, = Y"*, and calculate estimate
J J

1
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m(x) of our function of interest m(x) Then we return all selected elements into initial samples and we

repeat this procedure R times. As a result the sequence of estimators 7, (x), m, (x), 7 (x) takes

place. After ordering we have the sequence 1" (x), 2 (x), ..., m® (x), where m” (x) < m " (x).
Let the number R is selected so that Ry is an integer. Then we set ﬁ(x) =m* (x)

In the presented paper averaging method of estimator ﬂ(x) forming is considered. Our main aim
is to elaborate a numerical method for cover probability calculation:

Pr, (x) = Pim(x) < mi(x)}. (1.3)

It means that we have to know a distribution of the Ry -th order statistics m*” (x) This is a
main problem that is necessary to be solved.

2. Averaging Method

At first we consider the method of kernel regression estimation [Hardle et al., 2004]. Let K, (o)

be any kernel function (Epanechnikov, Quartic and so on). Then Nadaraya-Watson estimator rﬁ(x) is
calculated by the following formula

ﬁq(x)zr—ZKH(x—xj)Yi“, 2.1)

where x; and Y,O are a vector of independent variables and dependent variable for the i-th elements of
the resample, i=1,2, ..., r.
The resampling procedure gives us sequence 71, (x), m, (x), 7 (x) ,

)= S K, (- () () 2)

YKyl (1)

where x;(j) and Y;"(j) are a vector of independent variables and dependent variable for the i-th
elements of the j-th resample, i=1,2,...,r,j=1,2,...,R.
With respect to (1.1) we have:

1

Ela(ofx ()= - S K, (= x () ().
> Kyl ()"

2
o r

(iKH (e—x; (]-))J

where x°(j) = (-xl(])a'xz(J)”‘xr(]))
Then

Varla(olx ()= (. (= x; ) s ),

zeQ KH (x _ Zl' ) i=1

E(ﬁ(x)):LZE(nz(x)p): ! |- ! iKH(x—z[)%(zi), 2.3)
G
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where the sums are taken on set {2 of all r-samples z = (ZI,ZZ,...,ZF) without replacement from the
set {X] , X3, Xy |

Analogous expression we can to write down for unconditional variance. At first let us calculate the
second moment:

E(,,q(xy)_@15{@@(@]22]_@;9 ( 1 E((;Kﬁ(x—zi)Y,"(j)jZZJ -

r-1 r
:% z ;2 ZKH(x—zl-)z(Uzw(zi)+m(zl~)2)+ 22 ZKH(x—Z,-)KH(x—Zj)m(zi)m(zj)J .
[rjze [ZKH(X_ZZ.)J i=1 i=1 j=i+l
i=1

Now the variance can be calculated by the following formula
Var(m(x))= E(m(x)) - (E(m(x)))’. (24)

Now we need to calculate the covariance between two various estimates 771 i (x) and m ;i (x) We

have forj =;

Cov(im, (x), 1 ,(x)) ! E((m, (x) = m(x) N , (x) — m(x))) = E(m, (x)m . (x)) - (E(m()))* . (2.5)

Further

k -2
Elm, (xym, (x)) = (@] S E(m, (x)m . (x)

zeQveQd

)=

= (E(m, () +[(kDZZK”(x )[ZZKI()H)ZK (c=z, Wz | @6)

i=1

Therefore

Cov(m(x)) = ((i D > o (Z : 1 Z K,(x-z,Vwz,)| @7
zeQ ZKH (X —z, )LVEQ ZKH (X —v, ) 2, €EZAV

To avoid the computational difficulties, it is possible to consider the following estimate instead of (2.1):
_ &y
m(x) =;2Yi (2.8)
i=1

and the corresponding sequence 7, (x), m, (x), vy M (x)
Expectations, variances and covariance matrix for this sequence of random variables can be
determined using the following lemmas.
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Lemma 1.
Let Z,,Z,,...,Z, be independent random variables with expectations £4;, KL, , ..., {4, and
variances G|, G5 ,...,0, . Let Z,Z5, ..., Z_ be a random sample of size r from Z,, Z,, ..., Z,

without replacement and S be their sum: S = Z; +Z, +...+ Z, . Then

E(S)="- (ﬂ1+ﬂz+ ), (29)

r k—r dk
Var(S) = — 24l 2.10
al”( ) k ;(0/ /Llj k j k (k 1) JZ;IZ];IILIHL!/ ( )

Lemma 2.
For the conditions of the previous Lemma let the sample Z,, Z,, ..., Z be returned into the set

{Z,,Z,,...,Z,} and the described procedure be repeated, so that we have new sample

Z',Z;,..,Z and a corresponding sum S° =Z +Z; +...+Z . Then the covariance between S
and S is calculated by the formula

2
Cov(S,S')= Gj Zk:af. (2.11)
i=1

In our case ¥, and Y play the part of Z, and Z; correspondingly, m(x) is equal to S/r.
Furthermore 4, = m(x )and instead of O' mustbe o W(x )

With respect to the given suppositions, random vector (iﬁl(x), m, (x),...,rﬁR (x)) has multi-

dimensional symmetric distribution with characteristics determined by (2.3), (2.4), (2.7) or (2.9)-(2.11).
Therefore to calculate cover probability (1.3) means to calculate the probability that at last R(1 — )

components of vector (ﬂzl(x), m, (x), wees g (x)) will be greater than m(x). For this it is possible to use

normal approximation of the distribution. Unfortunately again we are faced with a hard computational
problem. Usually for that solving crude Monte Carlo method is used.

APPENDIX

Proof of Lemma 1.
Let y, = 1 if the random variable Z; belongs to the sample {Z,, Z,,..., Z,} and y; =0

otherwise. Of course Y|, ¥,,..., ¥, are dependent random variables because y, + y, +...+ y, =r. We
have: P{ y ,=1}=r/k, P{ y ;=0}=1—r/k, E(x;)=P{ } ;=1}=r/k,
Var(;(j )= (1 —r/k) r/k, E( ¥, X;) =P{y.= Ly, = 1} =r(r-1)/(k(k-1)) for i #j. Furthermore

Random variables ¥, and Z, are independent therefore
k k &
E(S) = ZE(Z[Z[) = ZE(ZJE(Z[) = ;Z/’li >
i=l = =

E((7,2)*)= E(x})EZ?) = %(ﬂf +al),
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Var(y,Z;) = E((Zizi)z)_(E(liZi))z =

2
r 2 2 r r ) 2 r
Ll ey L | =0 et 1= Al
i) (kﬂ,j k[ : /J,( kn (A1)
Random variables Z,, Z; and y, y; fori#; are independent, too, therefore
r(r—1)
E(}[iZ[}(ij)IE(}(i)[_/)E(Z[)E(Z_/)Z/,l[/,lj—,
k(k-1)
r(r—1) (r]z r(k—r)
Cov XL = A2
X2, Z;)= ﬂﬂ,k(k D — i)\ T ,U,U,k(k D’ (A2)

Formulas (A.1) and (A.2) give formula (2.10).

Proof of Lemma 2.
Let

Then

Cov(S,S'):Cov{zk:;([Zi,i;(;ij:Zk:Zk:Cov( V4 l,;(jZ)
i=1 =1

i=l j=1

=Zk: Wrz.1z ,)+Zk‘,ZCov(, 27,

i=l j#i

For i #j random variables ., )(; A4 ; are independent, therefore COV(;(I.Z i )(;.Z j) = 0. Further
COV(Z:‘ZI"Z:"ZI‘): E(Zili.ziz)_E(ZiZi )E( i.Zi):

2 2
= E(}(f )E( 2, )E(Zf)—(%ﬂij = (%Gi j .

Therefore
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Some regression models to forecast the air passengers’ conveyances from EU countries are considered. Two different
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second one is its generalized approach. The considered regression models contain many explanatory factors and their combinations.
The advantage of using the generalized linear model (GLM) in comparison with the classical linear regression model is shown.
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1. Introduction

Most the literature which is devoted to forecasting of transport flows contains only simple
forecasting models on the base of the time series methods or linear regression methods with a small
number of explanatory variables. Two approaches for the forecasting of air passengers’ conveyances from
EU countries are considered in this article: the classical method of linear regression and its generalized
approach. The difference of linear regression models considered in this article comparing with the models
presented in other papers [6] (autoregression integrated moving average models) and [3, 4, 8] (multiple
regression models) consists in using the greater number of the explanatory factors and their combinations.
Some models on the base of GLM are considered in the article as well. The aim of this article is to
illustrate the advantage of using the GLM comparing with the linear regression models. The verification
of the models and the evaluation of the unknown parameters are included in the research as well.

This article has the following structure. The second section contains the description of the
informative base of the mentioned investigation. The used models for analyzing and forecasting of air
passengers’ conveyances are considered in the third section. The elaboration of linear regression models
and generalized linear models are presented in the fourth and fifth sections. In the fifth section the
advantage of using GLM in comparison with the classical linear regression is shown.

2. Informative Base

In this article the number of carried air passengers was our index of interest and we intend to
forecast their volumes. We use the following factors influencing the volumes of air passengers’ conveyances:
t;  total population of the country (TP), millions of inhabitants;
t,  area of the country (AREA), thousands of km?;
3  density of the country population (PD), number of inhabitants per km?;
t,  monthly labour costs (MLC), thousands of euro;
ts  gross domestic product (GDP) “per capita” in Purchasing Power Standards (PPS) (GDP_PPS);
te  gross domestic product (GDP), billions of euro;
t;  comparative price level (CPL);
ts  inflation rate (IR);
ty  unemployment rate (UR);
tip labour productivity per hour worked (LPHW).
The time interval of consideration was the period from 1996 to 2005. We consider the air
passengers’ conveyances from EU countries. By the moment of data collection there were 25 countries in
the EU, such as Belgium, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy,
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Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Austria, Poland, Portugal, Slovenia,
Slovakia, Finland, Sweden and the United Kingdom. All data for this investigation have been received
from the electronic database “The Statistical Office of the European Communities” (EUROSTAT) [9].

Some of the considered above factors are to be commented:

a) GDP per capita (Latin: for each head) in PPS is the value of all final goods and services
produced within a nation in a given year divided by the average population for the same year. This
volume index of GDP is expressed in relation to the European Union (EU25 = 100).

b) Comparative price level is an index that used for cross-country comparison of price levels. If
it is higher/lower than 100 (EU25 = 100), the country concerned is relatively expensive/cheap as
compared with the EU average.

For each considered country and for each year we have the volumes of all ten basic factors
mentioned above and the volumes of raw conveyances of the air passengers’ carried. But during the data
gathering we have collided with shortage of data on many countries, especially concerning the new
members of EU; therefore the final number of the observation was 161.

The data for the period from 1996 to 2004 have been used for the estimation and forecasting, i.e.
for finding of coefficients of the regressional models (140 observations). The data of the 2005 (21
observations) have been used to check out the quality of forecasting, the so-called the cross-validation
(CV). Detailed description of CV approach is considered by Diana Santalova in the proceeding article [7].

3. The Used Models for Analyzing and Forecasting of the Air Passengers’ Conveyances

The air passengers’ conveyances from EU countries were the main object of the consideration in
our investigation. The data about concrete country for the concrete year were taken as the observation.
All the considered models were the group models [1]. It means that we have the identical regressional
model for the various similar objects.

In our research the linear regression models and the generalized regression models have been
used. In the simplest case the linear regression model can be expressed in the following form [5]

Elr®)(x))=x"p, 1)

where Y (®) is a dependent variable for the & -th considered model (regressand), X = (xl s XD,y Xy )T

is d -dimensional vector of regressors or explanatory variables, = (ﬂo, Bis Py Py )T is a
coefficient vector that has to be estimated from observations for ¥ *) and X.

The great number of linear regressional models [3, 4, 8] offered in the literature contains small
number of the explanatory variables. But just increasing their number does not lead to improving
considerably the quality of the regressional models. So the generalized linear model can be applied [5]:

E(Y(k)(x))= G{xTB}, @)

where G(O) is the known link function of one dimensional variable.

Firstly, we consider the linear regressional models. After that the generalized linear models are in
focus of our research.

4. Elaboration of Linear Models

The big number of various models which differed with structure of factors and their combinations
has been constructed and investigated. During the process of the models’ construction the received results
have been constantly analyzed and the new complementary factors have been added to them. All the
considered models in this investigation are the group models.

As the basic criteria to choose the best model, the following ones were selected: the multiple
coefficient of determination (R®), Fisher’s criterion (F), the sum of the squares of the residuals (SSRes)
and the sum of the squares of residuals for the cross-validation (CV SSRes). In additional to these criteria
the other ones have been considered as well, in particular the forms of bands of residuals have been
analyzed. Let us note that for the checking of the statistical hypotheses we always used the statistical
significance level ¢ = 0.05 .

63



Part Il. Statistical Inferences

In the models 1-3 as the regressand Y @) y (where i=1,2,3) the number of raw air
passengers’ carried was taken.

As the regressors in Model 1 all the considered above variables without their modification such as:
X, =t, Xy =, X3 =1, X, =1, Xs =15, Xg =t,, X; =1, Xg =1lg, Xy =1y and X, =1,
were chosen.

Model 1 gives the following estimate for £ (Y):

E(r"(x))=14-0.77x, +0.16x, +185.8x, — 2.44x, +0.53x; +0.07x, +0.05x, +0.32x, -
—1.2x4 —1.03x,,.

Now we are going to consider some criteria for the used model. The value of the coefficient of
determination for this model R*=0.831 is high enough. The value of the Fisher criterion F = 63.49 is
considerably higher than its critical value F;, =1.905. This value was calculated with the significance
level @ =0.05 and with the degrees of freedom df1=m =10 and df2=(n—m—1)=129, where m

is a number of predicted values and 7 is a number of observations [2]. The critical level of model
significance (p-level) p = 0.000000, so this model is adequate.

For each factor of model 1 table 1 contains factor estimates (b) and the results of the check of their
significance: the calculated values of the Student z-criterion (t) and p-level. Some factors for this model
are nonsignificant. The critical value of the 2-tailed Student criterion # = 1.979 which was calculated with
the significance level o =0.05 and with the degrees of freedom df = (n—m—l)z 129 [2]. The

significant explanatory variables are the variables x,, x;, x4 and X,,, so, the greatest influence on the

air passengers’ conveyances is provided by the aria of the country, the density of the country population,
the value of the gross domestic product and the comparative price level. The positive and the negative
signs for all regressors in this model correspond to physical sense of regressors. Such statistical procedure
was used for all linear regression models considered below.

TABLE 1. The estimates of the coefficients and their significance level for Model 1

Variable Factor b t(129) p-level
Intercept 14.00 0.84 0.405
X TP -0.77 -1.56 0.121
Xy AREA 0.16 5.60 0.000
X3 PD 185.80 4.67 0.000
X4 MLC -2.44 -0.44 0.660
Xs GDP_PPS 0.53 1.68 0.096
Xg GDP 0.07 3.81 0.000
X7 CPL 0.05 0.37 0.710
Xg IR 0.32 0.29 0.771
Xg UR -1.20 -1.59 0.114
X10 LPHW -1.03 -3.75 0.000

The analysis of the form of the band of residuals for Model 1 has shown the necessity of adding
into the regression model the new explanatory factor #,; (ON). This factor takes 2 meanings: “0” if the

considered country is the old member of EU, and “1” if the considered country is the new one.
Additionally we remove some nonsignificant factors from Model 1.

Therefore the regressors in Model 2 are the following: x; =¢,, X, =t;, X3 =t; x, =1, and x5 =1, .
Model 2 gives the following estimate for E(Y):

E(y®(x))=13.56 +0.003, +134.01x; +0.05x3 — 0.68x +29.36xs.

The obtained results for Model 2 are shown in the Table 2. We see that our modification allows
improving some characteristics of regressional Model 1. In this model R* = 0.829 but despite the decrease
of it we see that the value of /= 129.85 has considerably increased comparing with the previous model.
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Variable Factor b t(134) p-level
Intercept 13.56 245 0.016
X1 AREA 0.09 4.45 0.000
X PD 134.01 4.32 0.000
X3 GDP 0.05 10.34 0.000
X4 LPHW -0.68 -5.12 0.000
X5 ON 29.36 421 0.000

The next step for improving the characteristics of the regressional models consists in adding to

regressional models the modified basic factors and their different combinations, such as: \/t_ , 1 12 » A/l s
b/t Attt ft s 166 1), /Mt -t ). We begin with Model 3, where: x, = £, x, =1,
Xy =1, X, :tlz and x5 =,/t, .

This model gives the following estimate for E(Y):

E{y®)(x))= ~6.34+113.26x; +0.14x; —0.52x3 ~0.034 +3.03x5.

The analysis of the obtained results for Model 3 (Table 3) also shows the rightful appliance of this
approach because it allows us to improve considerably the characteristics of the regressional model.
Moreover, the comparison of the received results with the results which have been obtained for the
models considered above shows that their input allows to improve two characteristics of the regression
model at the same time: R* = 0.867 and F = 174.078.

TABLE 3. The estimates of the coefficients and their significance level for Model 3

Variable Factor b t(134) p-level
Intercept -6.34 -1.05 0.296
X1 PD 113.26 4.00 0.000
X, GDP 0.14 10.66 0.000
X3 LPHW -0.52 -5.80 0.000
X4 sq(TP) -0.03 -7.56 0.000
X5 sqrt(AREA) 3.03 5.74 0.000

The observed and predicted values of the air passengers’ conveyences in Country-Year order for
Model 3 are shown on Figure 1, the results of the cross-validation for this model are shown on Figure 2.
The “Country-Year order” for all values which is shown on Figure 1 means that, firstly, they are sorted by
the country name and for each country they are sorted by year.
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Figure 1. Plot of the observed and predicted values for Model 3
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Figure 2. Plot of the observed and predicted values for the CV for Model 3

But in Figures 1 and 2 we can see considerable inconvenience of the 3 Model, which consists in
the fact that some predicted values for this model, lies in the negative area. Models 1 and 2 have the same
disadvantage. Therefore as the next step for the improving of the regressional model was the transfer to
the new forecasting variables.

So in the Models 4-5 as the regressand we considered the ratio between the total number of air

passenger carried and the number of inhabitants of the country Y (i) = y/ t,i=4,5.

As the regressors in Model 4 we used the following variables: x, =¢,, x, =t;, X; =1,,

Xy =l X =y, X =Aft X, =3ty X =0/t xg =AJ6, [ty and x, =11, .
Model 4 gives the following estimate for £(Y):

E(r®(x))=0.56+2.33x, —1.04x, —0.02x, +0.001x, +1.76x —0.0004x, +0.04x, +0.17x,
The obtained results for Model 4 are shown in the Table 4 (R>= 0.760, F = 45.81).

TABLE 4. The estimates of the coefficients and their significance level for Model 4

Variable Factor b t(131) p-level
Intercept -5.67 -6.25 0.000

X AREA -0.02 -6.73 0.000

X) PD 10.37 6.19 0.000

X3 MLC -0.73 -4.19 0.000
X4 ON 0.83 8.30 0.000

Xs sqrt(TP) -1.02 -7.32 0.000

X6 sqrt(AREA) 1.06 7.10 0.000

X7 AREA/TP -0.12 -6.98 0.000

Xg sqrt(AREA)/TP 0.94 5.84 0.000
Variable Factor b t(131) p-level

The analysis of the obtained results doesn’t show the improvement of the characteristics of this
model. Therefore we decide to enter one more variable#,, (HL), which expresses the relative value of the

conveyances. It takes 2 meanings: 0 if the value of y / 11 for the considered country is small (less than 2)
and is equal 1 if this value is larger than 2
As the regressors in Model 5 we used the following variables: x, =1f,, X, =t;, X; =1;,

Xy =ty Xs =ty Xg =1, X; =t and xg =1 /1, .
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Model 5 gives the following estimate for £(Y):

E(r®(x))=0.99 - 0.46x, —0.02x, —0.02x, —0.02x, +0.0Lx; +1.27x, +1.15x, +0.07x.
The obtained results for Model 5 are shown in the Table 5 (R* = 0.864, F = 104.174).

TABLE 5. The estimates of the coefficients and their significance level for Model 5

Variable Factor b t(131) p-level
Intercept 0.99 3.93 0.000

X1 MLC -0.46 -3.41 0.001

X) GDP_PPS -0.02 -3.81 0.000

X3 IR -0.02 -1.33 0.187

X4 UR -0.02 -1.90 0.056

Xs LPHW 0.01 3.72 0.000

X¢ ON 1.27 9.21 0.000

X7 HL 1.15 15.30 0.000

Xg GDP/TP 0.07 341 0.001

The data for all considered models and for the four mentioned above criteria have been brought in the
Table 6. For each model and for each criterion the rank R; (where i =1, 2, 3, 4) has been calculated. Here,
the rank of a model is its i -th criterion position number among all values of this criterion. The sum of the
ranks (Sum R) for all four criteria and the total rank (Total R) has allowed us to define the best model. In
order to compare the results obtained for the Models 4-5 with the previous ones (Models 1-3), for the
Models 4-5 the recalculated data for SSRes and CV SSRes have been used. These data were multiplied by
the value of the country population. So according to the sum of ranks for all considered models and taking
into account the inconvenience of the first three models we can conclude that the best model is Model 5.

TABLE 6. Pivot results for the first three models

Model R? R, F R, SSRes R; | CVSSRes | R, | SumR | Total R
Model 1 0.8311 3 6349 | 4 | 5265133 | 5 17232.75 5 17 5
Model 2 0.8289 4 | 12985 | 2 | 5334353 | 5 16458.41 4 15 3
Model 3 0.8666 1 174.1 1 | 41598.60 | 2 7417.482 1 5 1
Model 4 0.7603 5 | 45.81 5 | 35064.04 | 3 8596.43 3 16 4
Model 5 0.8642 2 | 104.2 | 3 | 12774.59 | 1 7717.23 2 8 2

Figure 3 shows the recalculated observed and predicted values for the air passengers’ conveyances
for Model 5 in the order Country-Year. The result of the cross-validation for this model is shown in Figure 4.
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Figure 3. Plot of the recalculated observed and predicted values for Model 5
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Figure 4. Plot of the recalculated observed and predicted values for the CV for Model 5
5. Elaboration of Generalized Linear Models
Tempting to improve the characteristics of the received linear regression models (1) the

generalized linear model (2) has been used.
For the further investigation the best linear regression model (Model 5) has been chosen. Two

different GLM are considered. In both of them the value of the regressand Y (GLv) — Y (5)/ ¢, and the

collection of the regressors are the same as for Model 5.
The first GLM (GLM1) is the modification of the logit model [5] which can be written in the

following form:
exp[z Bxi, j
J

1+ exp(z ’B‘/Xi’jJ
j

where hl. is the total population number, X; is vector-columns of the independent variables, i is the

E(Y'(x,))= h : 3)

observation number, i =1, 2, ..., n.
The second of the investigated GLM (GLM2) has the following form:

1

a+ exp{z ﬂjxl.J]

where @ is the additional parameter (constant).

, “4)

1

e )=

The unknown parameter vector B = (ﬂl s B2y Ba )T for both GLM is estimated by the use of
the least squares (LS) criterion:

L ~\2
Rolp)= 3501 = T; - min. ©
i=1

where Y, and Y, are observed and calculated values of Y .

Note, that linearization of the logistics models is the traditional way for the estimation of their
unknown parameters. Let us show that it gives bad results.

After GLM linearization their liniarizated forms (LM) LM1 for the model (3) and LM2 for the
model (4) correspondingly were obtained:
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for the model (3) the LM1
Y*
1-v" 5

and for the model (4) the LM2
1
ln(—*—aj=Zﬂjxi’j . (7)
Y j

where Y*=Y/h.

Here the dependent variables are situated in the left side of the formulas, and their parameters’ [
estimation is not difficult to do.
The models LM1 and LM2 gives the following estimate for £(Y):

o~ 13:78+0.001/6.68x)~0.02x3+0. 714 +48.85-0.44x5+0.29:x7+7.813~0.64x9

Ay ()=

L4 o~ 13.78+0.0013—6.68x)—0.02:x3+0.7x4-+48.8x5—0.44x6-+0.29x7+7 8 1xg—0.64x9

~ 1
ArEM2)()= .
03+ el 1.65+1.63x1 —1.7x2 +0.04X3 —0.81)64 —17.96)65 —1.67x6 +0.2X7 +0.4 lxg -0.1 IX9

The values of SSRes and CV SSRes for the Models LM1 and LM2 comparing with Model 5 are
calculated and shown in the Table 7.

TABLE 7. The value of SSRes and CV SSRes for the Models 5, LM1 and LM2

SSRes CV SSRes
Model 5 LM1 LM2 Model 5 M1 LM2
Ro/” 12 775 27 447 21 834 7717 676 576 229 554

We can see that linearization gives bad results. Making attempts to improve the obtained results a
two-stage estimation procedure is developed. The first stage corresponds to the considered linearization.
As the second step we use the procedure of calibration when we precise the gotten estimates by using the
well-known gradient method.

The gradients with the respect to the unknown parameter vector  for the GLM1 and GLM2 can

be written in the following forms:

for the model (3)
)Y o] X5,
VR(B)=-2>"| ¥, - I / h, / Sxp (®)

L+exp| DB, L+exp| Y. B,x;
J .
J

and for the model (4)

exp Z ﬂ‘ iXi
! J ©

>

vR(p)=25| ¥, -1,
i=1

at+exp 3 fxi a+expl Y Bxi,
J P
J
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For the GLM2 we found the optimum value of R, not only from the values £ but from the
parameter a also. Firstly, we fix the value of @ and search the optimum values of f# according to (5).
After that we fix the founded values of £ and search the optimum values of R, by changing the value of
parameter & . This procedure has been repeated many times until R, reaches its minimum.

The GLM1 and GLM2 have the following estimates for E(Y):

N —=7.05-1.05x +1.22x5 —0.02x5 +0.76x4 +5.77x5 +1.26x4 —0.11x7 —0.68xg +0.15x¢
E(Y(GLMl)(x))z €

1+ e—7.05—1.()5x1 +1.22x5 —0.02x3 +0.76x4 +5.77x5 +1.26x5 —0.11x7 —0.68xg +0.15x¢

E(Y(GLMZ) (x)): h 1 .
6.3+ e7.26+1.09x1 —0.78X2 +0.02)C3 —0.82X4 —7.81X5 —1.12)C6 +0.IX7 +0.13x8 —0.06)C9

Figure 5 shows the observed values of air passengers’ conveyances and predicted values obtained
by using of the generalized linear regression models GLM1 and GLM2 in the order to Country-Year. The
results of the cross-validation for the models GLM1 and GLM2 are shown in Figure 6.
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Figure 5. Plot of the observed and predicted values for the GLM1 and GLM2
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Figure 6. Plot of the observed and predicted values for the CV for the GLM1 and GLM2
The SSRes for the CV for the Models 5, GLM1 and GLM2 are shown in the Table 8.
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TABLE 8. The value of SSRes for the CV for the Models 5, GLM1 and GLM2

CV SSRes
Model 5 GLM1 GLM2
Ro/n 7717 7171 5185

The comparison of the data from Tables 7 and 8 allows stating the following: generalized linear
models give better results for the forecasting of air passengers’ conveyances in comparison with
traditional linear regression models; simple linearization gives considerably worse results for the
forecasting and needs in its optimization. For this purpose the two-stage estimation procedure which is
shown in this article can be used.

Besides this for the GLM2 the dependence of values SSRes and CV SSRes on the value of
parameter ¢ is investigated. The obtained results are shown in Figure 7. The optimal value for analysis
of SSRes is obtained, then a =2, but the best result for the analysis of CV SSRes is obtained, then

a=6.
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Figure 7. The values of SSRes and CV SSRes as a function of parameter ¢r for GLM 2
Conclusion

The linear and generalized linear regressional models for the forecasting of air passengers’’
conveyances from EU countries are considered. These models contain a big number of explanatory
factors and their combinations. For the estimation of the unknown parameters of the linear regressional
models we use the standard procedures. For the estimation of unknown parameters of GLM the special
two-stage procedure has been elaborated. The cross-validation approach has been taken as the main
procedure for the check out the adequacy of all considered models and choosing the best model for the
forecasting. The advantage of GLM application has been shown.

References

1. Andronov, A.M. etc. Forecasting of air passengers’ conveyances on the transport. Moscow:
Transport, 1983. (In Russian)

2. Andronov, A. M, Kopytov, E. A and Gringlaz, L. J. The probability theory and the mathematical
statistics. StPetersburg: Piter, 2004. (In Russian)

3. Butkevicius, J., Mazura, M., Ivankovas, V., Mazura, S. Analysis and forecast of the dynamics of
passenger transportation by public land transport, Transport, Vol. XIX, No 1, 2004, pp. 3-8.

4. Butkevicius, J., Vyskupaitis, A. Development of passenger transportation by Lithuanian sea transport. In:
Proceedings of International Conference RelStat 04, Transport and Telecommunication, Vol. 6, No 2, 2005.

71



Part Il. Statistical Inferences

Hardle, W., Muller, M., Sperlich, S., Werwatz, A. Nonparametric and Semiparametric Models. Berlin:
Springer, 2004.

Hunt, U. Forecasting of railway freight volume: approach of Estonian railway to arise efficiency,
Transport, Vol. XXVIII, No 6, 2003, pp.255-258.

Santalova, D. Forecasting of Rail Freight Conveyances in EU Countries on the Base of the Single
Index Model. (In printing)

Sliupas, T. Annual average daily traffic forecasting using different techniques, Transport, Vol. XXI,
No 1, 2006, pp.38-43.

EUROSTAT YEARBOOK 2005. The statistical guide to Europe. Data 1993-2004. EU, EuroSTAT,
2005. URL — http://epp.eurostat.ec.europa.eu

72



Part Il. Statistical Inferences

Computer Modelling and New Technologies, 2007, Vol.11, No.1, 73-83
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia

FORECASTING OF RAIL FREIGHT CONVEYANCES IN EU
COUNTRIES ON THE BASE OF THE SINGLE INDEX MODEL

Diana Santalova

Riga Technical University, Faculty of Transport and Mechanical Engineering
Kalku Str. 1, Riga, LV-1658, Latvia
E-mail: Diana.Santalova@rtu.lv

There are the regression models which describe rail freight conveyances of the member countries of the European Union
considered in the investigation. The models contain such factors for each country as: total length of railways, gross domestic product
per capita in Purchasing Power Standards and so on. All calculations are performed on the basis of the statistical data taken from
EUROSTAT YEARBOOK 2005. Two estimation approaches are compared: the classical linear regression model and the single
index model. Various tests for hypothesis of explanatory variables insignificance and model correctness have been carried out, and
the cross-validation approach has been applied as well. The analysis has shown obvious advantage of the single index model.

Keywords: freight conveyances, forecasting, single index model

1. Introduction

In this paper we consider the problem of forecasting of rail freight conveyances from the member
countries of the European Union on the basis of EUROSTAT YEARBOOK 2005 data [5]. For that the
linear regression model [4] and the single index model (SIM) [3] are used. The object of consideration is
rail freight conveyance expressed in million tonne-kilometres. We call observation the data about an
object for a concrete year from 1996 till 2000. The following countries were considered: Austria,
Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, Sweden and the United Kingdom. The main difficulty is to choose the set of convenient
factors influencing the rail freight conveyances. The task of research is to construct various regression
models, i.e. models with different combinations of explanatory factors, and then to choose from them the
ones, that give the best forecasts of conveyances. We use the following well known criteria for comparing
the elaborating models: the coefficient of multiple determination R, Fisher’s and Student’s criteria and
the residual sum of squares R, [1, 4]. The described below cross-validation approach is used as well.
Especially for the single index model the series of experiments is carried out with the aim to determine
the optimal value of bandwidth 4. In the present paper a lot of attention is paid to this problem.

The paper is organized in a following way. First of all the used regression models are considered
from theoretical point of view, then the used data are described. After that we consider the suggested
group models for the forecasting of conveyances. The results of the carried out estimation and the
comparative analysis of these models are presented as well.

2. Structure of the Used Models

In this research all investigated models are group models [1]. The main object of consideration is
named an object. It is a freight conveyance from some EU country. The data about an object for a definite
period of time is called observation. We talk about the individual model if one object corresponds to
another object for various observations, and about the group model if one corresponds to various objects.
In other words we are able to forecast rail freight conveyances for all considered countries using one and
the same model.

With respect to used mathematical model we consider linear regression models and semiparametric
regression models.

In general the regression model can be described as

}Ii:m(xi)+gi’ (1)

where Y, is a dependent variable in the i-th observation, m(o) is an unknown regression function, X; is a

d -dimensional vector of independent variables, &, is arandom term.
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It is supposed that the random term has zero expectation (E(S)z 0) and the variance

Var(s)z O'zl//(x), where ©° is an unknown constant and l//(x) is a known weighted function.
Furthermore we have a sequence of independent observations (Yi,xi), X; =(xi,1,xi’2,..., xi’d),

i=1,2,..., n.Onthat base we need to estimate the unknown function m(x)
In the simplest case the linear regression model is used:

m(x;) =B, + /lef,l + IBZ'xi,Z +..+ ﬂdxi,d = ﬂrxi > ()

T . . .
where =(ﬂ0 B ﬂd) is vector of unknown coefficients, X; =(1 Xip e Xi4) isa

vector of independent variables in i-th observation.
As it is known the forecasts obtained using the linear regression models are not very good. So, for
rail conveyances forecasting we use the single index regression model [3] as well:

T
m(x;) = g(ﬂo + /lem + ﬂzxi,z +.o.t /dei,d ) = g(,B xi)’ ©)
where & (0) is an unknown link function of one dimensional variable and 7, = 3 Txi is called an index.

3. Informative Base

For experiments we will use the below-described statistical data. All necessary data have been
received from “The Statistical Office of the European Communities” electronic database (EUROSTAT)
[5]. First of all, the variable of interest is the rail freight conveyance, expressed in million tonne-
kilometres. Let us denote it by #,.

The following factors have been selected as explanatory variables:

t; — country area, in thousands of km?;

t, — Gross Domestic Product per capita in Purchasing Power Standards;

t; — comparative price level;

ty — total length of railways, in thousands of km;

ts — number of locomotives, in thousands;

ts — number of goods wagons, in thousands.

Let us comment on some of the described factors.

Gross Domestic Product is a measure for the economic activity. It is defined as the value of all
goods and services produced less the value of any goods or services used in their creation. The volume
index of GDP per capita in Purchasing Power Standards (PPS) for each country is expressed in relation to
the European Union (EU-25) average set to equal 100.

Comparative price level is the ratio between Purchasing Power Parities (PPPs) and market
exchange rate for each country.

4. Considered Models

Now let us describe four investigated regression models. Two of them are linear regression models
and other two ones are SIM.
(L) _
=1,

The first model is a simple linear regression model (2). The dependent variable Y is

conveyance of rail freight transport in millions tonne-kilometres. Note, that superscript by Y is introduced

t
just for identification of models. Explanatory variables are x; =1f,, X, =f;, X; = = X, =1y, X5 =15,
3

t
X =t . The ratio -Z enables us to see how these two factors in aggregate influence conveyances.
t
3

t
(£2) — 20 is the

o

ratio between the conveyance and the square root of the country area. Explanatory factors are

The second model is modification of the previous one. The dependent variable Y

t
X, =t,,X, =t, X, == ,x, =1, ,X; =5, X, =t In addition we introduce here the factor?, , which
3
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is the index of the country area, by which we are able to consider gradation of the countries’ areas. It is
equal to 1 for relatively small countries (with areas less than 40 000 km® or equal to 40 000 km?), and it is
equal to 0 for countries with areas larger than 40 000 km”. For example, this index is equal to 1 for
Belgium, Luxembourg and Austria, because the areas of these countries are smaller than 40 000 km?.
Finally we consider two variants of the Single Index Model (3). In the first variant the value of the
(si1) =tz—0 is the ratio between the conveyance and the country area for a concrete
1

dependent variable Y

t
(51M2) — 20 coincides with a dependent variable

Ji
from the second linear Model L2.
The sets of explanatory variables for the models SIM1 and SIM?2 coincide with the set for the first
linear Model L1.

Thus, we have four regression models. Our task is to estimate the unknown coefficients /3 for the

year. In the second variant the dependent variable Y

models, to compare the suggested models and to choose the best ones taking in account their significance.
All calculations are performed using Statistica 6.0 and MathCad 12 packages.

5. Estimation of the Linear Models

Firstly, we analyse all the suggested models in case of data smoothing. It means we estimate the
unknown coefficients ﬂ by all the observations. Thus, we are able to evaluate, how the considered

models can only smooth the known conveyances and what variables have the greatest influence upon the
conveyances.

Let us describe the obtained results.

The estimated Model L1 has the following form:

E(r")(x)=-3713+118x, +26x, —11769x, +879x, + 549x; +158x,

The estimates of the coefficients and calculated values of the Student’s criterion for the Model L1
are presented in Table 1. Here ﬂ, is an estimate of ﬂl , 1(68) is the calculated value of Student’s criteria

for 68 degrees of freedom, p-level is the error of the second kind (or level of insignificance of variable).
The theoretical value of Student’s criterion for 68 degrees of freedom and level of significance (or error
of the first kind) o = 5% is equal to 1.67. Taking into account the fact that the hypothesis of insignificance
of explanatory variable is tested, we can see that calculated value of Student’s criterion exceeds its
theoretical value for two variables only, i.e. these two variables cannot be recognized as insignificant.

Thus, the most significant explanatory variables are X, and X, , so, the greatest influence on conveyances

is rendered by the total length of railways and the number of wagons. The positive sign for these variables
corresponds to the physical sense of the regressors. The coefficient R for this model is equal to 0.985 and
the calculated value of Fisher’s criterion is 383.69. The theoretical value of Fisher’s criterion for 6 and 68
degrees of freedom and level of significance o = 5% is equal to 2.23. Comparing the theoretical and
calculated values of Fisher’s criterion we can conclude that the estimated Model L1 cannot be recognized
as insignificant. So, Model L1 is adequate.

TABLE 1. Estimates of coefficients of Model L1 and their insignificance levels

~

Coefficients B 1(68) p-level
Bo -3 713 0.149195 0.881842
o 118 0.480762 0.632229
5, 26 0.109604 0.913046
B -11 769 -0.462115 0.645474
B 879 6.866741 0.000000
B 549 0.799173 0.426973
Be 158 8.375650 0.000000
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The estimated Model L2 is as follows:
E(r")(x))=-120.4-1.2x, +1.4x, +110.2x; +0.2x, +5.9x; +0.3x, +29.2x,

The results of the analysis of Model L2 are presented in the Table 2. As we can see, almost all
explanatory variables are recognized to be significant by Student’s criterion. Only total length of railways
does not influence the dependent variable. We obtain the positive signs for all significant variables with
the exception of GDP; that means the positive correlation between these explanatory variables and the
dependent variable. The coefficient R* for this model is equal to 0.985 and the calculated value of Fisher’s
criterion is 313.78. The theoretical value of Fisher’s criterion for 7 and 67 degrees of freedom and level of
significance o = 5% is 2.15, so, this regression model is significant as well.

TABLE 2. Estimates of coefficients of Model L2 and their insignificance levels

Coefficients BI 1(68) p-level
B, -120.4 -3.00514 0.003732
B -1.2 -3.11117 0.002738
5, 1.4 3.55818 0.000692
oA 110.2 2.68390 0.009160
B, 0.2 1.03172 0.305913
B 59 5.42836 0.000001
B 0.3 9.33665 0.000000
5, 29.2 12.79621 0.000000

Figures 1 and 2 demonstrate how the investigated models smooth the observed true data. The
observations are arranged in “country-year” order: every five points correspond to conveyances of some
country during the analysed period from 1996 till 2000, i.e. for five years. Moreover, countries are sorted
in alphabetical order. Horizontal axis reflects the number of observations, arranged in the above-
mentioned order. Vertical axis reflects the corresponding conveyances, expressed in thousands. It is
obvious that both linear models show the similar smoothing.
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Figure 1. Smoothing by Model L1
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Figure 2. Smoothing by Model L2

6. Estimation of the Single Index Models

Now we will consider the suggested single index Models SIM1 and SIM2.
The estimation of these models consists of two steps: we have to estimate the unknown coefficients
vector £ and the link function g. For the latter the Nadaraya-Watson kernel estimator can be applied [3]:

~ 1 <
g)=——2 K@), 4)
i=1
ZKh (Ti)
i=1
where 7, = (x - X )T [ is a value of index for the i-th observation, Y; is a value of the dependent
variable for i-th observation and K, (0) is the so-called kernel function.

We use the Gaussian function as K, (0) :

1 1(zY
Kh(r):hmexp _5[%j , —00<T<o00, Q)

where 4 is a bandwidth.
The unknown parameter vector /3 is estimated using the least squares criterion:

R(B)=Y.(¥,— &(x,)) - min. ©)

i=1 s

For that we use the gradient method. The corresponding gradient is the following:

VR(,B):_2Z Yl_ld,,i ) th(Ti)

1 skew|,,
p= ; K,(r) (;_1 j [

JZZX;KII(TI-)'(K—IZ)-&J’ %

i

where
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Y= Kh(fj)Yj ®)
j=1

and

0 T, 1(z,Y

— K, (r,) = ————exp| ——| = 9

oz, i(z1) Wiz P 2(}:) ©)

is the derivative of the Gaussian kernel.
We are able to compare single index models by the residual sum of squares R, only. We calculate
the residual sum of squares as follows:

R, = nle(’ Y)Z (10)

i=1

where 7 is a number of observations, d is a number of estimated coefficients, Y; is an observed value and

A

Y, = Z(x;,) is an estimated value.
The estimates of coefficients /| i.e. the values of coefficients [ optimizing the object function (6),

for both single index models have been obtained from the same starting point [ (©) and with bandwidth

h="7 for SIM1 and h =06 for SIM2. Note that these values of bandwidth are optimal and have been
obtained as a result of the series of experiments using our own program written in MathCad12 package.
The estimated Model SIM1 has the following form:

iY[Kh (710(x—x1,,.)—1 ><103(x—x2,,.)+18x1075 (x—x3g[)+ 758(x—x4’[)+155(x—x5,[)—2><103(x—x6,,. ))
E(Y(Smn(x)): =] )
3K, (710(e -, )~ 1x103(x = x;, )+ 18x107 (= xy )+ 758(x —x,., )+ 155(x — x5, ) - 2x10°(x — x,., )
i=1

The estimated Model SIM2 can be written in the following way:

iYiKh<7l6(x—xU)—lx 103(x —xz,,.)—4(x—x3’i)+ 853(x—x4,l.)+ 62(x — xs,i)—87l(x —xw))
E(Y(SIMZ)(X)): ,-:1}1 ‘
3K, (716(x - x,, )~ 1x10° (x = x,, ) - 4 — x,, )+ 853(x — x,., )+ 62(x — x,, )~ 871(x - x,,))
i=1

Figures 3 and 4 represent smoothing by these models. Obviously, the estimates of conveyances
almost in all observations coincide with the true conveyances.
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Figure 3. Smoothing by Model SIM1
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Figure 4. Smoothing by Model SIM2

As both linear models and both single index models give approximately similar results in data
smoothing, we have to consider how precise the forecasts are which are given by analysing models. For
this purpose we use the residual sum of squares Ry (10). Table 3 involves the values of the residual sums
of squares for all the models.

TABLE 3. Values of R, in case of smoothing

Model L1 L2
Ry 11 543 065 4 830576

SIM1
894 265

SIM2
565 407

So we can conclude that the linear Model L2 and the single index Model S/M2 have the minimum
value of R, that means greater significance of these models in comparison with two others. As it was
supposed, in general SIM gives the most precise estimates.

7. Cross-Validation Analysis

Now we will consider the suggested models from the other point of view. We use the cross-
validation approach. That means we estimate the unknown coefficients £ for the models on the basis of

a part of the data. Then using the obtained estimates of [ we forecast the conveyances for a remained

part of the data and compare these forecasted conveyances with the real ones, i.e. we calculate R, for each
model. Also the optimum value of bandwidth 4 is found for both single index models.
We estimate the coefficients £ on the basis of the period from 1996 till 1999 and perform the

forecast for the year 2000. Table 4 contains the estimates of £ for the considered linear regression models.
The signs of estimates correspond to physical sense of explanatory factors.

TABLE 4. Estimates of coefficients for the linear models

Coefficients L1 L2
B 4154.4 -119.7
B 197.7 28.7
B, 45.4 -1.2
i -20 555.8 1.4
B, 898.5 110.0
Bs 531.6 0.2
B 148.1 6.0
B - 0.3
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The residual sum of squares R, for Model L1 is 18 509 464 and for Model L2 is 8 941 875.
Obviously, forecasts of rail freight conveyances obtained by the second linear model have to be much
better than those obtained by the first one. Moreover, the first linear model gives negative forecasts of
some small conveyances. The true observed values of conveyances and the corresponding forecasts are
displayed in Figures 5 and 6. We can see that Model L2 is more sensitive to the small conveyances which
belong to the countries with small areas. Obviously this effect is achieved by using the above-mentioned
additional gradation factor.
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Figure 5. Forecasting by Model L1
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Figure 6. Forecasting by Model L2

Now we will analyze SIM in detail. We begin with a choice of the bandwidth size. Our task is to
find the optimal value of bandwidth 4, that gives a minimal value of Ry (see [3]). The series of
experiments was performed and the different estimates of £ and values of R, depending on various 4
were obtained as well. The corresponding results for Models SIM1 and SIM?2 are shown in Tables 5 and 6
respectively. We can see that all £ estimates differ from each other depending on 4 in spite of the fact

that they were obtained from the same initial value f,. The values of R, (expressed in millions)

corresponding to various /4 for both SIM are represented in Table 7. Thus, the best result for Ry is
achieved for sy = 7 and hy = 8 for SIM1 and for sy = 6 for SIM2. As it was supposed the sum of squared
residuals increases if / is bigger and smaller than the optimal value. The forecasted conveyances by SIM1
with &y =7 and by SIM, with &, = 6 and observed conveyances are shown on the Figures 7 and 8, respectively.
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Bandwidth A
Coefficients
1 5 6 7 8 9 10 15 20
B 228 | 566.4 | 248.6 | 33160.0 | 3445 | 721.2 | 3530.0 | 1327.0 | -901.7
B, 26.6 | 299.9 | 216.7 |[-22420.0 | -95.8 | -24.1 | -512.5 | 3582 | 1304.0
B, -0.04 1.9 -0.03 565.5 4.4 7.2 38.4 8.6 -19.7
B, 0.13 | 2579 | 889 | 19870.0 | 120.5 | 207.1 | 1310.0 | 550.0 | 1011.0
B 4x10° | 62.9 179 | 39960 | 253 | 377 1744 | 1192 | 1983
B, 1x10° | 885.7 | 2522 | 56310.0 | 356.9 | 572.7 | 3832.0 | 3058.0 | 724.6
TABLE 6. The estimates of ,B for SIM2
Bandwidth &
Coefficients
1 5 6 7 8 9 10 15 20
B, 29.3 859.9 | 962.7 | 1.7x10° | 1.2x10° | 6975 | 618.7 | 757.1 |-4.5x10°
B 18.3 4623 | 1.2x10° | 1.0x10° | 654.8 | 578.5 | 276.8 | 791.3 | 3.4x10°
B, 0.1 3.4 24 75 6.0 1.9 3.3 -0.2 -73.6
B, 0.2 4407 | 6043 | 1.2x10° | 636.6 | 664.1 | 525.1 | 737.1 | 4.0E+3
B, 4x10° | 103.7 49.0 97.1 61.0 | 241 | 12.1 17.3 916.8
B, 1x10° | 1.5x10° | 690.0 | 1.4x10° | 859.7 | 851.7 | 672.9 | 1.2x10° | 1.9x10*
TABLE 7. The values of R, for SIMs
Bandwidth &
1 5 6 7 8 9 10 15 20
SIM1 676.9 24.3 2.0 1.9 1.9 2.5 24.3 24.3 44.5
SIM2 676.9 242 1.9 1.9 1.9 24 3.0 7.5 7.3
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Figure 7. Forecasting by SIM1
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Figure 8. Forecasting by SIM2

Obviously, the forecasted values are very close to the observed values almost in all the observations.
Table 8 contains the values of R, for four investigated models. As we can see, values of R, for
single index models are in a number of orders less than for linear models. This fact gives evidence of

greater accuracy of SIM models.

TABLE 8. The values of R in case of forecasting

Model

L1

L2

S

SIM2

Ry

18 509 464

8 941 875

1 894 237

1 896 287

From Figure 9 we can also visually evaluate behaviour of R, with respect to bandwidth 4 for both
single index models.
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Figure 9. R, depending on bandwidth for SIMs

In the presented paper two kinds of models for forecasting of inland rail freight conveyances are
considered: linear regression model and single index regression model. Four different regression models
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were constructed and tested, two of them are linear regression models and two others are single index
models. For the estimation of unknown coefficients in case of SIM the Nadaraya-Watson estimator and
Gaussian kernel function were used. The efficiency of these models was investigated through the
consideration of conveyances for the 15 member countries of the European Union. All the considered
models include a great number of explanatory factors. The performed investigations show that the single
index regression model gives more precise forecasts than classical methods of linear regression. For this
purpose all the models have been estimated and compared by the criterion of the residual sum of squares
in case of data smoothing and in case of forecasting as well, that required the cross-validation approach.
Moreover, the optimal values of smoothing parameter 4 for the considered single index models have been
obtained experimentally.
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(Abstracts)

Yury Paramonov, Janis Andersons. Analysis of Fiber Strength Dependence on Length Using
an Extended Weakest Link Distribution Family, Computer Modelling and New Technologies,
vol. 11, No 1, 2007, pp. 8-20.

An extended family of the weakest-link models based on the assumption of a two-stage failure
process of a fiber specimen was developed in [1, 2]. A generalization of this family is presented in
this paper. As in [1, 2] we consider the specimen as a chain of n elements (links). The fracture process
is modelled as follows: in the first stage initiation of defects (before loading or during loading), and in
the second stage a specimen fracture takes place. As distinct from our previous publications, the
strength of items without defects is taken into account and two types of the influence of defect
number on the specimen strength are considered. The comparison of the models and the choice of the
best one are made using cross validation method. The offered models sometimes describe more
adequately the experimentally observed fibre strength scatter and the strength dependence on fibre
length than the traditional models do.

Keywords: distribution function, composite, static strength

Eugene Kopytov, Leonid Greenglaz, Aivar Muravyov, Edvin Puzinkevich. Modelling of
Two Strategies in Inventory Control System with Random Lead Time and Demand, Computer
Modelling and New Technologies, vol. 11, No 1, 2007, pp. 21-30.

The paper considers two multiple period single-product inventory control models with random
parameters. These models are of interest because they illustrate real situations of the business. The
first model is a model with fixed reorder point and fixed order quantity. The second model is the
model with fixed period of time between the moments of placing neighbouring orders. Order quantity
is determined as difference between the fixed stock level and quantity of goods in the moment of
ordering. The considered models are realized using analytical and simulation approaches. The
numerical examples of problem solving are presented.

Keywords: inventory control, demand, lead time, order quantity, reorder point, analytical model,
simulation

Alexander Andronov, Andrey Kashurin. On a Problem of Spatial Arrangement of Service
Stations, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 31-37.

A problem of service station arrangement on spatial space is considered. A density function of
serviced object location and a function that describes the corresponding loss are known. As criteria of
the arrangement is an average total loss. For optimisation the gradient method is used. Numerical
examples illustrate the suggested approach to setting problem solution.

Keywords: spatial arrangement, service stations, gradient method

Andrey Svirchenkov. Practical Method of Ruin Probability Calculation for Finite Time
Interval, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 38-43.

A modification of the classical ruin problem is considered. Novelty consists in a consideration
of nonhomogeneous Poisson flow of claims, arbitrary distribution of claim costs and existence of
lower level of necessary capital for any time moment t. The problem is to calculate a probability that
this lower level is not to be passed.. A numerical method has been elaborated for the probability
evaluation. The considered method is based on Markov chain theory and Edgeworth expansion for the
probabilistic density function.

Keywords: ruin problem, Edgeworth expansion, Markov chain, numerical method

88



Computer Modelling & New Technologies, 2007, volume 11, Nol *** CUMULATIVE INDEX

Mikhail S. Tikhov, Dmitriy S. Krishtopenko and Marina V. Yarochuk. Asymptotic Normality
of the Integrated Square Error at the Fixed Plan of Experiment for Indirect Observations,
Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 46-56.

The goal of this paper is to establish the asymptotic normality of the L, -deviation of the kernel
distribution function estimator F,(x) defined by 7, = I(F, (x)— F(x))’o(x)dx, where F(x) is the
unknown distribution function of a random variable X ,. w(x) is the weight function in dose-response
dependence on the sample U™ ={(W,,Y,),1<i<n}, W,=I(X,<u;) is the indicator of even 5.
(X, <u;) and Y is a random variable, u, is fixed values. This result is useful for constructing the test

goodness-of-fit for the distribution function F(x) .
Keywords: dose-response dependence, indirect observation, integrated square error

Alexander Andronov. On Nonparametric Interval Estimation of a Regression Function Based
on the Resampling, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 57-61.

A nonparametric regression model E(Y) = m(x) is considered where Y is a dependent variable,
x is a d -dimensional vector of independent variables (regressors) and m is an unknown function. A
sequence of independent observations (Y, x;,) i =1, 2, ..., n, is available. Our aim is to construct an
upper confidence bound for m(x) that corresponds to probability y. The resampling approach is used.
The suggested methods allow calculating true cover probability.

Keywords: nonparametric regression, interval estimation, resampling

Catherine Zhukovskaya. Use of the Generalized Linear Model in Forecasting the Air Passengers’
Conveyances from EU Countries, Computer Modelling and New Technologies, vol. 11, No 1,
2007, pp. 62-72.

Some regression models to forecast the air passengers’ conveyances from EU countries are
considered. Two different approaches for the above-mentioned task of forecasting are shown. The
first one is the classical method of linear regression and the second one is its generalized approach.
The considered regression models contain many explanatory factors and their combinations. The
advantage of using the generalized linear model (GLM) in comparison with the classical linear
regression model is shown.

Keywords: air passengers’ conveyances, forecasting, generalized linear model

Diana Santalova. Forecasting of Rail Freight Conveyances in EU Countries on the Base of the
Single Index Model, Computer Modelling and New Technologies, vol. 11, No 1, 2007, pp. 73-83.

There are the regression models which describe rail freight conveyances of the member
countries of the European Union considered in the investigation. The models contain such factors for
each country as: total length of railways, gross domestic product per capita in Purchasing Power
Standards and so on. All calculations were performed on the basis of the statistical data taken from
EUROSTAT YEARBOOK 2005. Two estimation approaches were compared: the classical linear
regression model and the single index model. Various tests for hypothesis of explanatory variables
insignificance and model correctness have been carried out, and the cross-validation approach has
been applied as well. The analysis has shown obvious advantage of the single index model.

Keywords: freight conveyances, forecasting, single index model
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COMPUTER MODELLING and NEW TECHNOLOGIES, 11.séjums, Nr.1, 2007
(Anotacijas)

Jurijs Paramonovs, Janis Andersons. Skiedras stipribas atkaribas no $kiedras garuma
model&Sana, izmantojot paplasinato vajaka k&des posma sadalijumu kopu, Computer Modelling
and New Technologies, 11.sgj., Nr.1, 2007, 8.-20. Ipp.

Ieprieks€jos rakstos ir aprakstita paplaSinata vajaka kedes posma sadalijumu kopa, kas balstas
uz pienémumu par divu stadiju sabruk3anas procesu Skiedram. Saja raksta izklastits minétas kopas
visparinajums. Autori paraugu apliko ka n elementu (posmu) k&di. SabrukSana tiek modeléta
sekojosi: pirmaja stadija notiek defektu veidoSanas (pirms slogoSanas vai tas laika) un otraja stadija —
parauga sabruksSana. AtSkiriba no misu ieprieks§gjam publikacijam, tiek nemta veéra ar1 no defektiem
brivo elementu stipriba un tiek apliikoti divi mehanismi defektu skaita ietekmei uz parauga stipribu.
Modelu salidzinajums un labaka modela izvéle balstas uz ,,krosvalidacijas” metodi. Piedavatie modeli
dazkart apraksta eksperimentali novéroto Skiedru stipribas izkliedi un stipribas atkaribu no Skiedras
garuma, precizak neka tradicionalie modeli.

Atslégvardi: sadalijuma funkcija, kompozits, statiska stipriba

Jevgenijs Kopitovs, Leonids Gringlazs, Aivars Muravjovs, Edvins Puzinkevi¢s. Divu strategiju
modeléSana uzskaites kontroles sist€ma ar nejausu piegazu laiku un pieprasijumu, Computer
Modelling and New Technologies, 11.sgj., Nr.1, 2007, 21.-30. Ipp.

Raksta tiek apskatiti divi daudzkartiga perioda viena produkta uzskaites kontroles modeli ar
nejausiem parametriem. Sie modeli izraisa interesi tadel, ka tie parada biznesa redlas situacijas.
Pirmais modelis ir modelis ar fiksétu atkartotu pasttijumu punktu un fiksétu pasttijumu kvantitati.
Otrais modelis ir modelis ar fiksétiem laika periodiem starp momentiem, kad tiek izvietoti blakus
pasiitijumi. Pastitijumu kvantitate tiek noteikta ka diference starp fiks€to krajuma limeni un precu
kvantitati pasiitijuma momenta. Apskatitie modeli tiek istenoti, lietojot analitisko un model&$anas
pieeju. Problémas risinasana tiek piedavati arT skaitliskie piemeri.

Atslégvardi: uzskaites kontrole, pieprasijums, pasttijuma kvantitate, atkartotu pasttijumu
punkts, analttiskais modelis, modelésana

Aleksandrs Andronovs, Andrejs Kasurins. Par apkalpoSanas staciju novietoSanas problému,
Computer Modelling and New Technologies, 11.s§j., Nr.1, 2007, 31.-37. lpp.

Ir apskatita probléma par apkalposanas staciju novietoSanu. Apkalpojamo objektu dislokacijas
blivuma funkcija un izmaksas funkcija ir zinamas. Par novietoSanas kriteriju ir pienemtas vidgjas
kopigas izmaksas. Optimizacijas gaita ir izmantota gradienta metode. Skaitliskais piemers ilustré
piedavajumu pieeju apskatitas problémas atrisinajumam.

Atslégvardi: apkalposSanas staciju novietoSana, bltvuma funkcija, gradienta metode

Andrejs Sviréenkovs. Praktiska metode izput€Sanas varbiitibas aprékinam galiga laika intervala
gadijuma, Computer Modelling and New Technologies, 11.sgj., Nr.1, 2007, 38.-43. lpp.

Raksta ir apskatita klasiskas izputéSanas problémas modifikacija. Novitates ir §adas: apskatita
nestacionara Puasona pliisma, patvaligs sadalijums pieprasijuma maksai un zemaka Iimena eksistence
nepiecieSamam kapitalam katram laika momentam. Uzdevums ir aprékinat varbitibu, lai tas limeni
neparsniegtu. Skaitliska metode bija izstradata Sadas varbiitibas aprékinam. Metode ir balstita uz
Markova k&zu teoriju un Edgeworth izvirzijumu varbiitiskai blivuma funkcijai.

Atslégvardi: izputeSanas probléma, Edgeworth izvirzijums, Markova k&de, skaitliska metode

Mihails S. Tihovs, Dmitrijs S. KriStopenko, Marina V. Jarocuka. Integrétas kvadrata kltdas
asimptotiska normalitate eksperimenta fiks€ta projekta netieSajiem noverojumiem, Computer
Modelling and New Technologies, 11.sgj., Nr.1, 2007, 46.-56. Ipp.

St darba mérkis ir noteikt sadales funkcijas kodola novértétaja F, (x) L, -novirzes asimptotisko
normalitati, kas ir noteikta ar ; = I (F,(x)— F(x))’ o(x)dx» Kur F,(x) nezinama sadales funkcija nejausa
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mainigd X, @(x) ir svara funkcija dozas-atbildes atkariba no modela U™ ={Ww, Y),1<i<n},
W,=I(X,<u;) ir vienm@rigd (X, <y,) raditdjs un Y ir nejausais mainigais, , ir fiksetas vertibas. Sis
rezultats ir noderigs, lai veidotu izp&tes-labuma-deriguma sadales funkciju F(x).

Atslegvardi: dozas-atbildes atkariba, netie$a noverosana, integréta kvadrata kltida

Aleksandrs Andronovs. Par regresijas funkcijas, pamatotas uz resampling, neparametriska
intervala novertgjumu, Computer Modelling and New Technologies, 11.s§j., Nr.1, 2007, 57.-61. lpp.

Tiek apskatits neparametriskais regresijas modelis E(Y) = m(x), kur Y ir atkarigais mainigais, x
ir d -dimensionalo neatkarigo mainigo (regresoru) vektors un m ir nezinama funkcija. Neatkarigo
noveérojumu seciba (Y, x;,) i = 1, 2, ..., n, ir pieejama. Miisu mérkis ir uzbuivét augsgjas parliecibas
saikni m(x), kas atbilst varbutibai y. Tiek pielictota resampling pieeja. Piedavatas metodes lauj
apréekinat patieso virsmas varbitibu.

Atslegvardi: neparametriska regresija, intervala novertejums, resampling

Jekaterina Zukovska. Visparinato linearo modelu pielietoana pasaZieru avioparvadijumu
prognozeésanai ES valstts, Computer Modelling and New Technologies, 11.s€j., Nr.1, 2007,
62.-72. lpp.

Tika apskatiti dazadi regresijas modeli pasazieru avioparvadajumu prognozeSanai ES valstis.
Tika paraditi divi atseviski pan€mieni iepriek§ min€tam prognozesanas uzdevumam. Pirmais
panemiens ir klasiska lineara regresijas metode un otrais panémiens ir visparinata modela
izmanto$ana. Apskatitie regresijas modeli satur vairakus ietekmé&josus faktorus un to kombinacijas.
Tika paraditas visparinata regresijas modela prieksrocibas salidzinajuma ar klasisko regresijas modeli.

Atslégvardi: pasazieru avioparvadajumi, prognozesana, visparinatais linearais modelis

Diana Santalova. Dzelzcelu kravu parvadajumu prognozéSana ES valstis uz vienindeksa
modela bazes, Computer Modelling and New Technologies, 11.sgj., Nr.1, 2007, 73.-83. lpp.

Saja raksta tiek apskatti regresijas modeli, kas apraksta dzelzcela kravu parvadajumus Eiropas
Savienibas dalibvalstis. Modeli satur tadus noteicoSus faktorus katrai valstij, ka: dzelzcelu liniju
garums, iekS§zemes kopprodukts uz vienu iedzivotaju cenu standartos utt. Visi aprékini tika veikti,
pamatojoties uz statistiskiem datiem, kas nemti no EUROSTAT YEARBOOK 2005 gadagramatas.
Tika salidzinatas divas novértéSanas pieejas: klasiskais linearais regresijas modelis un vienindeksa
modelis. Tika parbauditas hipotézes par pavadmainigo nenozimibu un regresijas modela korektumu
un tika pielietota krustveida-parbaudes pieeja. Izdarita analize paradija vienindeksa modela
neap$aubamas prieksrocibas.

Atslegvardi: kravu parvadajumi, prognozesana, vienindeksa modelis
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