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Editors’ Remarks 
 
 

 
The Paradox of Time 

By Henry Austin Dobson 
************************************************
Time goes, you say? Ah no! 
Alas, Time stays, we go; 
Or else, were this not so, 
What need to chain the hours, 
For Youth were always ours? 
Time goes, you say?- ah no! 

Ours is the eyes' deceit 
Of men whose flying feet 
Lead through some landscape low; 
We pass, and think we see 
The earth's fixed surface flee:- 
Alas, Time stays,- we go! 

Once in the days of old, 
Your locks were curling gold, 
And mine had shamed the crow. 
Now, in the self-same stage, 
We've reached the silver age; 
Time goes, you say?- ah no! 

 

Once, when my voice was strong, 
I filled the woods with song 
To praise your "rose" and "snow"; 
My bird, that sang, is dead; 
Where are your roses fled? 
Alas, Time stays,- we go! 

See, in what traversed ways, 
What backward Fate delays 
The hopes we used to know; 
Where are our old desires?- 
Ah, where those vanished fires? 
Time goes, you say?- ah no! 

How far, how far, O Sweet, 
The past behind our feet 
Lies in the even-glow! 
Now, on the forward way, 
Let us fold hands, and pray; 
Alas, Time stays,- we go! 

 

************************************************ 
 

Henry Austin Dobson (1840-1921) 

 
This 14th volume No.4 presents the special selection of articles of the International 

Symposium on Stochastic Models in Reliability Engineering, Life Sciences and Operations 
Management [SMRLO’10].  

Our journal policy is directed on the fundamental and applied sciences researches, 
which are the basement of a full-scale modelling in practice.      

This edition is the continuation of our publishing activities. We hope our journal will be 
interesting for research community, and we are open for collaboration both in research and 
publishing. This number continues the current 2010 year of our publishing work. We hope that 
journal’s contributors will consider the collaboration with the Editorial Board as useful and 
constructive.    
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GUEST EDITORS’ REMARKS 
 
This Special Issue is devoted to papers from the International Symposium on Stochastic 

Models in Reliability Engineering, Life Sciences and Operations Management [SMRLO’10].  
The Symposium was a continuation of the International Symposium on Stochastic Models in 
Reliability, Safety, Security and Logistics (SMRSSL'05) held in 2005 and also was held at  
the SCE-Shamoon College of Engineering, Beer Sheva, Israel on February 2010. 

 
The idea of the Symposium was to assemble researchers and practitioners from 

universities, institutions, industries, businesses and government, working in these fields. 
Theoretical issues and applied case-studies, presented on the symposium, were ranged from 
academic considerations to operational applications.  

 
Presenters come from more than thirty different countries all around the world: Bulgaria, 

Canada, China, Czech Republic, Cyprus, France, Germany, Greece, India, Ireland, Israel, Italia, 
Latvia, Lithuania,  Netherlands, Norway, U.K., Poland, Portugal, Romania, Russia, Serbia, 
Singapore, Slovakia, South Africa, Spain, Sweden, Switzerland, Taiwan, Turkey, Ukraine,  
and USA.  

 
One hundred and eighty five papers were accepted for presentation at the conference and 

publication in the Symposium Proceedings. Later on these articles were reviewed for possible 
extension and inclusion in the journal. Authors of nine of the articles were invited to submit 
their studies for publication in this Special Issue of Computer Modelling and New 
Technologies. 

 
We hope that this selection of papers will give an idea of the diversity of topics covered  

in the SMRLO’10. 
 

Prof. Zohar Laslo and Dr. Gregory Gurevich 
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RESIDUAL PARTIAL SUMS TECHNIQUES FOR FIXED DESIGNS 

TO FIND CHANGE-POINTS IN LINEAR REGRESSION 
 

W. Bischoff 
 

Catholic University Eichstätt-Ingolstadt,Faculty of Mathematics and Geography 
Ostenstr. 26–28, 85072 Eichstätt,Germany 

E-mail: wolfgang.bischoff@ku-eichstaett.de 
 
We investigate a data set describing the quality of a production process. By the information of these data it has to be decided 

whether the quality is constant or whether the quality changes. Our null hypothesis is that the quality is constant that is a linear 
regression. In practice it is popular to investigate the partial sums of the least squares residuals to look for changes in linear 
regression. The partial sums of the least squares residuals can be embedded into the class of continuous functions. By this procedure 
we obtain a stochastic process with continuous paths. It is called residual partial sum process. If the number of observations is large 
enough a projection of the Brownian motion can be considered as approximation (with respect to weak convergence) of the residual 
partial sum process. This projection of the Brownian motion can be used to establish non-parametric tests of Cramér-von Mises and 
Kolmogorov–Smirnov type to test for changes in linear regression. We use this procedure to test the data for constant quality. 

 
Keywords: residual partial sum limit processes, linear regression models, fixed designs, Brownian motion, projections of 

Brownian motion, reproducing kernel Hilbert space, change-point problem 

 
1. Introduction  
 

We investigate a data set from a company that provides car companies with toothed lock washers. 
The company has to guarantee the quality of each delivery of contract goods. For that at the end of  
the production process a sample of the goods is taken at equidistant time points to check the quality. 
Knowing the corresponding data the company has to decide whether the quality is constant or whether 
there is a change. The data of the company are shown on Figure 1 together with the least squares estimation 
of a constant function. 

 
 

Figure 1. Data to be checked for constant quality.  
The constant line is the least squares estimation of a constant quality 

 
More general we consider the problem whether a change of a regression occurs during the period 

of time (or in the experimental region) [0,1], say. To explain the problem in more detail, let the true 
regression model be given by  Y(t) = g(t) +ε (t), t ∈  [0,1], where g is the true but unknown regression 
function,ε (t) is a real random variable with expectation 0 and variance 2σ > 0. We are interested in 
testing whether the regression function g belongs to a linear regression model, i.e. whether there exist 
suitable constants 1, , dβ β ∈… R  such that g(t)= ],1,0[t),t(f i

d
1i i ∈∑ = β  where 1,..., :[0,1]df f → R  

are known functions. Hence, we look for a test of the hypothesis :H0 there is no change, that is:  

g=
1

d
T

i i
i

f fβ β
=

=∑ for some 1β ,…, dβ ∈R , (1) 

0,6 
 
0,5 
 
0,4 
 
0,3 
 
0,2 
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where f T = 1 1( , , ), ( , , )T
d df f β β β=… … , against the alternative K:  there is a change, that is there are 

no 1, , dβ β ∈… R ,such that 

g= i

d

i
i f∑

=1

β . (2) 

For that company it is important to know whether the quality keeps constant or is getting worse (or 
changing) during a certain period of time. Therefore we are interested in testing whether the mean of the 
quality of the production is constant, thus the null hypothesis is given by 
 

0 : ( ( ))H E Y t β= = 1 [ ]0,1 ( ) ,t β    [0,1],t β∈ ∈R  unknown constant, (3) 
 

where 1 [0,1]  is the function identical 1 on [0,1]. Hence, we have under 0H  the model 
 

( ) ( )Y t tβ ε= + = 1 [0,1] ( ) ( ),t tβ ε+    ]1,0[∈t . (4) 
 

In the literature on 'detecting change-points' in regression models, it is common to consider residual 
partial sums processes or variants of it; see for instance, Gardner [13], Brown, Durbin and Evans [12], 
Sen and Srivastava [23], Sen [22], Jandhyala and MacNeill [15], Jandhyala and MacNeill [16–18], 
Watson [26], Bischoff [1], Jandhyala, Zacks and El-Shaarawi [19], Jandhyala and Al-Saleh [14], Bischoff 
and Miller [10], Xie and MacNeill [27]. We follow the approach of MacNeill [20, 21] and Bischoff [2], 
who considered a (residual) partial sums process approach. It is worth noting that there is a related 
approach by empirical processes, see Stute [24] and the papers cited there. In those papers random 
designs are considered. As opposed to this the papers using partial sums take equidistant designs. 
Bischoff [1], however, investigates arbitrary fixed designs for the partial sums process approach.  

In Section 2 we give some assumptions and discuss preliminaries. Then in Section 3 the theoretical 
main result is stated, namely the limit of the residual partial sum process when the number of 
observations goes to infinity. This result can be used to build tests for change-points. It is worth 
mentioning that for this approach the distribution of the error does not have to be specified. Tests of 
Kolmogorov(–Smirnov) type based on that limit process are considered in detail in Section 4. Moreover, 
in Section 4 we apply these tests to the data discussed above. 
 
2. Preliminaries and Assumptions 
 

Let n0 be the number of observations. We assume that the data are taken at the equidistant design 
points 

0 0 0 00 0

1 2
1 2, , , 1.n n n nn nt t t= = =… These design points can be embedded in a triangular array of 

designs points: 1 2
1 2, , , 1,n n nnn nt t t n= = = ∈… ù. Given the true model ( )Y t  ( ) ( )g t tε= + , 

[0,1],t∈ we have a corresponding array of observations: 

( ) ( ) ,nj nj njY t g t ε= +   1 ,j n≤ ≤   n∈ù , (5) 

where nnn εε ,,1 …  are independent and identically distributed (iid) random variables with E ,0)( =njε  

Var .1)( 2 == σε nj  

Since our results keep true when 2σ  is replaced by a consistent estimator, we can put 2σ  1=  
without loss of generality.  

Putting ),,(: 1 nnnn tt …=τ  we define 
 

1( ) : ( ( ), , ( )) ,T
n n nnY Y t Y tτ = …  

1( ) : ( ( ), , ( )) ,T
n n nng g t g tτ = …  

1( ) : ( ( ), , ( )) ,T
i n i n i nnf f t f tτ = …      ,,,1 di …=  

1: ( , , )T
n n nnε ε ε= … , 
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then the triangular array of observations can be written by ,)()( nnn gY εττ +=    n∈ù. 

Let us consider the vector spaces )](,),([: 1 ⋅⋅= dffW …  and )](,),([: 1 ndn ffW
n

τττ …=  

spanned by the functions )(,),(1 ⋅⋅ dff … and by the vectors 1( ), , ( ),n d nf fτ τ…  respectively.  
The intrinsic test problem is 
 

)](,),([:)(: 10 ⋅⋅=∈⋅ dffWgH …    against   .)(: WgK ∉⋅  (6) 
 

Without assumptions on the smoothness of the unknown true regression function g we cannot 
decide the above test problem by a finite sample. Hence, without any assumption the above test problem 
is not well stated. We assume: 
 

]1,0[BVg ∈  , (7) 
 

i.e. g has bounded variation.  
Note, that this assumption is no restriction in practice. Hence, the known regression functions dff ,,1 …  
must belong also to BV[0,1]. Moreover, we assume 
 

]1,0[,,1 BVff d ∈… [0,1]C∩ , (8) 
 

where C[0,1] is the set of continuous functions on [0,1]. By our assumption on g we know that there is an 
*n ∈ù with 

n
Wg n ττ ∉)( for all *nn >  if .)( Wg ∉⋅  Therefore, if n is large enough, the original test 

problem can be decided by a test for )](,),([:)(: 10 ndnn ffWgH
n

τττ τ …=∈  against  

.)(:
n

WgK n ττ ∉  
 

Under the null hypothesis we have the linear model  
 

( ) ( ) ,T
n n nY fτ τ β ε= +    n∈ù , (9) 

 

where 1( ) ( ( ), , ( )) :T
n n d n nf f f Xτ τ τ= =…  is the design matrix. To state our results it is convenient 

to define the partial sums operator: : n
nT R ],1,0[C→  a 1( , , )T

na a= … nT6 (a)(z), ],1,0[∈z  
where 

nT (a)(z)
| |

[ ] 1
1

( [ ]) , [0,1].
nz

i nz
i

a nz nz a z+
=

= + − ∈∑  

Here we used =][s max{n∈ù }0| n s≤  and .00

1
=∑ =i ia  Let us define ,1 ii aab ++= …   

ni ,,1…= ,  then 1( ), ( , , )T
n nT a a a a= … , is shown in Figure 2. 

 
Figure 2. The function ))(( ⋅aTn  
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The stochastic process 1 ( )n nn
T ε  converges weakly to the Brownian motion B for ∞→n  by 

Donsker's Theorem. 
 
3. Residual Partial Sum Processes 
 

Let pr
nWτ

be the orthogonal projector onto 
n

Wτ in nR  with respect to the Euclidean inner product. 

Thus the least squares estimator for nX β  is given by ( )
nW npr Y
τ

τ and the vector of the corresponding 

least squares residuals by : ( ) ( ).
nn n W nr Y pr Y
τ

τ τ= −  

If the null-hypothesis 0H  is true, then we have 

1 1
( ) ( ) ( ) ( ( ) ) .

n n n

d d

n n W n i n i n W i n i n n W n
i i

r Y pr Y f pr f pr
τ τ τ

τ τ τ β ε τ β ε ε ε
= =

= − = + − + = −∑ ∑
 

We are interested in: 1 1( ) ( )
nn n n n W nn n

T r T pr
τ

ε ε= − for ∞→n  to be able to state a test with  

the help of the limit distribution. Note that we have not assumed any distribution for the error. To be able 
to state the following theoretical main result we need some further notation. Let )(2 λL  be the space of 

square integrable functions with respect to the Lebesgue measure λ . Then for each )(2 λLh∈   

the function 

[0, ]

( ) :hs hdλ
⋅

⋅ = ∫  is called signal. Let H 2{ | ( )}ks h L λ= ∈  be furnished with the inner 

product 
1 2
,h h H

s s =  .,
)(212]1,0[ 1 2 λ

λ
L

hhdhh =∫ Then we consider the linear subspace 

 

WH 
1

: [ ( ), , ( )]
df fs s= ⋅ ⋅…  in H 

 

and the projection 
HWpr  onto HW  in H which can be extended to a projection defined on C[0,1]. 

 
Theorem 1. (MacNeill [20, 21], Bischoff [2]).  
 

Let [ ] [ ]1, , 0,1 0,1 .df f BV C∈ ∩…  Then under the null hypothesis ‘ ],,[: 10 dffWgH …=∈ ’ we have  

−)((1
nn YT

n
τ ( ))

nW npr Y
τ

τ  converges weakly to .
HWB pr B−  

Moreover, let [0,1] \ ,g BV W∈  then for the sequence of alternatives 1 ( ),nn
g nτ ∈ù , we have  

1 1 1( ( ) ( ( ) ))
nn n n W n nT g pr g

n n nτ
τ ε τ ε+ − +  converges weakly to  

Hg W gs pr s B− + −  ,
HWpr B  where 0.

Hg W gs pr s− ≠  
 
The test problem stated in (6) can be transformed to the equivalent test problem 
 

0 : ( )g HH s W⋅ ∈  
1

: [ ( ), , ( )]
df fs s= ⋅ ⋅…  against : ( )g HK s W⋅ ∉ . 

 
Next, we consider the problem and the data discussed in Section 1. There we have 
 

1( ) ( )f t f t= = 1 [ ] [ ]0,1 ( ), 0,1 , [t t W∈ = 1 [ ]0,1 ( )], [
n

Wτ⋅ = 1 [ ]0,1 ( )],nτ  

1
[0, ]

( ) ( )f f
z

s z s z= = ∫ 1 [ ]0,1 ( )t   ( ) ,dt zλ =   [ ]0,1 ,z∈  WH [ ( )] [fs= ⋅ = id [ ]0,1 ( )].⋅  
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In this case we get the following limit process for the residual partial sum process under the null 
hypothesis g W∈ : 
 

( )B z − pr [ ]0( ) ( ) (1) : ( ), 0,1 ,
HW B z B z B z B z z= − = ∈  

 

where 0B  is the Brownian bridge. 

Under the alternative : ,K g W∉  however, we have to scale g with 1
n

  to get  
Hg W gs pr s−  0B+ as limit 

of the residual partial sum process with a signal 0
Hg W gs pr s− ≠ . Let nr  be the vector of the least 

squares residuals of the data discussed in Section 1 and shown on Figure 1. Then the path of the residual 
partial sums process 1

ˆ nn
T

σ ( nr ) is given in Figure 3. Here σ̂ is a consistent estimator for σ . 

 
4. Tests of Kolmogorov–Smirnov Type 
 

Let us consider our data again to check whether the quality is constant. Hence, we want to test by  
a size α  test, (0,1)α ∈ ,  
 

0 : [H g∈ 1 [ ]0,1 ( )] ,W⋅ =    against   : .K g W∉  (10) 

 
For that we take a two-sided test of Kolmogorov–Smirnov type based on the residual partial sum process: 

Reject [ ]0
10,1 : ( ( ) ( ))( ) [ ( ), ( )],

nn n W nH z T Y pr Y z z u z
n

τ τ⇔ ∃ ∈ − ∉ A  (11) 

where [ ], : 0,1u →A R  are chosen in such a way that 
 

[ ] 0( 0,1 : ( ) [ ( ), ( )]) .P z B z z u z α∃ ∈ ∉ =A  (12) 
 
Thus (11) is an asymptotic size α  test for (10) by Theorem 1.  
 
In many cases one is even more interested whether the quality is getting worse. For the quality problem 
we know that the greater the value the better the quality. Hence, we want to test by a size α  test, 

(0,1)α ∈ , 0 :H g  is constant   against   [ ]: 0,1K g BV∈  is decreasing and is not constant.   

For that we consider a one-sided test of Kolmogorov type based on the residual partial sum 
process: 

Reject [ ]0
10,1 : ( ( ) ( ))( ) ( ),

nn n W nH z T Y pr Y z u z
n

τ τ⇔ ∃ ∈ − ≥  (13) 

where [ ]: 0,1u∈ → R  is chosen in such a way that [ ] 0( 0,1 : ( ) ( )) .P z B z u z α∃ ∈ ≥ =  
 
Thus (13) is an asymptotic size α  test for (12) by Theorem 1. Note that the above form of the test is 
adequate for the problem to test for decreasing quality because in that case the mean of the residuals are 
decreasing. Then the signal 

HWs pr s−  of the residual partial sum process is a concave function with 

(s − )(0) ( )(1) 0,
H HW Wpr s s pr s= − =  where HW = [id [ ]0,1 ].  For the data of our quality problem we 

used a Kolmogorov test with constant boundary u. On Figure 3 is shown the residual partial sum process 
of the data together with the constant boundary u which corresponds to the size 0.01.α =  
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Figure 3. 1

ˆ
( )n nn

T r
σ

 for the data given in Figure 1 with the constant boundary u of the Kolmogorov test  

for the size 0.01α =  
 
Since 1

ˆ
( )n nn

T r
σ  crosses the boundary u for the size 0.01α =  we reject the null hypothesis at this 

significance level α . 
 
5. Further Results and Generalisations 
 

Finally, we cite some papers that considered related problems. In Bischoff [1] residual partial sum 
processes for not necessarily equidistant design points are established. Tang and MacNeill [25] 
determined residual partial sum processes for time series. Xie and MacNeill [27], Bischoff and Somayasa 
[11] investigated residual partial sum processes for a linear regression model with a multivariate 
experimental region. Bischoff and Gegg [3] considered residual partial sum processes with multivariate 
response. The power of the Kolmogorov(–Smirnov) test and the corresponding problem of boundary 
crossing probabilities of Gaussian processes is investigated in Bischoff et al. [6–9], Bischoff and 
Hashorva [4]. 
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A research is undertaken to justify the use of beta-distribution p.d.f. for man-machine type activities under random 

disturbances. The case of using one processor, i.e., a single resource unit, is examined. It can be proven theoretically that under 
certain realistic assumptions the random activity – time distribution satisfies the beta p.d.f. Changing more or less the implemented 
assumptions, we may alter to a certain extent the structure of the p.d.f. At the same time, its essential features (e.g. asymmetry, 
unimodality, etc.) remain unchanged. The outlined above research can be applied to semi-automated activities, where the presence 
of man-machine influence under random disturbances is, indeed, very essential. Those activities are likely to be considered in 
organization systems (e.g. in project management), but not in fully automated plants.  
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to a beta-distribution “family” 
 
1. Introduction 
 

In PERT analysis [1–24, etc.] the activity-time distribution is assumed to be a beta-distribution, 
and the mean value and variance of the activity time are estimated on the basis of the “optimistic”, “most 
likely” and “pessimistic” completion times, which are subjectively determined by an analyst. The creators 
of PERT [3, 17] worked out the basic concepts of PERT analysis, and suggested the estimates of  
the mean and variance values 
 

( )bm4a
6
1

++=μ , (1) 

 

( )22 ab
36
1

−=σ , (2) 

 

subject to the assumption that the probability density function (p.d.f.) of the activity time is 
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Here a  is the optimistic time, b  – the pessimistic time, and m  stands for the most likely (modal) 
time. 

Since in PERT applications parameters a  and b  of p.d.f. (3) are either known or subjectively 
determined, we can always transform the density function to a standard form, 
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Let p1 =−α , q1 =−β . Then p.d.f. (4) becomes 
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with the mean, variance and mode as follows: 
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From (6) and (9) it can be obtained 
 

( ) ( )
( ) ( ) ( ) ( )1m1pp xx1x

1q1p
2qpxf −−
++

++
=

ΓΓ
Γ . (10) 

 

Thus, value xm , being obtained from the analyst’s subjective knowledge, indicates the density 
function. On the basis of statistical analysis and some other intuitive arguments, the creators of PERT 
assumed that 4qp ≅+ . It is from that assertion that estimates (1) and (2) were finally obtained, 
according to (6–9). 

Although the basic concepts of PERT analysis have been worked out many years ago [3, 17], they 
are open till now to considerable criticism. Numerous attempts have been made to improve the main 
PERT assumptions for calculating the mean xμ  and variance 2

xσ  of the activity-time on the basis of the 
analyst’s subjective estimates. In recent years, a very sharp discussion [7, 10, 14, 21] has taken place in 
order to raise the level of theoretical justifications for estimates (1) and (2). 

Grubbs [12] pointed out the lack of theoretical justification and the unavoidable defects of the 
PERT statements, since estimates (1) and (2) are, indeed, “rough” and cannot be obtained from (3) on the 
basis of values a , m  and b  determined by the analyst. Moder [18–19] noted that there is a tendency to 
choose the most likely activity – time m  much closer to the optimistic value a  than to the pessimistic 
one, b , since the latter is usually difficult to determine and thus is taken conservatively large. Moreover, 
it is shown [8] that value m , being subjectively determined, has approximately one and the same relative 
location point in [ ]b,a  for different activities. This provides an opportunity to simplify the PERT 
analysis at the expense of some additional assumptions. McCrimmon and Ryavec [16], Lukaszewicz [15] 
and Welsh [22] examined various errors introduced by the PERT assumptions, and came to the 
conclusion that these errors may be as great as 33%. Murray [20] and Donaldson [4] suggested some 
modifications of the PERT analysis, but the main contradictions nevertheless remained. Farnum and 
Stanton [6] presented an interesting improvement of estimates (1) and (2) for cases when the modal value 
m  is close to the upper or lower limits of the distribution. This modification, however, makes the 
distribution law rather uncertain, and causes substantial difficulties to simulate the activity network. 

In this paper, a research will be undertaken to develop some theoretical justifications for using 
the beta-distribution p.d.f. 
 
2. The Operation’s Description 
 

We will consider a man-machine operation which is carried out by one processor, i.e., by one 
resource unit. The processor may be a machine, a proving ground, a department in a design office, etc. 

Assume that the operation starts to be processed at a pregiven moment 0T . The completion 
moment F  of the operation is a random value with distribution range [ ]21 T,T . Moment 1T  is the operation’s 
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completion moment on condition that the operation will be processed without breaks and without delays, 
i.e., value 1T  is a pregiven deterministic value. Assume, further, that the interval [ ]10 T,T  is subdivided 
into n  equal elementary periods with length ( ) nTT 01 − . If within the first elementary period 

( )[ ]nTTT,T 0100 −+  a break occurs, it causes a delay of length ( ) nTT 12 −=Δ . The operation  
stops to be processed within the period of delay in order to undertake necessary refinements, and  
later on proceeds functioning with the finishing time of the first elementary period 

( ) ( ) ( ) nTTTnTTnTTT 02012010 −+=−+−+ . 
It is assumed that there cannot be more than one break in each elementary period. The probability 

of a break at the very beginning of the operation is set to be p . However, in the course of carrying out 
the operation, the latter possesses certain features of self-adaptivity, as follows: 
• the occurrence of a break within a certain elementary period results in increasing the probability of  

a new break at the next period by value η , and 
• on the contrary, the absence of a break within a certain period decreases the probability of a new 

break within the next period, practically by the same value. 
 
3. The Concept of Self-Adaptivity 
 

The probabilistic self-adaptivity can be formalized as follows: 
Denote k

iA  the event of occurrence of a break within the ( )1i + -th elementary period, on 

condition, that within the i  preceding elementary periods k  breaks occurred, nik1 ≤≤≤ . It is assumed 
that relation 
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η
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=
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holds. Note that (11) is, indeed, a realistic assumption. 
Relation (11) enables obtaining an important assertion. Let ( )0

iAP  be the probability of the 
occurrence of a break within the ( )1i + -th period on condition, that there have been no breaks at all as 
yet. Since 
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it can be well-recognized that relation 
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holds. Thus, an assertion can be formulated as follows: 
 

Assertion.  Self-adaptivity (11) results in a probability law for delays with a constant ratio (13) 
for a single delay. 
 
4. Calculating the Activity-Time Distribution 
 

Let us calculate the probability n,mP  of obtaining m  delays within n  elementary periods, i.e.,  

the probability of completing the operation at the moment ( )1211 TT
n
mTmTF −+=⋅+= Δ . 

The number of sequences of n  elements with m  delays within the period [ ]F,T0  is equal m
nC , 

while the probability of each such sequence equals 
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Relation (14) stems from the fact that if breaks occurred within h  periods and did not occur 
within k  periods, the probability of the occurrence of the delay at the next period is equal 
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while the probability of the delay’s non-appearance at the next period satisfies 
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Using (14–16), we finally obtain 
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Note that  0=η , i.e., the absence of self-adaptivity, results in a regular binomial distribution. 
Let us now obtain the limit value n,mP  on condition that ∞→n .  From relation (17) we obtain 
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Denoting  xnm = ,  ( ) xxn1m Δ+=+ ,  yP n,m = ,  yyP n,1m Δ+=+ ,  via convergence  ∞→n  
or 0x →Δ  and, later on, by means of integration, we finally obtain 

( ) 11 x1xCy −− −= βα  .  (19) 
 

It can be well-recognized that the p.d.f. of random value 
n
mlim

n ∞→
=ξ  satisfies 

( ) ( ) ( ) 11 x1x
,B

1xp −− −= βα
ξ βα

 ,  (20) 

 

where ( )βα ,B  represents the Eiler’s function. Thus, relation (20) practically coincides with (10). 

Thus, ξ  is a random value with the beta-distribution activity – time p.d.f. By transforming 
( ) ( )abayx −−= , we obtain the well-known p.d.f. (3). 

 
Conclusions 
 

The following conclusions can be drawn from the study: 
• Under certain realistic assumptions we have proven theoretically that the activity-time distribution 

satisfies the beta-distribution with p.d.f. (3) being used in PERT analysis. 
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• Changing more or less the implemented assumptions, we may alter to a certain extent the structure of 
the p.d.f. At the same time, its essential features (e.g. asymmetry, unimodality, etc.) remain 
unchanged. 

• The outlined above research can be applied to semi-automated activities, where the presence of man-
machine influence under random disturbances is, indeed, very essential. Those activities are likely to 
be considered in organization systems (e.g. in project management), but not in fully automated plants. 
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In the given paper we investigate the problem of constructing continuous and unsteady mathematical models to determine  
the volumes of current stock of divisible productions using apparatus and equations of mathematical physics. It is assumed that time 
of production distribution and replenishment is continuous. The constructed models are stochastic, and have different levels of complexity, 
adequacy and application potentials. The simple models are constructed using the theory of ordinary differential equations, for 
construction of more complex models the theory of partial differential equations is applied. Furthermore for some of proposed models 
we have found an analytical solution in the closed form, and for some of proposed models the discretization is carried out using 
stable difference schemes.  
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1. Introduction 
 

One of the central problems of the inventory control theory is to find an optimal or quasi optimal 
solution to the task of ordering products to be supplied. Of no less interest it is the task of determining  
the current stock of certain products (sold by the piece or indivisible products and dry or divisible products) 
at any given moment of a fixed time span, with any random factors taken into account. By “current stock” 
we denote the quantity (volume) of the product accumulated in the stock, which is used for regular 
distribution / replenishment. Quite a lot of different types of models of varying complexity, purpose and 
adequacy have been developed in the inventory control theory. Most of the existing mathematical models 
in this theory consider indivisible products (for example, see [1–3]). We can classify these models taking 
in account their different properties: deterministic and stochastic, linear and nonlinear, single- and multi-product, 
discrete and continuous models, etc. [3]. 

The present paper studies construction of continuous and unsteady mathematical models for 
calculating the volume of current stock of divisible production “from scratch” using apparatus and 
equations of mathematical physics [4]. The suggested models are stochastic ones and have different levels 
of complexity, adequacy and application potentials. The simple models are constructed using the theory 
of ordinary differential equations, for construction of more complex models the theory of partial 
differential equations is applied.  
 
2. Construction of the Continuous Stochastic Model for Determining the Volume  

of the Current Stock of Homogeneous Divisible Production 
 

In the present section we construct the continuous stochastic mathematical model for determining 
the volume of current stock of divisible production. For this purpose, we will use the apparatus of 
mathematical physics and the continuum principle (for example, see [4]); as modelling language will be 
chosen language of ordinary differential equations (ODE). Before introducing the simplifying 
assumptions, which are required for modelling, as well as variables, parameters and functions that are 
describing and coupling the initial data of the simulated process with unknown quantities of the current 
stock dynamics, we will consider briefly the issue of stochasticity of the mathematical model under 
construction. Namely, to construct the stochastic model, we can proceed in the following two ways: 

– the current stock to be determined is not supposed to be an accidental quantity, but after  
the introduction of a change rate the constructed model is supplied with all random factors which visibly 
influence unknown rate of the current stock change. In this case the obtained relation (in the form of the above 
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mentioned ODE) with regard to unknown volume of the current stock and rate of its change is a functional 
relationship among unknown volume, rate of its change, and accidental factors influencing the current 
stock dynamics. In other words, in the obtained model, unknown volume, which initially did not seem to 
be assumed as an accidental value (stochastic value of a random function, to be more specific), due to  
the obtained ODE and corresponding conditions appears dependent on the random quantities taken into 
account, i.e. unknown volume of the current stock is a function of the accidental quantities; 

– the current stock is initially taken to be a random quantity, and this suggestion is taken into 
account when constructing the model.  

The first of these ways is selected for the description of the mathematical model that will follow.  
It is worth mentioning in the way of a preliminary note that this choice will result in the construction of  
a stochastic model represented by the Ito-type differential equation (for example, see [5] as well as works 
[6], [7], [8] on stochastic differential equations). 

Now we can start constructing the mathematical model “from the scratch”. Let us assume that  
the current stock volume of the considered homogeneous divisible production at the moment t  equals to 
( )x t . It is required that ( ) [ ] ( ) [ ], ; ,s e s ex t C T T x t t T T′∈ ∃ ∀ ∈ , where [ ],s eT T  is a segment of time during 

which the dynamics of the current stock change is being studied, by sT  and eT  we denote the initial and 

final moments of this period of time, respectively. The requirement ( ) [ ],s ex t C T T∈  is easy to interpret 

economically, and it is met if we assume that the current stock ( )x t  is being constantly 

distributed / replenished. The requirement ( ) [ ],s ex t t T T′∃ ∀ ∈  is a purely mathematical one, i.e. it is 
necessary to ensure a mathematical correctness of the model. 

If an increase of the current stock volume ( )x t  is as 

( ) ( ) ( ) , 0, ,
def

ex t x t t x t t t t TΔ ≡ + Δ − Δ > + Δ ≤  then  

( ) ( )
0

lim ,
t

dx t x t
dt tΔ →

Δ
≡

Δ
  (1) 

and this quantity designates the change rate of the current stock volume at a given time t . 

The rate ( )dx t
dt

 derived from (1) is completely analogous to the rate of a material point of continuous 

medium moving in metric space. It is then useful to find out the factors or reasons causing the change 

( )x t  and, consequently, trigger the existence of ( )dx t
dt

. 

With this aim in view, the following functions are introduced: ( )( ),S t x t  describing a continuous 

replenishment of the current stock and ( )( ),C t x t  describing a continuous distribution of the current stock. 

Then the difference ( )( ) ( )( ), ,S t x t C t x t−  is a measure of the change of the current stock volume, i.e. 

)).(,())(,()( txtCtxtS
dt

tdx
−=   (2) 

Let us work out the functions that make up the right side of the equation (2), namely functions 
( )( ),S t x t  and ( )( ),C t x t  in detail. The function of continuous replenishment ( )( ),S t x t  consists of three 

additive components, namely, from regulated replenishment of the stock, which is designated as ( ).regS i ; 

from unregulated replenishment ( ).unregS i ; and from random replenishment (for instance, a random stock 
replenishment due to an exceptionally high quality of productions or because of an expected sudden deficit 
of particular productions, etc.), which can be described mathematically as a random quantity ( )SX t  that 
designating the total volume of productions that have been delivered into a particular warehouse from 
random and/or non-random sources by the time t . It is assumed for all types of replenishment that all 
orders are instantaneously executed, i.e. the shipping time for particular supplies is not considered in  
the present work. Let us interpret the introduced functions: 



 
 

Applied Statictics and Operation Research 

 21

1) the function ( ).regS i  can be interpreted as “one hundred per cent” (guaranteed) constant 
replenishment of the current stock of divisible productions, i.e. replenishment of the current stock that 
takes place regularly according to a contract during the segment [ ],s eT T , with the volume of such 

replenishment being either constant (i.e. . .regS const≡ ) or depending on t  (i.e. being a function of  

the argument time ( ). .reg regS S t= , or else being functionally dependent on ( )x t  (i.e. ( )( ). . ,reg regS S t x t= ); 

2) the function ( ).unregS i  obviously depends on t  and functionally on ( )x t , and also on a certain 

quantity ( )0x t , which designates the minimal volume of stock in a particular warehouse necessary for 
administering unregulated stock replenishment on condition that such replenishment is guaranteed.  
In other words, ( ) ( )( ) ( ) ( ) ( )( ). . 0 0 0, , , ,unreg unregS S t x t x t k x t x t x tδ= = ⋅ ⋅  where 0k  is a proportion 

coefficient, and the function ( ) ( )( )0,x t x tδ  is an indicator function, which has the form 

( ) ( )( ) ( ) ( )
( ) ( )

0
0

0

1, ,
,

0, ;

if x t x t
x t x t

if x t x t
δ

≤⎧⎪= ⎨
>⎪⎩

 (3) 

3) the random quantity ( )SX t  determines the total volume of productions that was delivered into 
the warehouse by the time t  due to random circumstances from random and/or non-random sources. 
Then the quantity ( )SX t t+Δ  designates the sum total of all random deliveries by the time ,t dt+  where 

dt  is an elementary interval of time (on analogy with the terminology of mathematical physics), and 
0 1, edt t dt T< + ≤� . Consequently, it is possible to introduce a stochastic differential of a random 

process ( )SX t , namely, the quantity 

( ) ( ) ,
def

S S SdX dt X t dt X t≡ + −  

which determines a random addition to the current stock of divisible productions during the elementary 
interval of time dt . 

Now the function ( )( ),C t x t  that is contained in the right-hand side of the equation (2) and 
describes the dynamics of the continuous distribution of the current stock of divisible productions can be 
looked at in more detail. The function of continuous distribution ( )( ),C t x t  consists of three additive 

components, regulated distribution which is marked as ( ).regC i ; unregulated distribution ( ).unregC i , and 
random distributions (similar to random replenishment, there can be circumstances due to which random 
distribution takes place) that can be mathematically presented as a random quantity ( )CX t  designating 
the total volume of productions that was taken away from the warehouse by the time t  due to random 
circumstances. Let us now interpret the introduced functions. 

1) the function ( ).regC i  can be interpreted as “strong” (guaranteed) constant distribution of the current 
stock of divisible productions, i.e. the volume of the current stock that is regularly taken away from  
the warehouse according to contracts during the segment [ ],s eT T , with the volume of such distribution 

being either constant (i.e. . .regC const≡ ) or depending on t  (i.e. being a function of the argument time 

( ). .reg regC C t= , or else being functionally dependent on ( )x t  (i.e. ( )( ). . ,reg regC C t x t= ); 

2) the function ( ).unregC i  depends on the time t  and functionally on ( )x t  in general, as well as 

on a certain threshold function ( )1x t , which determines the stock volume of divisible productions 

allowing for its unregulated distribution, ( ) ( )( ). . 1, ,unreg unregC C t x t x t= . In order to find an analytical 

expression of the function ( ) ( )( ). 1, ,unregC t x t x t  the following assumptions can be made: 

under ( )x t →∞  must be ( ) ( )( ). 1 1, , ,unregC t x t x t k→  where the quantity 1k  is the capacity of distributing 
the stock volume of divisible productions from the warehouse in the sense that whatever the stock 
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replenishment (i.e. the quantity 
[ ]

( )( )
,

max ,
s et T T

S t x t
∈

, the warehouse can not possibly distribute the stock of 

divisible productions measured as 1k  during the entire considered time segment [ ],s eT T ; 

under ( ) 2x t k const→ ≡ , where 2k  is an averaged value of the replenishment volume that allows for 
unregulated distribution, must be  

( ) ( )( )
( )

( )

1 1

. 1 1
1 1

0, ,
, ,

, .
2

unreg

if x t k
C t x t x t k if x t k

⎧ ≥
⎪→ ⎨

<⎪⎩

 

The last two suppositions allow for determining unknown analytical form of the function 
( ) ( )( ). 1, ,unregC t x t x t : 

( ) ( )( ) ( ) ( ) ( )( )
( )

1
. 1 1

2

1 ,
, , ,unreg

x t x t
C t x t x t k x t

x t k
δ−

= ⋅ ⋅
+

 

where the indicator function ( ) ( )( )1,x t x tδ  has the same sense/value as in determining the function 

( ) ( )( ). 0, ,unregS t x t x t ; it is derive by formula (3) with the corresponding substitution of ( )1x t  for ( )0x t ; 

3) the random quantity ( )CX t  designates the total volume of productions that has been removed 

from the warehouse by the time t  due to random circumstances. Then ( )CX t t+ Δ  designates the sum 
total of random distribution by the time ,t dt+  where dt  is an elementary interval of time, with 
0 1, edt t dt T< + ≤� . It follows that a stochastic differential of a random process ( )CX t  can be 

introduced, namely the quantity ( ) ( ) ,
def

C C CdX dt X t dt X t≡ + −  which designates a random distribution 
of the current stock of divisible productions during the elementary interval of time dt . 

Thus, taking into account the above specification of functions ( )( ),S t x t  and ( )( ),C t x t   
the differential the equation (2) takes on form 

( ) ( )( ) ( ) ( ) ( )( ). 0 0, ,reg Sdx t S t x t dt k x t x t x t dt dXδ= + ⋅ ⋅ + −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

1 ,
.reg C

x t x t
C t dt k x t dt dX

x t k
δ−

− − ⋅ ⋅ −
+

  (4) 

The following initial condition (5) must be added to (4): 

( ) .
s

st T
x t x

=
=   (5) 

The obtained equation (4) is the stochastic differential equation with respect to unknown random 
volume ( )x t  of the current stock of divisible productions; and this equation together with the initial 

condition (5) constitutes the Cauchy problem for determine required volume ( )x t  of the current stock of 
divisible productions. 

It is significant that the summands SdX  and CdX  in the right-hand side of the equation (4) are not 
differentials in the usual sense; these summands must be understood in the sense of the Ito stochastic 
differential (see [7]). Besides, the indicator functions ( ) ( )( )0,x t x tδ  and ( ) ( )( )1,x t x tδ  in the right-
hand side of the equation (4), derived according to formula (3), are not differentiated functions, which is 
caused by non-differentiability of the functions ( )( ),S t x t  and ( )( ),C t x t . Consequently, the requirement 

( ) [ ],s ex t t T T′∃ ∀ ∈ , which was identified in the beginning of this section as a necessary condition for 
mathematical correctness of the model, will not be met. That is why in order to render a mathematical 
sense to the stochastic differential equation (4), it is necessary to introduce into is a corresponding 
amendment-condition. An easily realizable amendment might be substitution of the scalar functions 

( ) ( )( )0,x t x tδ  and ( ) ( )( )1,x t x tδ  by the corresponding quadratic functions (which are smooth functions) 
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on the sections ( )00, x t⎡ ⎤⎣ ⎦  and ( )10, x t⎡ ⎤⎣ ⎦ , respectively. Such substitution is easily performed on the ground 

of natural and apparent requirements 

( ) ( )( )
( )0 0

ˆ , 1;
x t

x t x tδ
=
=  ( ) ( )( )

( )1 0
ˆ , 1;

x t
x t x tδ

=
=  ( ) ( )( )

( ) ( )0
0

ˆ , 0;
x t x t

x t x tδ
=

=  ( ) ( )( )
( ) ( )1

1
ˆ , 0;

x t x t
x t x tδ

=
=  

( ) ( )( ) ( )
( )

( )
0

0 0
0

ˆ , ;
x t

x t x t dx t x tδ =∫  ( ) ( )( ) ( )
( )

( )
1

1 1
0

ˆ , ;
x t

x t x t dx t x tδ =∫  

and in the result the following differential functions are obtained: 

( ) ( )( ) ( ) ( ) ( ) ( )2
0 2

0 0

3 2ˆ , 1x t x t x t x t
x t x t

δ = − ⋅ + ⋅ +  when ( ) ( )00, ,x t x t∈⎡ ⎤⎣ ⎦   

( ) ( )( ) ( ) ( ) ( ) ( )2
1 2

1 1

3 2ˆ , 1x t x t x t x t
x t x t

δ = − ⋅ + ⋅ +  when ( ) ( )10, .x t x t∈ ⎡ ⎤⎣ ⎦  

It is obvious that other substitutions-approximations are possible (for instance, by splines, etc.), 
which in comparison to the described above approach, i.e. approximation of scalar functions 

( ) ( )( )0,x t x tδ  and ( ) ( )( )1,x t x tδ  by the corresponding smooth functions ( ) ( )( )0
ˆ ,x t x tδ  and 

( ) ( )( )1
ˆ ,x t x tδ  provide a higher level of precision. In this sense, there is certain ambiguity in 

determining the functions ( ) ( )( )0
ˆ ,x t x tδ  and ( ) ( )( )1

ˆ ,x t x tδ , and hence ambiguity of the right-hand 

side of the equation (4). Thus, instead of the differential equation (4) having no mathematical sense  
a mathematically correctly formulated differential equation can be written down: 

( ) ( )( ) ( ) ( ) ( )( ). 0 0
ˆ, ,reg Sdx t S t x t dt k x t x t x t dt dXδ= + ⋅ ⋅ + −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

ˆ1 ,
.reg C

x t x t
C t dt k x t dt dX

x t k
δ−

− − ⋅ ⋅ −
+

 

It is important to note the following with regard to the obtained stochastic differential equation.  
It is obvious that stochastic differentials of the random processes ( )SX t  and ( )CX t  can be conjoined if 

a random quantity ( )X t  designating the total volume of productions that were delivered to and distributed 

from, the warehouse by the time t due to random circumstances. Then we can indeed determine a stochastic 
differential of the random process ( )X t  as 

( ) ( )
def

dXdt X t dt X t≡ + − , 

and this quantity will determine the change dynamics of the random volume of the divisible productions’ 
stock during the elementary interval of time dt , namely 0dXdt >  designates a random replenishment of 
stock during the elementary interval of time dt , and 0dXdt <  designates a random distribution of stock 
during the elementary interval of time dt . With this specification in taken into account, the last 
differential equation takes the following final form: 

( ) ( )( ) ( ) ( ) ( )( ). 0 0
ˆ, ,regdx t S t x t dt k x t x t x t dtδ= + ⋅ ⋅ −  

( ) ( ) ( ) ( )( )
( )

1
. 1

2

ˆ1 ,
,reg

x t x t
C t dt k x t dt dX

x t k
δ−

− − ⋅ ⋅ +
+

  (6) 

where [ ],s et T T∈ , functions ( )( ). ,regS t x t , ( ).regC t  and ( ) ( )0,1ix t i = , as well as numerical parameters 

( )0,2ik i =  have the described above values and are viewed as the given initial data of the problem 

under consideration; the functions ( ) ( )( )0
ˆ ,x t x tδ  and ( ) ( )( )1

ˆ ,x t x tδ  are determined by the following 

formulas: 
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( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0 2
02

0 0

0, ,
ˆ , 3 2 1, ,

if x t x t
x t x t

x t x t if x t x t
x t x t

δ
⎧ >
⎪= ⎨− ⋅ + ⋅ + ≤⎪
⎩

  (7) 

( ) ( )( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 2
12

1 1

0, ,
ˆ , 3 2 1, .

if x t x t
x t x t

x t x t if x t x t
x t x t

δ
⎧ >
⎪= ⎨− ⋅ + ⋅ + ≤⎪
⎩

  (8) 

The stochastic differential equation (6) together with the initial condition (5), the initial given data 
( )( ). ,regS t x t , ( ).regC t  and ( )0,2ik i = , as well as approximating smooth indicator functions (7) and 

(8) is the Cauchy stochastic problem. It is a stochastic mathematical model for determining the current 
stock volume of divisible homogeneous production. Unfortunately, the given paper did not investigate  
the issue of finding an analytical solution of the constructed model (5)–(8). Nevertheless, as the following 
section will demonstrate, if we additionally require that the random process ( )X t  will be the Markov 
random process, then the constructed continuous model (5)–(8) can be easily realized numerically  
(see, for instance, [5]). 

Remark 1. Stochastic equation (6) shows that irrespective of the sign of the quantity ( )
s

s t T
x x t

=
=  

(i.e. irrespective of the initial condition (5)), unknown function ( )x t  can assume a negative value, which, 
at first sight, does not make any economic sense. But a possibility of such a case was purposefully taken 
into account prior to constructing mathematical model (5)–(8), and this case can be understood as a debt 
of the warehouse with regard to the current stock of divisible productions. Besides, a closer look at  
the left-hand side of the equation (6) (as well as the equations (2) and (4)), it becomes obvious that there 

can be a case when ( ) 0
dx t

dt
< , which means a negative rate if the quantity ( )dx t

dt
 is treated as the speed 

of a material point of the continuous medium in metric space, which has no physical sense. But if the 

quantity ( )dx t
dt

 in the considered problem designates the change rate of the volume ( )x t  of the current stock 

at the time [ ],s et T T∈ , then the case ( ) 0
dx t

dt
<  corresponds to the situation whereby the volume ( )x t  as 

a function of the time argument is a decreasing function, i.e. the accumulated stock of divisible 
productions in the warehouse is decreasing. 
 
3. Construction of Finite-Differenced Model for Determination of Random Volume 

of Divisible Homogeneous Production 
 

In this section we offer a finite-differenced approximation of the mathematical model (5)–(8) for 
determination of current stock volume of divisible homogeneous production, which was constructed in 
the previous section. Besides, given some assumptions, we put forward a recurrent implicit differenced 
scheme for numeric determination of the random volume of divisible homogeneous production at given 
discrete moments of time. 

Let us introduce a determinate (i.e. non-random) function 

( )( )
( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

. 0

3 20 0
. 0 02

0 0

, , ,
, 3 2, ,

regdef

reg

S t x t if x t x t
f t x t k kS t x t x t x t k x t if x t x t

x t x t

⎧ >
⎪

≡ −⋅ ⋅⎨
− ⋅ + ⋅ + ⋅ ≤⎪

⎩

 

( )( ) ( )
( ) ( ) ( )

( )( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

. 1 1
2

3 2
1 1

. 12
1 2 0 2

, , ,

3 2, , .

reg

reg

x t
C t x t k if x t x t

x t k

x t x tk kC t x t if x t x t
x t x t k x t x t k

⎧
+ ⋅ >⎪ +⎪−⎨

⋅ ⋅⎪ + ⋅ − ⋅ ≤⎪ + +⎩

  (9) 
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Then the stochastic equation (6) can be rewritten in a more compact way: 

( ) ( )( ) ( ), ,dx t f t x t dt dX t= +  (10) 

and this equation is a particular instantiation (namely, ( )( ) ( )( ) ( )( )1 2, , ; , 1f t x t f t x t f t x t≡ ≡ ) of a more 
general stochastic differential equation in the Ito form 

( ) ( )( ) ( )( ) ( )1 2, , ,dx t f t x t dt f t x t dX t= +   (11) 

where the functions ( )( ) ( ), 1, 2if t x t i =  are supposed to be non-random functions, the random process 

( )X t  the Markov random process ( )X t , and the quantity ( )dX t  is understood in the sense of a stochastic 

differential Markov random process ( )X t . 
Under the mentioned assumptions, the Ito stochastic differential equation (11) allows for the following 

interpretation: for the stochastic differential ( )dX t , which is contained in the right-hand side of  

the equation (11), the quantity ( )X t  can be understood as a realized random quantity which assumes  

the given value ( )x X t= ��  at the moment [ ],s et T T∈� . Moreover, due to the assumption that ( )X t  is  

the Markov process the random quantity ( )X t dt x+ = �� �  , where 0 1, edt t dt T< + ≤�� , has a density of 

probability ( ) ( ), ; ,x t x t dt xρ ρ= +� �� �� � � . Then, if randomness of t�  is taken into account, the above 

speculation holds for [ ],s et T T∀ ∈ , i.e. for random [ ],s et T T∈ , the random quantity ( )X t dt x+ = ��  

where 0 1, edt t dt T< + ≤� , is determined by the density of probabilities ( ) ( ), ; ,x t x t dt xρ ρ= +� �� � �  only 

if the random quantity ( )X t  assumed the concrete value x�  at the moment [ ],s et T T∈ , i.e. if ( )X t x= � . 
This interpretation of the Ito stochastic differential equation (11) allows for rewriting the equation (11) in 
the finite-difference approximation, namely 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

1 2

1 2

, ,

, , .

x t t x t f t x t t f t x t X t t X t

f t x t t f t x t X t t x

+ Δ − = ⋅Δ + ⋅ + Δ − =

= ⋅Δ + ⋅ + Δ − �
 

If we accept 

( ) ( )( ) ( ) ( )( )2 2, , ,x t f t x t X t f t x t x= ⋅ = ⋅ �  

then we obtain a recurrent correlation 

( ) ( )( ) ( )( ) ( )1 2, , ,x t t f t x t t f t x t X t t+ Δ = ⋅Δ + ⋅ + Δ  

which can be used for a discrete definition of the value of unknown function ( )x t . Indeed, if we break 

down the time segment [ ],s eT T  into N  elementary time spaces of the length ( )0, 1it i NΔ = −  we will 

obtain the discrete mesh 

( ){ }1 0
ˆ : 0, 1 , , ,

def

i i i i s N eT t t t t i N t T t T+≡ = +Δ = − = =  

and after designating 

( ) ,
def

i ix x t≡  ( ) ( )
( )( )2

,
,

def
i

i i
i i

x t
x X t

f t x t
≡ =�  

it is possible to write down the following recurrent implicit differenced scheme for determining  
the quantity ( )x t  numerically: 

( ) ( )1 1 2 1, , ,i i i i i i ix f t x t f t x x+ += ⋅Δ + ⋅ �   (12) 

where random quantities 1ix +�  are determined by the density of probabilities 
( ) 1

2

, ; ,
,
i

i i
i i

xt t x
f t x

ρ +

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

�� . 
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Remark 2. Mathematical model (5)–(8) constructed in the Section 2 can be solved analytically with the 
help of integrals of Stratonovich and Ito (see [7]) assuming a Markov nature of the random process ( )X t . If this 
assumption is not made (or can not be made due to specificity of the particular task of inventory control),  
the question of how to analytically integrate the stochastic differential equation (8) remains, unfortunately, 
still open, and as mentioned before research into this issue was not undertaken in the present paper. As shown in 
[8], though, with certain additional conditions but without assuming the Markov nature of the random 
process ( )X t  an effective approximation of a stochastic differential equation such as (11), particularly the 
equation (10), which is the equation (6) in the mathematical model (5)–(8) constructed in the Section 2. 

Remark 3. The constructed recurrent differenced scheme (12) together with the initial condition 
(5) is a finite differenced mathematical model for defining one of possible trajectories of the random 
quantity ( )x t , i.e. the constructed finite differenced model (12); (5) allows for defining approximate 

values of the quantity ( )x t  at the moments of time ( )1 0: 0, 1 , , .i i i i s Nt t t t i N t T t T+ = +Δ = − = =   

 
4. Stochastic Continuous Models for Defining Volumes of Current Stock of Divisible 

Productions at Several Interconnected Warehouses Simultaneously 
 

The present section suggests two stochastic continuous mathematical models for defining volumes 
of current stock of divisible homogeneous and heterogeneous production at several interconnected warehouses 
simultaneously. For achieving this aim, similarly to the Section 2, apparatus of mathematical physics is used 
and principle of continuous medium, the language of the theory of partial differential equations is chosen 
as a modelling language. Because of paper’s space limitations there is, unfortunately, no opportunity to present 
the entire chain of argumentation and all calculations related to constructing these models “from scratch”; 
they are only mathematically represented in what follows, with minimal explanation. 

So, m∈`  warehouses are under consideration, and it is assumed that dynamics of the volume of 
divisible homogeneous production in all m  warehouses is subject to the stochastic differential equation 
(6) which was obtained in the Section 2. For the stochastic differential ( )dX t  that is contained in the right-hand 

side of the equation (6), the quantity ( )X t  will be viewed as a realized random quantity which assumed 

the given value ( )x X t=�  at the time [ ],s et T T∈ , i.e. the given warehouse has the volume of divisible 

homogeneous production ( )x x t=�  at the fixed time [ ],s et T T∈ ; as the course of constructing equation 
(6) shows, this volume can comprise both determined and random constituent volumes. Then the random 
quantity ( )X t dt x+ = �� , where 0 1, edt t dt T< + ≤� , designates a random volume of homogeneous 
production in a particular warehouse at the moment t dt+  under the condition that the volume x�  of 
homogeneous production was present in this very warehouse at the previous moment t . Consequently, it 
can be said that the random quantity ( )X t dt+  has the density of probability ( ) ( ), ; , .x t x t dt xρ ρ= +� �� � �  

Since the continuous mathematical model (5)–(8) constructed in the Section 2 assumed the existence 
of one warehouse where there was volume ( ) ,

s
s t T

x x t
=

=  of divisible homogeneous foods at the initial 

moment of time st T= , for m  interconnected warehouses there are obviously m  initial conditions 
{ } ( ) { } , 1, ,

s

i i
st T

x t x i m
=

= =  where { } ( )ix t  designates a random volume of the divisible homogeneous 

production in an i -warehouse at the time [ ],s et T T∈ . That is why once these random initial volumes 
{ } , 1,i
sx i m=  were distributed on the axis OX  of the Cartesian rectangular system of coordinates, these 

irregularly distributed initial volumes can be mentally identified with the distribution of the warehouses 
on the axis OX . This identification allows for constructing the required mathematical model. It is worth 
mentioning here that topology of the imagined distribution of warehouses on the axis OX  does not have 
to match the typology of distributing initial quantities-volumes { } , 1,i

sx i m= ; this is natural and obvious. 
After the above mentioned identification we have a certain set of interconnected warehouses 

(SIW), and we can construct a mathematical model for establishing the dynamics of random volumes of 
divisible homogeneous production in this SIW ignoring the dynamics of a random volume of divisible 
homogeneous production in any individual warehouse. 
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Let us consider a relatively short segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦  of the length ( )x tΔ  and introduce 

the functional ( )( ),t x tΔΨ  of the function- volume ( )x t  which describes the number of elements SIW 

that can be found in the segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦ . In other words, ( )( ),t x tΔΨ  is the number of 

warehouses distributed on a short segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦  of the length ( )x tΔ . 

Then ( )( )
( )
,t x t

x t
ΔΨ

Δ
 can be treated as probability of the warehouse with the volume ( )x t  of productions 

being on the segment ( ) ( ) ( ),x t x t x t+ Δ⎡ ⎤⎣ ⎦ . Consequently, we can move over to the limit with 

( ) 0x tΔ →  and define a new function 

( )( )
( )

( )( )
( )0

,
, lim ,

def

x t

t x t
p t x t

x tΔ →

ΔΨ
≡

Δ
 

which is the density of distribution of warehouses according to random volumes ( )x t  of divisible 
homogeneous production. Then the function 

( ) ( )( ) ( )
2

1

,
xdef

x

t p t x t dx tΨ ≡ ∫  

designates the number of warehouses with random volumes ( ) ( ) ( )1 2,x t x t x t∈ ⎡ ⎤⎣ ⎦  at the time moment 

[ ],s et T T∈ . 
It is easily seen that 

( ) ( )( ) ( ); , 1.
e

s

T

T

t dt m p t x t dx t
+∞

−∞

Ψ ≡ ≡∫ ∫  

Now the density of distribution ( )( ),p t x t  of warehouses according to random volumes ( )x t  of 
divisible homogeneous production is defined, and we can establish the law of distributing warehouses 
according to random volumes, i.e. to find out the rule that governs the change of the function ( )( ),p t x t . 

For this, the axis OX  is divided into two parts, an arbitrary segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  and the view of this 

segment, i.e. the domain ( )( ) ( )( )1 2, ,x t x t−∞ +∞∪ . As random volumes of productions in warehouses 
change with the course of time, it will mean in our case that warehouses will be moving along the axis 
OX  in this course of time. This, in turn, means that during the segment of time [ ] [ ]1 2 1 2, , , ,s et t t t T T∀ ∈  
a certain number of warehouses will have random volumes of divisible homogeneous productions that are 
no bigger than ( )1x t  and no less than ( )2x t , i.e. some warehouses will be located in the segment 

( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  whereas their remaining number will be outside this segment, or in the domain 

( )( ) ( )( )1 2, ,x t x t−∞ +∞∪ . Thus it will be quite correct if the equation of balance of warehouses for  

the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in the segment of time [ ]1 2,t t  is presented in the following way (on analogy 

with a widely known approach in mathematical physics whereby mathematical models are constructed for 
heat conductivity, waves, diffusion, radiation, and other physical processes): 

( ) ( ) ( ) { } { }1 2
1 2 2 1, ,

def

t t t tΔΨ ≡ Ψ −Ψ = Ψ +Ψ   (13) 

where { }1Ψ  is the number of warehouses located in the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in the segment of time 

[ ]1 2,t t  due to non-random replenishments and distributions of divisible homogeneous productions; { }2Ψ  

is the number of warehouses located in the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦  in the segment of time [ ]1 2,t t  due to 

random replenishments and distributions of divisible homogeneous production; and the function 
( )1 2,t tΔΨ  in the left-hand side of (16) is calculated according to the formula 
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( ) ( ) ( ) ( ) ( )
2 2

1 1

1 2 2 1 2 1, , ,
x xdef

x x

t t t t p t x dx p t x dxΔΨ ≡ Ψ −Ψ = − =∫ ∫   

( )( ) ( )( )2 2 2
2

1
1 1 1

,
, .

x x t
t t

t t
x x t

p t x t
p t x t dx dx dt

t
=

=

∂
= =

∂∫ ∫ ∫   (14) 

It is obvious that the quantities { } ( )1, 2i iΨ =  can be negative, and this is then treated as a removal of 

warehouses from the segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦ . The final formulas for the functions { }1Ψ  and { }2Ψ  are 

given below without conclusion (there is an elegant conclusion which is not given here due to the space 
constraints): 

{ } ( )( ) ( )( ) ( )( ) ( )( ){ }
2

1

1
1 1 2 2, , , ,

t

t

p t x t t x t p t x t t x t dtϑ ϑΨ = ⋅ − ⋅ =∫  

( ) ( )( ) ( )( )( ) ( )
2 2

1 1

, , ,
t x

t x

dt p t x t t x t dx t
x t

ϑ∂
= ⋅

∂∫ ∫  (15) 

{ } ( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )
2 2

1 1

2
2

2

1, , , , ,
2

t x

t x

dt a x t t p t x t b x t t p t x t dx t
x x

⎧ ⎫∂ ∂
Ψ = − ⋅ + ⋅ ⋅⎨ ⎬∂ ∂⎩ ⎭

∫ ∫  (16) 

where the function ( ), ; ,z s x tρ  is a transitional function of the probability density of a diffusion 

stochastic process ( )X t  (for instance, see [9], [10]); the function ( )( ),t x tϑ  designates the change rate 

of the random volume ( )x t  of the current stock of divisible homogeneous production in the set of 

interconnected warehouses (SIW) at the time t , and is determined by the stochastic equation 

( )( ) ( ) ( )( ) ( )( ), , , ,
dx t

t x t S t x t C t x t
dt

ϑ = = −  

where the functions ( )( ),S t x t  and ( )( ),C t x t  have the same values as mentioned in the Section 2.  

The functions ( )( ),a x t t  and ( )( ),b x t t  are calculated by the formulas 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

( )1

0

1, lim , ; ,   0, ,
t

x t z t

a t x t x t z t x t t z t t t dz t z
t ε

ρ ε
Δ →

− ≤

= ⋅ − ⋅ + Δ ∀ > ∀ ∈
Δ ∫ \  

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )

( )2 1

0

1, lim , ; ,   0, .
t

x t z t

b t x t x t z t x t t z t t t dz t z
t ε

ρ ε
Δ →

− ≤

= ⋅ − ⋅ + Δ ∀ > ∀ ∈
Δ ∫ \  

Taking into account expressions (14)–(16) in formula (13), the following equation is obtained: 

( )( )
( ) ( )( ) ( )( )( ) ( )

( )

2 2 2 2

1 1 1 1

,
, ,

x t t x

x t t x t

p t x t
dx dt dt p t x t t x t dx t

t x t
ϑ

∂ ∂
= ⋅ +

∂ ∂∫ ∫ ∫ ∫  

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )
2 2

1 1

2

2

1, , , , ,
2

t x

t x

dt a t x t p t x t b t x t p t x t dx t
x x

⎧ ⎫∂ ∂
+ − ⋅ + ⋅ ⋅⎨ ⎬∂ ∂⎩ ⎭
∫ ∫   

which due to arbitrariness of the selected volume segment ( ) ( )1 2,x t x t⎡ ⎤⎣ ⎦ , arbitrariness of the selected 

time segment [ ]1 2,t t , and in accordance with the First Mean Value Theorem (use of this theorem here is 

quite rightful because all its requirements are met) can be written in the following way: 

( )( ) ( )( ) ( )( ) ( )( )( ) ( )( ) ( )( )( )
2

2

, 1, , , , , .
2

p t x t
a t x t t x t p t x t b t x t p t x t

t x x
ϑ

∂ ∂ ∂⎡ ⎤= − + ⋅ + ⋅ ⋅⎣ ⎦∂ ∂ ∂
  (17) 
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The resulting stochastic equation (17) is the parabolic type particular differential equation, and 
together with the above mentioned functions ( )( ), 0a t x t ≡ , ( )( ), 0b t x t ≡  and ( )( ),t x tϑ , as well as 
corresponding initial and boundary conditions (for instance, the Newton type boundary conditions, or 
Neumann boundary conditions, or non-located boundary conditions) it makes the required mathematical 
model for determining unknown density of distribution ( )( ),p t x t  of exactly m∈`  warehouses 

according to random volumes ( )x t  of divisible homogeneous production. It is not difficult to see that 
 the equation (17) is a particular case of the widely known Kolmogorov’s equation for the Markov 
stochastic process ( )X t  with a transition function of the density of probability ( ), ; , .z s x tρ  

The next stochastic continuous model (with the Dirichlet boundary conditions) is an informal 
generalization (the corresponding conclusion is rather complex and therefore not presented in the given 
article) of the above mentioned model: it describes the dynamics of unknown density of distribution 

( ) ( )( )1, ,..., np t x t x t  of exactly m∈`  warehouses according to random volumes ( ) ( ) ( )( )1 ,..., nx t x t x t=  
of divisible n∈`  heterogeneous products 
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1 1 1
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2

n n n

ij i i
i j ii j i
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= = =
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1 1 1

0
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{ } ( ) { } ( )2

2 2 1

0
, , 1, ,

i i
i ix t l

p t x t p t l i n
= −

= ∈ =\  

where ( ) ( ) ( )( ) { } { }1 2
1

1

,..., ,
n

n i i
i

x t x t x t l l
=

⎡ ⎤= ∈ ⎣ ⎦∪ , the function ( ) ( )1,ix t i n=  describes the random 

volume of i -th divisible product at the time moment [ ],s et T T∈ ; the function ( )( ),i t x tϑ  describes  

the change rate of the random volume ( )ix t  of the current stock of i -th divisible product in the set 

m∈`  of interconnected warehouses at the time moment t ; the functions ( )( ) ( ), 1,ia x t t i n=  and 

( )( ) ( ), 1, ; 1,ijb t x t i n j n= =  are calculated according to the formulas 

( )( ) ( ) ( )( ) ( ) ( ) ( )
( )( )

1 10

1, lim , ; , ... ,i i it
B z t

a t x t x t z t x t z t t dz t dz t
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ρ
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= ⋅ − ⋅ + Δ
Δ ∫  
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1 10

1, lim ... ,ij i i j jt
B z t

b t x t x t z t x t z t dz t dz t
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ε
Δ →

= ⋅ − ⋅ − ⋅
Δ ∫  

where the function ( ) ( ) ( ) ( ) ( )( )1 1, ; , ,..., , ; ,..., ,
def

n nx t z t t x t x t t z t z t t tρ ρ+ Δ ≡ + Δ  is a transition 

function of the density of probabilities of the diffusion stochastic process ( ) ( ) ( )( )1 ,...,
def

nX t X t X t≡   
(for example, see [9–10] and the lists of corresponding literature in them), and 

( )( ) ( ) ( ) ( ){ }: n

def

B z t x t x t z tε ε≡ − ≤
\

 is the closed ε -neighbourhood of the point. 

 
Conclusions 
 

• In the given work the stochastic continuous mathematical models for determining the random 
volumes of current stock of both homogeneous and heterogeneous divisible production in one  
or several interconnected warehouses are constructed. The constructed models can be used for 
on-line monitoring of the dynamics of the productions random volumes. 

• In future research the authors intend to investigate the questions of the constructed mathematical 
models solvability, finding the minimal sufficient conditions to ensure the uniqueness of their 
solutions, as well as the development of the analytical and stable numerical methods for finding 
the solutions of the constructed mathematical models. 
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In this article, we show that well known entropy-based tests are a product of empirical likelihood ratio. This approach yields 
stable definitions of entropy-based statistics for goodness-of fit tests and provides a simple development of two-sample tests based 
on samples entropy that have not been presented in the literature. We introduce the distribution-free density-based likelihood 
techniques, applied to test for goodness-of-fit. In addition, we propose and examine nonparametric two-sample likelihood ratio tests 
for the case-control study based on samples entropy. The Monte Carlo simulation study indicates that the proposed tests compare 
favourably with the standard procedures, for a wide range of null/alternative distributions.  

 
Keywords: empirical likelihood, entropy, goodness-of-fit tests, two-sample nonparametric tests, case-control study  

 
1. Introduction 
 

The likelihood approach is a powerful and widely-used tool for parametric statistical inference.  
As an example, consider the simple hypothesis testing problem where given a sample of k  independent 
identically distributed observations kXX ,...,1 , we want to test the hypothesis 

010 ~,...,X : FXH k   versus  111 ~,...,X : FXH k , (1) 

where 0F  and 1F  are some distributions with density functions ( )xf0  and ( )xf1 , respectively.  
By virtue of the Neyman–Pearson Lemma, the most powerful test-statistic for (1) is the likelihood 
ratio 

( )

( )∏

∏

=

=
k

i
i

k

i
i

Xf

Xf

1
0

1
1

, (2) 

where density functions ( )xf0  and ( )xf1  are assumed to be completely known. However, if the alternative 
distribution 1F  is not known, the hypotheses (1) define a goodness-of-fit problem. For this situation, to 
use the likelihood ratio statistic one need to estimate a likelihood function in numerator of (2). There has 
been much recent development of various empirical likelihood type approximations to parametric 
likelihood functions. The empirical likelihood (EL) method based on empirical distributions has been 

dealt with extensively in the literature (e.g., Owen [7]). The EL function has the form of ∏
=

=
k

i
ip pL

1
, 

where the components ip , ki ,...,1=  maximize the likelihood pL , satisfying empirical constraints  
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(e.g., 1
1

=∑
=

k

i
ip  and 0

1
=∑

=

k

i
ii Xp ). Computation of ip , ki ,...,1=  is based on a simple exercise in Lagrange 

multipliers (for details, see Owen [7]). This nonparametric approach is a result of consideration of  

the ‘distribution functions’-based likelihood ( ) ( )( )∏
=

−−
k

i
ii XFXF

1

 over all distribution functions F . 

Taking into account that the Neyman–Pearson Lemma operates under ‘density functions’-based 
forms of likelihood functions, Vexler and Gurevich [11] applied the main idea of the EL technique 

to construct density-based empirical estimation of the parametric likelihood ( )∏
=

=
k

i
if XfL

1
, where 

( )xf  is a density function. They considered the likelihood function fL  in the form of 

( ) ( )( ) ∏∏∏
===

===
k

i
i

k

i
i

k

i
if fXfXfL

111
, where ( ) )( ii Xff = , and )()2()1( kXXX ≤≤≤ …  are the 

order statistics derived from kXX ,,1 … . The estimators of if , ki ,,1…=  that maximize fL  and 

satisfy some empirical constrains have the following form: ( ) ( )( )( )mimii XXkmf −+ −= /2 , ki ,,1…= . 

Therefore, the maximum EL method applied to (2) with known ( )xf0  and unknown ( )xf1  forms  
the test-statistic 

( ) ( )( )
( )∏

∏

=

= −+ −
= k

i
i
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i mimi
mk

Xf

XXk
m

T

1
0

1

2

. (3) 

Note that ( ) ( )( )( ) ( )kmkHXXkm
k

i
mimi ,/2log

1
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−∏

=
−+ , where 

( ) ( ) ( )( )( )∑
=

−+
− −=

k

i
mimi mXXkkkmH

1

1 2/log,  was presented by Vasicek [10], as an estimator of  

the entropy of the density ( )xf , for some 2/km < , i.e., the statistic ( )kmH ,  estimates 

( ) ( )( )( ) ( ) ( )( ) ( )∫∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−=−= −

+∞

∞−

1

0

1
1 logloglog dppF

dp
ddxxfxfXfEfH . The power of the tests based 

on the statistic mkT  strongly depends on values of m  and this restricts applicability of (3)-type  
test-statistics to real-data problems. Dealing with this problem and reconsidering their empirical 
constraints for density functions, Vexler and Gurevich [11] proposed the statistic 

( ) ( )( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
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== −+<≤ −

k

i
i

k

i mimikm
k Xf

XXk
mT

1
0

11

* /2min
1 δ

 as a modification of the entropy based statistic mkT . 

Considering the problem (1) where, under the alternative hypothesis, )(1 xf  is completely unknown, 
whereas, under the null hypothesis, ( )θ;)( 00 xfxf =  is known up to the vector of parameters 

( )dθθ ,...,1=θ  (here, 1≥d  defines a dimension of the vector θ ), they proposed the statistic 

( ) ( )( )
( )∏

∏

=

= −+

<≤

−
=

− k

i
i

k

i mimi

km
k

Xf

XXk
m

G

1
0

1

1 ˆ,

2

min
1

θ
δ

, (4) 

where 10 << δ  and θ̂  estimates θ  (e.g., θ̂  is the maximum likelihood estimator of θ ). They also 
proved that if some general conditions are satisfied for density functions )(0 xf , )(1 xf  and  
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for the estimator θ̂ , then under 0H , ( ) 0log1 ⎯→⎯− P
kGk , while, under 1H , 

( ) ( )
( ) 0

;
loglog

10

111 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎯→⎯−

aXf
XfEGk P

k , where ( )daa ,...,1=a  is a vector with finite components, as 

∞→k . That is, with a test-threshold C  related to the type I error ( )CGP kH >= )log(sup
0

θ
α  in mind, 

( )( ) 1log
1

⎯⎯ →⎯> ∞→nkH CGP . That means that a test based on the statistic kG  has the asymptotic power 
one, i.e., is a consistent test.  
 
2. Empirical Likelihood Ratio Tests for Uniformity and Normality  
 
2.1. Test for Uniformity 
 

Consider a problem (1), where ( )1,00 UnifF = , 1F  is an unknown distribution with a finite 
variance and continuous density function )(1 xf  concentrated on the interval [0,1]. In accordance with 

(4), the suggested test is: reject 0H  if  

( ) ( )( ) C
XXk

mk

i mimikm
>

−∏
= −+<≤ −
11

2min
1 δ

, (5) 

where 10 << δ , C  is a test-threshold. 

Note that the statistic 
( ) ( )( )∏

= −+ −
=

k

i mimi
mk XXk

mU
1

2
 with a fixed 2/nm <  was considered by 

Dudewicz and van der Meulen [4] as a test-statistic of the entropy-based test for uniformity. This test is  
a very efficient decision rule provided that optimal values of m , subject to )(1 xf  and k , are applied to 
the statistic mkU  (Dudewicz and van der Meulen [4]). In practice, since )(1 xf  is completely unknown, 
we risk choosing m  that leads to a mkU -based test having the power that is lower than that of other 
known tests for uniformity (e.g., Zhang [12]). In contrast to this, a Monte Carlo study, presented by 
Vexler and Gurevich [11], demonstrates that, in many cases, the test (5) provides the power that is close 
to the power of mkU -based tests with optimal m 's, calculated empirically.  

Test-threshold C  for the test (5) can be obtained exactly or approximately by simulations from  

the equation ( ) ( )( )( ) α
δ

=
⎭
⎬
⎫

⎩
⎨
⎧

>⎟⎟
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CXXkmP
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i
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km
UnifXX k

11
)1,0(~,, /2minlog

11 … , for each desired 

significance level α . 
In accordance with the asymptotic properties of the statistic (4), presented in Section 1, the test (5) 

is consistent as ∞→k . 
 

2.2. Test for Composite Hypothesis of Normality 
 

Consider a problem (1), where 0F  is a normal distribution with unknown expectation μ  and 

variance 2σ , ( )2
0 ,σμNormF = , 1F  is an unknown distribution with a finite variance and continuous 

density function )(1 xf . In accordance with (4), the suggested test is: reject 0H  if 

( )
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XXk
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where 10 <<δ , ∑ ∑
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, C  is a test-threshold. 
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Note that the statistic ( ) ( ) ( )( )( )∏
=

−+ −=
k

i
mimi

k
mk XXkmesN

1

2/2 /22π  is known, for 2/nm < , to 

be an efficient test statistic based on sample entropy (e.g., Vasicek [10], Arizono and Ohta [1]; Park and 
Park [8]). The tests for normality based on sample entropy are exponential rate optimal procedures 
(Tusnady [9]). This agrees with the fact that commonly likelihood ratio tests have optimal statistical 
properties and likelihood ratio type decision rules are simple in applications. The power of the test based 
on statistic mkN  strongly depends on values of m . Assuming information regarding the distribution 
functions of the alternative hypothesis, Monte Carlo simulation results, published in the relevant 
literature, point out values of m  (subject to k ) that provide high levels of the power of the test based on 

mkN . However, since )(1 xf  is completely unknown, we risk choosing m  that leads to a mkN -based test 
having the power that is lower than that of other known tests for normality (e.g., Vexler and Gurevich [11]).  
In this sense, the main advantage of the proposed test (6) for normality is that his statistic is not depend on 
unknown parameters (following Vexler and Gurevich [11], we recommend the value of 5.0=δ  in 
definition of (6)). 

Since, under 0H , the statistic of the proposed test (6) does not depend on values of μ  and 2σ , 
the test-threshold C  for this test can be obtained exactly or approximately by simulations from  

the equation ( ) ( ) ( )( )( ) απ
δ

=
⎭
⎬
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1
)1,0(~,, /22minlog

11 … , for each 

desired significance level α .  
In accordance with the asymptotic properties of the statistic (4), presented in Section 1, the test (6) 

is consistent as ∞→k . 
 

3. The Proposed Two-Sample Empirical Likelihood Ratio Test for the Case-Control Study 
 

In this section, we consider independent samples of sizes n  and k  from two populations.  
The data-points in each sample are independent and identically distributed. Let nXX ,...,1  present a control 
sample from distribution XF  with a density function ( )xf X , and kYY ,...,1  be a case sample from 
distribution YF  with a density function ( )yfY . We want to test the null hypothesis  

00 : FFFH XY ==  versus 01 : FFFH XY =≠ , (7) 

where distributions XFF =0  and YF  are completely unknown. In the context of (7), the likelihood ratio 
test statistic is  
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11 , (8) 

where ( )( ) ( )( ) ( )( )iXiYii YfYfYhh /== , and )()2()1( kYYY ≤≤≤ …  are the order statistics based on  

the observations kYY ,,1 … . (One can present hff XY = , where XY ffh /= , and hence h  can be 
considered as an unknown function under 1H .) Following the maximum EL methodology presented by 
Vexler and Gurevich [11], we find that values of ih , ki ,,1…=  that maximize (8), satisfying some 

empirical constraints caused by the equation ( ) ( ) ( ) 1== ∫∫
+∞

∞−

+∞

∞−

duuhufduuf XY  are 

( )( ) ( )( )( )( )mjXnmjXnj YFYFkmh −+ −= /2 , kj ,...,1= , where ( ) ( )∑
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− ≤=
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i
iXn xXInxF

1

1  is the empirical 

distribution function ( ( )⋅I  is the indicator function). Here ( ) ( )1YY j = , if 1≤j , and ( ) ( )kj YY = ,  
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if kj ≥ . Therefore, the maximum EL method yields the entropy-based test-statistic 

( )( ) ( )( )( )[ ]∏
=

−+ −
k

j
mjXnmjXn YFYFkm

1
/2 . Finally, utilizing arguments of Section 1, we suggest the test-statistic  

( )( ) ( )( )( )∏
= −+<≤ −

=
−

k

j mjXnmjXnkm
nk YFYFk

mV
11

2min
1 δ

, 10 << δ  (9) 

for the case-control problem (7). 

The proposed test is to reject the null hypothesis of (7) if 

( ) CVnk >log , (10) 

where C  is a test-threshold. (Similarly to Canner [3], we will arbitrarily define 
( ) ( ) ( )knyFxF XnXn +=− /1 , if ( ) ( )yFxF XnXn = .)  

Significance level of the proposed test. Since ( ) ( ) ( )( )YFXFIYXI 00 >=> , where ( )xF0  is  
the cumulative distribution function of the distribution 0F , the significance level of the test (10) is 

( ){ } ( ){ }CVPCVP nkUnifYYXXnkH kn
>=> loglog )1,0(~,...,,,, 110 … . That is, the type I error of the proposed  

test (10) can be calculated exactly or approximately by simulations, for all sample sizes kn,  and  
10 << δ . Fix 5.0=δ  in (9). Table 1 displays Monte Carlo roots C  of the equations 

( ){ } α=> CVP nkUnifYYXX kn
log)1,0(~,...,,,, 11 … , for different values of α  and n , k . For each value of α , 

n , k , the type I error results were derived via 55,000 generations of statistic ( )nkVlog 's values.  
 
Table 1. Critical values C for the test (10) with 5.0=δ  
 

k  
  10 15 20 25 30 35 40 50 60 80 100 
n              
 α             

10 0.01 9.704 10.482 11.797 13.213 14.751 16.459 18.255 22.167 26.409 35.735 45.594 
 0.025 8.318 9.384 10.683 11.981 13.483 15.243 16.868 20.663 24.848 34.113 43.889 
 0.05 7.507 8.468 9.560 11.000 12.384 13.857 15.770 19.500 23.462 32.439 42.503 
 0.1 6.526 7.592 8.619 9.881 11.285 12.640 14.384 17.996 22.075 30.530 40.480 
             

15 0.01 10.131 11.155 12.306 13.438 14.805 16.196 17.623 20.853 24.257 31.870 40.314 
 0.025 8.935 9.992 11.199 12.221 13.483 14.813 16.186 19.201 22.465 30.024 38.437 
 0.05 8.060 9.181 10.190 11.240 12.503 13.609 15.024 17.915 21.038 28.466 36.773 
 0.1 7.038 8.062 9.128 10.090 11.222 12.316 13.698 16.429 19.546 26.738 34.853 
             

20 0.01 10.397 11.694 12.934 14.083 15.261 16.2465 17.526 20.188 23.094 29.707 37.090 
 0.025 9.246 10.456 11.666 12.731 13.939 14.899 16.086 18.683 21.420 27.898 35.069 
 0.05 8.266 9.427 10.676 11.619 12.796 13.723 14.923 17.382 19.980 26.306 33.337 
 0.1 7.148 8.228 9.468 10.402 11.519 12.430 13.565 15.841 18.328 24.390 31.309 
             

25 0.01 10.589 12.039 13.271 14.438 15.699 16.545 17.834 20.205 22.610 28.471 34.975 
 0.025 9.335 10.688 11.922 12.934 14.246 15.052 16.357 18.592 20.971 26.419 32.922 
 0.05 8.254 9.489 10.773 11.764 13.014 13.814 15.085 17.202 19.481 24.802 30.998 
 0.1 7.107 8.203 9.464 10.413 11.630 12.414 13.593 15.564 17.746 22.897 28.919 
             

30 0.01 10.645 11.884 13.374 14.542 15.846 16.928 18.120 20.260 22.485 27.820 33.479 
 0.025 9.380 10.466 11.881 13.001 14.284 15.274 16.447 18.603 20.719 25.810 31.332 
 0.05 8.263 9.363 10.715 11.730 12.961 13.883 15.059 17.119 19.117 24.010 29.433 
 0.1 7.083 8.083 9.375 10.265 11.458 12.326 13.443 15.427 17.356 21.960 27.133 
             

35 0.01 10.594 11.915 13.306 14.345 15.826 16.731 18.091 20.194 22.413 27.187 32.425 
 0.025 9.196 10.373 11.789 12.748 14.067 15.096 16.331 18.459 20.483 25.140 30.123 
 0.05 8.100 9.248 10.494 11.453 12.701 13.575 14.820 16.819 18.792 23.285 28.161 
 0.1 6.953 7.909 9.154 9.980 11.178 11.973 13.149 15.045 16.848 21.132 25.794 
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k  
  10 15 20 25 30 35 40 50 60 80 100 
n              
 α             

40 0.01 10.542 11.692 13.143 14.378 15.653 16.659 17.875 20.127 22.212 26.927 31.777 
 0.025 9.140 10.174 11.649 12.633 13.933 14.749 16.116 18.112 20.171 24.653 29.379 
 0.05 8.057 9.032 10.367 11.253 12.447 13.211 14.537 16.407 18.316 22.679 27.324 
 0.1 6.880 7.782 8.994 9.798 10.882 11.606 12.742 14.490 16.272 20.312 24.705 
             

50 0.01 10.250 11.548 12.860 13.744 15.137 15.875 17.343 19.466 21.533 26.053 30.349 
 0.025 8.924 9.997 11.241 12.013 13.282 14.045 15.403 17.286 19.242 23.424 27.738 
 0.05 7.823 8.802 9.967 10.709 11.874 12.540 13.754 15.482 17.281 21.223 25.326 
 0.1 6.678 7.607 8.655 9.367 10.325 11.015 12.045 13.571 15.204 18.738 22.406 
             

60 0.01 10.312 11.157 12.501 13.428 14.524 15.238 16.559 18.439 20.254 24.498 28.806 
 0.025 8.861 9.745 10.894 11.757 12.784 13.448 14.664 16.261 17.972 21.796 25.743 
 0.05 7.737 8.660 9.669 10.411 11.371 12.019 13.112 14.562 16.207 19.684 23.256 
 0.1 6.624 7.466 8.405 9.092 9.988 10.577 11.486 12.843 14.318 17.395 20.587 
             

80 0.01 9.989 10.851 11.833 12.642 13.838 14.275 15.393 17.002 18.684 21.884 25.703 
 0.025 8.620 9.457 10.409 11.126 12.134 12.685 13.677 15.043 16.575 19.583 22.919 
 0.05 7.576 8.356 9.268 9.893 10.815 11.366 12.231 13.597 14.948 17.708 20.792 
 0.1 6.494 7.199 8.037 8.665 9.506 9.980 10.796 12.037 13.238 15.767 18.479 
             

100 0.01 9.824 10.569 11.567 12.218 13.171 13.806 14.709 16.179 17.356 20.413 23.243 
 0.025 8.499 9.221 10.187 10.724 11.621 12.262 13.017 14.324 15.537 18.149 21.008 
 0.05 7.512 8.190 9.091 9.597 10.469 10.989 11.712 12.919 14.087 16.540 19.067 
 0.1 6.448 7.085 7.892 8.446 9.205 9.692 10.349 11.486 12.549 14.866 17.043 
             
∞  0.01 9.138 9.623 10.291 10.650 11.113 11.449 11.888 12.507 13.125 14.232 15.225 

 0.025 7.967 8.486 9.081 9.493 9.930 10.271 10.689 11.311 11.891 12.993 13.955 
 0.05 7.029 7.579 8.157 8.555 9.017 9.343 9.722 10.363 10.937 12.004 12.933 
 0.1 6.080 6.626 7.182 7.581 8.025 8.360 8.722 9.357 9.920 10.957 11.850 

The following propositions present asymptotic operating characteristics of the test (10). 

Proposition 3.1. For each 10 << δ ,  

( ) ( )( )∏
= −+<≤ −

⎯→⎯
−

k

j mjmjkm

P
nk ZZk

mV
11

2min
1 δ

, as ∞→n ,  

where under 0H , )1,0(~,...,1 UnifZZ k , whereas under 1H , Zk FZZ ~,...,1 , and ZF  is a nonuniform 
distribution function with a density function Zf  concentrated on [0,1]. 

Proof. We note that, for each ki ≤≤1  and 0>ε , we have  

( ) ( )( ) ( ) ( )( ) ( ) 0⎯⎯ →⎯>−=>− ∞→

+∞

∞−
∫ nYXXniXiXn dyyfyFyFPYFYFP εε . 

Therefore, ( ) ( ) iiX
P

iXn ZYFYF =⎯→⎯ , as ∞→n . Obviously, under 0H , iZ  has the uniform 
( )1,0Unif  distribution. Under 1H , the distribution of the iZ  is not uniform but concentrated on  

the interval [0,1].  
When the control-sample size ∞→n , the rule (10) rejects 0H  if 

( ) ( )( ) C
ZZk

mk

j mjmjkm
>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−∏
= −+<≤ −
11

2logmin
1 δ

 (11) 

( C  is from (10)). Note that, (11) is an empirical likelihood modification of the well-known test for 
uniformity proposed by Dudewicz & Van Der Meulen [4]. Monte Carlo critical values C for the test (11), 
corresponding to different values of α  and k , are presented in the last lines of the Table 1 (signed 

∞=n ). These critical values can be used for the two-sample test (10) based on data with a large number 
of controls nXX ,...,1 .  
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Proposition 3.2. For each ( )1,0∈δ , 

under 0H , ( ) 0log1 ⎯→⎯− P
nkVk , as ∞→n , ∞→k ;  

under 1H , ( ) bVk P
nk ⎯→⎯− log1 , as ∞→n , ∞→k , 

where b  is a positive constant.  

Proof. By virtue of Proposition 3.1, for each 10 << δ ,  

( )
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−
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= −+<≤
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k

j mjmjkm

P
nk ZZk

mkVk
11

11 2minloglog
1 δ

, as ∞→n , (12) 

where ( )iXi YFZ = . Let ZF  define the distribution of jZ  with a density function Zf , kj ,...,1= .  

We pointed out in the proof of Proposition 3.1 that under 0H , ZF  is the uniform ( )1,0Unif  distribution. 
Under 1H , ZF  is not uniform but ZF  is concentrated on the interval [0,1]. Consider a behavior of  

the statistic ( ) ( )( )( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−∏

=

−
−+

<≤

−
−

k

j
mjmj

km
ZZkmk

1

1

1

1 2minlog
1 δ

, as ∞→k . Note that 

( ) ( )( ) mk
nm

k

j mjmjkm
p

ZZk
mk

δδ −− <≤= −+<≤

− −=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−∏ 11 111

1 max2minlog ,  

where ( ) ( )( )( )∑
=

−+
− −=

k

j
mjmjmk mZZkk

1

1 2/logp . Following Vasicek [10], after some reorganization, 

we obtain 
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where ( )xFZ  and ( ) ( )∑
=

≤=
k

i
iZk xZI

k
xF

1

1
 are the cumulative and empirical distribution functions, 

respectively. Vasicek [10] showed that iS  uniformly converges in probability to the entropy of the density 

( )xfZ  (as ∞→k , 0/ →km ), for all δ−≤≤ 11 km , 10 <<δ . The statistic mkU  is a non-positive 

random variable distributed independently of ZF  and 0⎯→⎯P
mkU  as ∞→k , ∞→m . Thus, 
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Therefore, 
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, as ∞→k . (13) 

Since, for each density function ( )xf  concentrated on [0,1], one always has ( ) 0≤fH , with the maximum 
value ( ) 0=fH , being uniquely attained by the uniform ( )1,0Unif  density (Dudewicz & Van Der Meulen [4]), 
the equations (12) and (13) complete the proof. 

Proposition 3.2 declares a consistency of the test (10) as ∞→n , ∞→k .  
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4. Monte Carlo Study 
 

In this section, we investigate the power properties of the proposed test (10) (with 5.0=δ ) 
comparing with the commonly used two-sample Kolmogorov–Smirnov (KS) test (Birnbaum and Hall [2]; 
Massey [6]). To evaluate the properties of test (10), we conduct the following Monte Carlo simulations. 
For different values of n , k  and different null/alternative distributions, 25,000 pairs of samples were 
generated corresponding to the problem (7). The test-statistics ( )nkVlog  with 5.0=δ  and the statistic of 
KS were calculated from each pair of the samples. The simulated powers of the tests are shown in 
Table 2, at the 05.0=α  level of significance. Table 2 does not display results of all simulations that we 
executed. We balance situations, in which the test (10) or the KS test can be recommended.  

 
Table 2. The Monte Carlo powers of the proposed test (10) with 5.0=δ  and Kolmogorov–Smirnov (KS) test; a = 0.05. 
 

Baseline Distribution
0FFX =  Alternative 

Distribution YF  n  k  Proposed test (10) KS test 

)1,0(Norm  )1,1(−Unif      
  45 45 0.9889 0.1490 
  25 25 0.8304 0.0640 
  15 25 0.7132 0.0878 
  25 15 0.6059 0.0603 
  15 15 0.5177 0.0363 

)1(Exp  )1,0(Lognorm      
  45 45 0.4027 0.3362 
  25 25 0.2074 0.1722 
  15 25 0.1790 0.1696 
  25 15 0.1406 0.1634 
  15 15 0.1332 0.0866 
  10 10 0.0964 0.1167 

)1,0(Norm  )1,5.0(Norm      
  45 45 0.3755 0.5129 
  15 15 0.1156 0.1399 

)1,0(Norm  )5.1,5.0( 2Norm      
  45 45 0.4098 0.5034 

)1,0(Norm  )5.1,0( 2Norm      
  50 50 0.2355 0.1248 
  45 45 0.1669 0.1292 
  25 25 0.0389 0.0663 
  15 15 0.0142 0.0174 

)1(Exp  )5.1(Exp      
  45 45 0.2670 0.3002 
  25 25 0.1790 0.1582 
  15 15 0.1257 0.0831 

 
Table 2 confirms that for relatively small and average sample sizes n  and k  the test (10) can be much 
more powerful than the KS test. (Table 2, )1,0(NormFX = , )1,1(−=UnifFY ). In these cases with 

15=n , 15=k , the power of the KS test is less than the type I error, whereas the Monte Carlo power of 
the proposed test is 0.5177. To explain this phenomenon, we would like to emphasize the known fact that 
entropy-based tests for goodness-of-fit are very powerful for detecting a change towards small variance 
(Dudewicz & Van Der Meulen [4]). It seems that the test (10) has also a high level of the power when  
the variance of the alternative distribution is smaller than that of the baseline distribution. The KS test 
sometimes demonstrates the powers that are better than those of the proposed test (10), for relatively 
small n  and k  (for example, when )1,0(NormFX = , )1,5.0(NormFY = ). However, for all sample 
sizes n  and k , if the variance of the alternative distribution YF  is smaller than that of the baseline 
distribution XF  then the entropy-based test (10) is superior to the KS test.  
 
Conclusions 
 

In this article, we have presented a methodology for developing density-based EL tests.  
The objective was to indicate there is a unified method to derive test-statistics based on samples entropy. 
This method utilizes the main idea of the empirical likelihood methodology where the empirical 
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likelihood function consists of components that maximize this likelihood function and satisfy empirical 
constraints. We have proved that the entropy-based tests for goodness-of-fit have the EL ratio structure. 
We focused on the tests for normality and uniformity. The test for exponentiality based on Kullback–Leibler 
information (Ebrahami et. al [5]) can be also considered paying attention to Section 1. In addition, we 
applied the proposed density-based EL ratio technique to create two-sample EL test for the case-control 
study based on samples entropy. The presented Monte Carlo simulations confirm that the proposed 
nonparametric test is superior to the standard procedures. While considering the approach of this article, 
nonparametric two-sample entropy based tests for a general case as well as k-sample entropy-based tests 
can be easily constructed. We believe that the proposed approach can be applied to create a nonparametric 
two-sample test for detecting shift alternatives. (In this case, the two-sample Mann–Whitney–Wilcoxon 
test is a common procedure.) Further studies are needed to test the suggested approach in other contexts. 
We hope that this article will stimulate future theoretical and applied research on this topic.  
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We consider survival data that are both interval censored and interval truncated. We assume a semiparametric frailty or 
transformation model for the survival function and consider censoring and truncation distributions as in Huber, Solev and Vonta [6], [7]. 
We propose the use of modified profile likelihood estimators for the structural parameter of the model as in Slud and Vonta [11]. 
For fixed values of the structural parameter, we derive the least favourable parametrization of the nuisance infinite-dimensional 
parameter, on which the definition of the modified profile likelihood estimator is relied upon. We discuss the semiparametric efficiency 
of the modified profile likelihood estimator of the finite-dimensional regression parameter in the presence of the infinite-dimensional 
nuisance parameter, that is, the baseline cumulative hazard function. 
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1. Introduction 
 

Many times we are faced with complex observational schemes such as interval censored and 
interval truncated data. For example, HIV infection or toxicity of a treatment, is not exactly known, but it 
is usually known to have taken place between two dates 1t  and 2t . Furthermore, some people may be lost 

from the sample if they are observed during a period of time not including such pair of dates 1 2,t t . 
Turnbull [12] proposed a method for nonparametric maximum likelihood estimation of the distribution 

function in the case of arbitrarily censored and truncated data. His method, slightly corrected by Frydman [5], 
has been used extensively since by several authors, and extended to the Cox model by Alioum and 
Commenges [1] and to the frailty or transformation models by Huber and Vonta [8]. In Huber, Solev and 
Vonta [6] and [7] we give conditions on the involved distributions, namely, the censoring, truncation and 
survival distributions, implying the consistency of a nonparametric maximum likelihood estimator of the density 
of the survival process in the nonparametric case. We also provide the rate of convergence of the NPMLE 
of the density within a certain class of density functions. 

In Bickel et al. [2] and van der Vaart and Wellner [13] one can find several different tools for expressing 
the semiparametric information about the finite-dimensional parameter of interest in semiparametric 
models and for establishing semiparametric efficiency. Slud and Vonta [11] proposed modified profile 
likelihood estimators for the finite-dimensional parameter of interest in the presence of the infinite-
dimensional nuisance parameter. These estimators have been shown to be semiparametric efficient under 
regularity conditions. Results in Slud and Vonta [11] generalize those of Severini and Wong [10] in  
the semiparametric case. 

In this paper we propose to apply the modified profile likelihood approach to the case of censored 
and truncated data assuming a transformation semiparametric model (Vonta [15]) for the survival time. 
The transformation models include the frailty models which arise as a generalization of the Cox model 
(Cox [4]) when one introduces a random effect term into it, with the purpose of explaining possible 
population heterogeneity which remains unexplained from the Cox model. The class of transformation 
models that we consider are equivalent to the class of models defined in Cheng, Wei and Ying [3]. 

In section two, we give a representation of the censoring and truncation mechanisms. In section three, 
we define the proposed frailty or transformation model as well as the modified profile likelihood estimators. 
We also establish the form of the least favourable nuisance parametrization on which the modified profile 
likelihood approach is relied upon. The least favourable parametric submodel cannot be given in closed 
form. We derive a recursive equation through which the least favourable model is implicitly defined. 
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Finally, we discuss the semiparametric efficiency of the modified profile likelihood estimator of  
the regression parameter β . 
 
2. The Observation Scheme 
 

Time X  to an event that changes permanently the state of subject i  under study (state 0  before X , 
1 afterwards) is a random variable whose distribution is to be estimated under the following observation scheme: 

1.  Censorship: observation of each subject i  does not take place continuously but is scheduled at  
a (random) number ( )K i  of (random) times 

,1 , ( )i i K ia Y Y b< < < <" , 

where usually a  will be equal to 0  and b  is a finite strictly positive number. Let 

,: { , 1, , ( )}i jY j K iτ = =i "  be the set of scheduled observation times for subject i and 

,: { , 1, , ( )}i jt y j K i= =i "  a realization of iτ .  

2.  Truncation: only those elements of it  that are inside a given (random) truncating window 

,1 ,2( ]i iZ Z  give rise to an actual observation of subject i . 

Thus, if subject i  is observed in state 0  at time ,i jy  and in state 1 at time , 1i jy + , inside its window 

,1 ,2: ( , ]+ i iz z= , one observes subject i  at all times of it  included in + . A sufficient statistic for this 

problem is thus the two embedded intervals “bracketing” the unobserved X x=  : 

1 2,1 , , , 1 , ,2i i k i j i j i k iz y y x y y z+≤ ≤ < ≤ ≤ ≤ , 

where 
1,i ky  is the smallest time in it  which is greater than or equal to ,1iz  and 

2,i ky  is the largest time in 

it  that is less than or equal to ,2iz . 
 
2.1. Censoring 
 

Let τ  be a random partition defined on ]a,b], where usually a  will be equal to 0  and b is  
a finite strictly positive number: 

0 1 1 1
0

{ , ( , ] ( , ]}∪
K

K K j j
j

Y a Y Y Y b Y Y a bτ + +
=

= = < <…< < = = , (1) 

where K  is a fixed number or a random number with known law in 0{2, , }K…  for some given 0K  

such that 02 K< < ∞ .  
 

For each ( , )x a b∈  we define 

{ }1( ) inf : jj x j x Y += ≤ , (2) 

( ( ]( ) ( ) 1( ) , : ( ), ( ) , ( , )j jx xx Y Y L x R x x a bϑ + ⎤= = ∈⎦  , (3) 

where ( )L x  and ( )R x  may be thought of as the left and right values in partition τ  that “bracket”  
(the survival) X x= . 
 
Then it is clear that 

( ) ( ( ) ( )),x y or x yϑ ϑ ∂ ∩∂= =∅  (4) 

and we call ( )xϑ  a simple random covering of ( , )a b . From now on we will take a  to be 0 for 
convenience. 
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2.2. Truncation 
 

Let ( ) ( ( ), ( )], ,x L x R x xϑ = ∈  be the simple random covering defined by the partition 

{ }: , 1, 2, ,jt y j kτ = = = … . Then, a fixed interval 1 2( , ]z z= , and z  the associated vector 

1 2( , )z z , 1 2z z≤ , is a truncating interval. This means that the only available observations of the subject 
i  under investigation take place at times that are those elements of t  that are included in 

1 2( ( ); ( )]R z L z , which behaves like the effective “truncating window”. 
 

Our basic assumption is the following: First we assume that the random covering (·)ϑ , the random 
variable X  and the random interval Δ  are independent. Second, we assume that the distribution of any 

1( , , )m nY Y+  is absolutely continuous with respect to the Lebesgue measure on n m−  and that  

the distribution of 1 2( , )Z Z  is absolutely continuous with respect to the Lebesgue measure on 2 . 
 

In that case a summary of the observations on the subject under investigation is the pair of embedded 
intervals: 

1 2( ) ( ) ( ) ( )R z L x R x L z≤ < ≤ , 

where the censoring interval ( ( ), ( )]L X R X  of the covering (·)ϑ , contains X , and the random 

interval *
1 2( ( ), ( )]R z L zΔ =  actually truncates X . 

When ( ( ), ( )]L X R X ⊂ Δ/  we do not have any observation. 
 

In the special case of right truncation 

(0, ]z=  

and a summary of the observations on the subject under investigation is the triple of random variables 
( ( ), ( ), ( ))L x R x L z such that: 

0 ( ) ( ) ( ).L x R x L z≤ < ≤  
 
2.3. Combined Censoring and Truncation 
 

Let us define 
1) Conditionally on a fixed value t  of τ  the random interval Δ  is taken from the truncating distribution 

{ } { |t A P A= Δ∈P the interval (Z_1, Z_2] contains at least two points of t }. 

In other words, conditionally on fixed values of tτ =  the random vector 1 2( , )Z Z Z=  is taken from 
the truncating distribution 

{ } { }1 2| ( ) ( )tP B P Z B R Z L Z= ∈ <  

2) Conditionally on a fixed value of tτ =  and 1 2( , ]z zΔ = = , the random variable X  is taken from 
the truncating distribution 

{ }, 1 2{ | ( ( ), ( )]}.tP C P X C X R z L z= ∈ ∈  

In other words conditionally on fixed values of tτ =  and 1 1 2 2,Z z Z z= =  the random variable X  is 
taken from the truncating distribution 

{ }1 2 1 2| , , { | ( ( | ), ( | )]}.P C t z z P X C X R z t L z t= ∈ ∈  (5) 
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We consider now the simple case of right truncation by Z , where for a random variable Z  the random 
interval (0, ]ZΔ = . We denote for short when there is no ambiguity about the partition tτ =  simply: 

( ) : ( | ).L Z L Z tτ= =  

Then, conditionally on fixed values of tτ =  and Z z=  the random variable X  is taken from the truncating 
distribution 

{ } { }| , | ( ) .P C t z P X C X L z= ∈ ≤  

 
3. The Model 
 
3.1. Definition 
 

Let X  be a random variable with density f  and survival function conditional on ξΞ =  defined 
by (Vonta [15]) 

( ( ))( | ) ( | )
T

G e tS t P X t e
β ξ

ξ ξ − ΛΞ = = > Ξ = = , (6) 

where \dβ ∈  is the parameter of interest, Ξ  a d -dimensional vector of covariates, Λ  the baseline 
cumulative hazard function which plays the role of the infinite-dimensional nuisance parameter and G   
a known function which satisfies some regularity conditions such as G  increasing and concave with 

(0) 0G =  and ( )G ∞ = ∞ . The notation Tβ  denotes from now on, the transpose of the vector β . 

Let kν  be the Lebesgue measure on \k  and recall that \dξ ∈  and let ( ) ddP dφ ξ νΞ =  for 

some σ − finite measure dν  on \d  possibly equal to dν . Without loss of generality we consider  
the right-truncation case. The problem that we are faced with could be formulated as follows. Our observations 
are 1, , nQ Q… , i.i.d. random vectors, ( ( ), ( ), ( ), )Q L X R X L Z= Ξ , with density ( , , , )p u v w ξ  with 

respect to a measure *ν  (Huber, Solev and Vonta [6]) given as  

0

( | )
( , , , ) ( , , )· · ( )

( | )

v

u
w

f t dt
p u v w r u v w

f t dt

ξ
ξ φ ξ

ξ
=

∫

∫
, (7) 

where *ν  is the measure on 3\ d+  which is defined for continuous nonnegative functions 
( ) ( , , , )s u v wψ ψ ξ=  by the relation 

 

* 3( ) ( , , , ) ( )( , , , )ds d u v w d u v wψ ν ψ ξ ν ν ξ∫∫∫∫ = ∫∫∫∫ ⊗ 2( , , , ) ( )( , , ).du v v d u vψ ξ ν ν ξ+ ⊗∫∫∫  

From model (6) p  is equal to 

( ( ))

( ( ))

0

( ( )) ( )
( , , )· · ( )

( ( )) ( )

T T T

T T T

v
G e t

u
w G e t

e G e t e t dt
r u v w

e G e t e t dt

β ξ

β ξ

β ξ β ξ

β ξ β ξ

λ
φ ξ

λ

− Λ ′

− Λ ′

Λ

Λ

∫

∫
 

( , , )· ( , , , | , )· ( )r u v w u v wϕ ξ β λ φ ξ≡  (8) 

thus defining function ϕ . Here 0 u v w b≤ < ≤ ≤ , r  is the known density with respect to **ν ,  

the marginal of *ν  integrated over ξ , of the known joint law of censoring and truncation. Function ϕ  is 
the likelihood of each unobserved survival conditional on the censoring, truncation and covariate.  
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Recall that β  is the parameter of interest and Λ  the baseline cumulative hazard function, or equivalently 
λ  the baseline hazard intensity function, is the infinite-dimensional nuisance parameter. 

The joint law of censoring and truncation with density r  with respect to **ν  has two components, 
one denoted by 3r  which is absolutely continuous with respect to the Lebesgue measure on 3\  

(corresponding to the case where u < v< w) and a second one, denoted by 2r  which is absolutely 

continuous with respect to the Lebesgue measure on 2\  (corresponding to the case where u v w< = ). 
For details and an example of such a law r  see Huber, Solev and Vonta [6]. 

We are interested in the efficient estimation of the parameter of interest β  in the presence of the unknown 
cumulative hazard function Λ  or equivalently in the presence of the hazard intensity function λ  where 
obviously ( ) 0tλ ≥ . We assume that the function ( )tΛ  is finite for finite times t  and that ( )Λ ∞ = ∞ . 
 
3.2. Modified Profile Likelihood Estimators 
 

In the notation of Slud and Vonta [11], assume that the independent identically distributed ( iid ) 
data-sample 1 2 , , , nX X X…  of random vectors in \k  is observed and assumed to follow a marginal 

probability law 
0 0( , )  Pβ λμ =  where 0

0
0 , ) , (\ \d qU V Lβ λ ν∈ ⊂ ∈ ⊂  (Borel-measurable functions), 

where   U  is a fixed open set;   V  is a fixed set of positive measurable functions; and the σ -finite 
measure   ν  (locally finite, but not necessarily a probability measure) is fixed on \q . 

In addition assume that there is a family ( , ) , ( , )  { }P U Vβ λ β λ ∈ ×  of Borel probability 

measures on  \k , such that for all ( , ) ( , ) ,U V Pβ λβ λ μ∈ × � , and the regularity of densities 

( , ) (·, , ) /  Xf dP dβ λβ λ μ≡  as functions of ( , ) β λ  are further restricted by assumptions given in detail 

in Slud and Vonta [11]. Note that by definition, 0 0(·, , ) 1  Xf β λ ≡ . The true parameter-component 

value 0 β  is assumed to lie in the interior of a fixed, known compact set  F U⊂ . 

The log-likelihood for the models ( , )  Pβ λ  and data 1{ }  n
i iX ==X  is defined by 

1
( , ) log ( , , ), ( , ) ( )log

n

n X i
i

f Xl U Vik β λ β λ β λ
=

= ∈ ×∑ .  

Define the Kullback–Leibler functional by 
 

( , ) log ( , , ) ( ).XK f x d xβ λ β λ μ≡ −∫  
 

The key idea of modified profile likelihood (Severini and Wong [10]) is to replace the nuisance parameter 
  λ  in the log-likelihood by a suitable estimator �βλ  of the minimizer  βλ over  Vλ ∈ , of the Kullback–Leibler 

functional. The minimizer is assumed to be unique, smooth in β  and the estimator of the minimizer is 

also assumed to be smooth in β  and consistent for βλ  (Slud and Vonta [11]). The modified profile 

likelihood estimator of β , is then the maximizer with respect to β , of the modified profile likelihood, 

1
 log ( , , ) f �

n

X i
i

X ββ λ
=
∑  

proved in Slud and Vonta [11] to be semiparametric efficient under the assumed therein regularity 
conditions. The d -dimensional parametric submodel ( , )ββ λ  is called a least favourable parametric 

submodel for the general semiparametric model ,Pβ λ , where βλ  is the minimizer of the Kullback–Leibler 

functional with respect to λ  for fixed β . 
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Keeping β  fixed we differentiate with respect to the parameter λ  in the sense of G a� teaux 

differentiation. We consider perturbations of functions Vλ ∈  by small multiples of functions γ  in 

subsets of 0G G⊆ . All spaces V , G  and 0G  are described in Slud and Vonta [11] but they ought to be 

specified appropriately according to the situation. 
Here and in what follows, we define the differentiation operator  Dλ  for all functionals  : \VΦ → , 

and all  γ ∈ 0G , by: 

0 0( ( ))( ) : ( ) : ( )| |d dD
d dλ θ θ θλ γ λ θγ λ
θ θ= =Φ = Φ + = Φ  , (9) 

where θ  belongs in a small neighborhood of 0 and θλ  is defined as 

( ) ( ) ( )t t tθλ λ θγ= +  leading to 
0

( ) ( ) ( ) ( ) ( ).
t

t t s ds t tθ θ γ θΛ = Λ + = Λ + Γ∫  

 
3.3. Least Favorable Model 
 

The data-space  D \ \ \ \d= × × ×  consists of vectors ( , , , )s u v w ξ= . We denote the true 

parameters by 0 0( , )β λ . 

We define the probability law for the true model by  

*
0( ) ( ) ( )d s p s d sμ ν≡ , 

where 0 ( )p s  denotes the density p  taken at the true point 0 0( , )β λ . 
 

Taking the densities ( | , )Qf s β λ  with respect to μ , the true law of the observations Q , as in Slud and 

Vonta [11], we get that ( | , )Qf s β λ  is equal to  

0

0
0

0

0
0

00 ( )( )

0(0 ) ( )

| ( )| ( )
· ·

| ( ) | ( )

TT

TT

TT

T T

wv GG

u e te t
vG G

ue t e t

w

e G e t dte G e t dt

e G e t dt e G e t dt

β ξβ ξ

β ξ β ξ

β ξβ ξ

β ξβ ξ

λλ

λ λ

− ′− ′

ΛΛ

− ′ − ′

Λ Λ∫
∫∫
∫

 (10) 

Following the methodology of Slud and Vonta [11] we will find in this section, for fixedβ , the least 

favourable parametric submodel ( , )β βΛ of the proposed semiparametric model. 
 
The Kullback–Leibler functional is given by 

*
0 0

0 0

( , , , | , )( , ) log ( , , , | , ) .
( , , , | , )
p u v wK p u v w d

p u v w
ξ β λβ λ ξ β λ ν
ξ β λ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  

Due to the form of the law ( , , )r u v w  the Kullback–Leibler functional is written equivalently as 

3
0 0

0 0

( , , , | , )log ( , , , | , ) ( )
( , , , | , ) d
p u v w p u v w d

p u v w
ξ β λ ξ β λ ν ν
ξ β λ

⎛ ⎞
− ⊗⎜ ⎟

⎝ ⎠
∫

2
0 0

0 0

( , , , | , )log ( , , , | , ) ( )
( , , , | , ) d
p u v v p u v v d

p u v v
ξ β λ ξ β λ ν ν
ξ β λ

⎛ ⎞
− ⊗⎜ ⎟

⎝ ⎠
∫ , 
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which because of model (6) is equal to 

( )( ( ))log ( ( )) ( ){ T T Tv G e t

u
e G e t e t dt

β ξ β ξ β ξλ− Λ ′− Λ∫ ∫

( )( ( )) 3
0 00

log ( ( )) ( ) ( , , , | , ) ( )}T T Tw G e t
de G e t e t dt p u v w d

β ξ β ξ β ξλ ξ β λ ν ν− Λ ′− Λ ⊗∫

( )( ( ))log ( ( )) ( ){ T T Tv G e t

u
e G e t e t dt

β ξ β ξ β ξλ− Λ ′− Λ∫ ∫

( )( ( )) 2
0 00

log ( ( )) ( ) ( , , , | , ) ( )}T T Tv G e t
de G e t e t dt p u v v d C

β ξ β ξ β ξλ ξ β λ ν ν− Λ ′ ′− Λ ⊗ +∫ , (11) 

where C ′  denotes a term that does not depend on ( , )β λ . 
 

Let us define 

0,3 0 0

0,2 0 0

( , , , | , )
( , , , | , ).

p p u v w
p p u v v

ξ β λ
ξ β λ

=
=

 

 

The G a� teaux differentiation of ( , )K β λ  in the direction γ  is given as 

0( , ) |d K
d θ θβ λ
θ = =  

( ) ( )

( ( ))

| | ( ) ( ) ( )

( ( )) ( )
{

T T

T T

T T T

v G

u e t e t

v G e t

u

Ge G e G e t t t dt
G

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ

λ γ

λ

′′
− ′ ′

′Λ Λ

− Λ ′

⎛ ⎞
− + Γ +⎜ ⎟
⎝ ⎠−

Λ

∫
∫

∫
 

0 ( ) ( )
0,3

3

0

( ( ))

| | ( ) ( ) ( )
( )

( ( )) ( )

( )
}

T T

T T

T T T

w G

e t e t

G ew dt

Ge G e G e t t t dt
G p d

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ

λ γ
ν ν

λ

′′
− ′ ′

′Λ Λ

− Λ ′

− + Γ +
− ⊗

Λ

∫
∫

 

( ) ( )

( ( ))

| | ( ) ( ) ( )

( ( )) ( )
{

T T

T T

T T T

v G

u e t e t

v G e t

u

Ge G e G e t t t dt
G

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ

λ γ

λ

′′
− ′ ′

′Λ Λ

− Λ ′

⎛ ⎞
− + Γ +⎜ ⎟
⎝ ⎠−

Λ

∫
∫

∫
 

0 ( ) ( ) 2
0,2( ( ))

0

| | ( ) ( ) ( )
( ).

( ( )) ( )

( )
}

T T

T T

T T T

v G

e t e t
dv G e t

Ge G e G e t t t dt
G p d

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ

λ γ
ν ν

λ

′′
− ′ ′

′Λ Λ

− Λ ′

− + Γ +
− ⊗

Λ

∫
∫

 (12) 

 

By an integration by parts, the integral 

( )( ( )( ) ( ( ))
T T Tv G e t

u
t d e G e t e

β ξ β ξ β ξ− Λ ′Γ Λ =∫  

( ( )) ( ( ))( ) ( ( )) ( ( )) ( )|T TT T T TvG e t v G e t
u u

t e G e t e e G e t e t dt
β ξ β ξβ ξ β ξ β ξ β ξγ− Λ ′ − Λ ′Γ Λ − Λ∫  

and therefore the first numerator of (12) simplifies to 

( ( ))( ) ( ( )) .|T T TG e t v
ut e G e t e

β ξ β ξ β ξ− Λ ′Γ Λ  
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By a similar integration by parts we simplify the other three numerators of (12) to get that 

0( , ) |d K
d θ θβ λ
θ =  is equal to 

( ) ( )

( ( ))

( )( ) | ( )( ) |

( ( )) ( )
{

T T

T T

T T T

G G

e v e u
v G e t

u

v e G e u e G e

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξλ

− ′ − ′

Λ Λ

− Λ ′

Γ −Γ
−

Λ
∫

∫
 

( ) (0) 3
0,3( ( ))

0

( )( ) | (0)( ) |
( )

( ( )) ( )
}

T T

T T

T T T

G G

e w e
dw G e t

w e G e e G e
p d

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ
ν ν

λ

− ′ − ′

Λ Λ

− Λ ′

Γ −Γ
− ⊗

Λ∫
 

( ) ( )

( ( ))

( )( ) | ( )( ) |

( ( )) ( )
{

T T

T T

T T T

G G

e v e u
v G e t

u

v e G e u e G e

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξλ

− ′ − ′

Λ Λ

− Λ ′

Γ −Γ
−

Λ
∫

∫
 

( ) (0) 2
0,2

( ( ))

0

( )( ) | (0)( ) |
( )·

( ( )) ( )
}

T T

T T

T T T

G G

e v e
dv G e t

v e G e e G e
p d

e G e t e t dt

β ξ β ξ

β ξ

β ξ β ξ

β ξ β ξ
ν ν

λ

− ′ − ′

Λ Λ

− Λ ′

Γ −Γ
− ⊗

Λ∫
 

Finally, we have 

0( , ) |d K
d θ θβ λ
θ = =  

3
0,3

( ( ) ( )) ( ) ( )
( ) ( ) 1 ( )

{ }
T T

d
SG u SG v e SG w e p d

S u S v S w

β ξ β ξ

ν ν
′ ′ ′Γ −Γ Γ

+ ⊗
− −∫  

2
0,2

( ( ) ( )) ( ) ( )·
( ) ( ) 1 ( )

{ }
T T

d
SG u SG v e SG v e p d

S u S v S v

β ξ β ξ

ν ν
′ ′ ′Γ −Γ Γ

+ + ⊗
− −∫  

The survival function (.) (. | )S S ξ=  and (.) (. | )G G ξ′ ′=  but the dependence on ξ  is omitted for 
convenience of notation. 
 

Then we set the above derivative equal to 0 to obtain the equation 

( ) 3
0,3

( ) ( ) ( ) ( )
( ) ( ) 1 ( )

{ }
T T

d

SG u SG v e SG w e p d
S u S v S w

β ξ β ξ

ν ν
′ ′ ′Γ −Γ Γ

+ ⊗
− −∫  

( ) 2
0,2

( ) ( ) ( ) ( ) 0
( ) ( ) 1 ( )

{ }
T T

d

SG u SG v e SG v e p d
S u S v S v

β ξ β ξ

ν ν
′ ′ ′Γ −Γ Γ

+ + ⊗ =
− −∫ , (13) 

which should hold for all γ ∈  0G . Equation (13) defines implicitly the minimizer βΛ  through which 

βλ  is subsequently defined. 
 

Lemma 1. For the observational scheme defined in section section 2 under which 
( ( ), ( ), ( ), )Q L X R X L Z= Ξ  is the observed random vector of variables with values ( , , , )s u v w ξ= , 

μ  the true law such that *
0d p dμ ν=  and under model (6) assumed for the survival time X , for fixed 

β , a least favourable nuisance parametrization βΛ  is defined recursively through the equation 
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1

2

( , , )( )
( , , )

I t bt
I t bβ

β
β

=Λ , (14) 

where 

1

( ( )) ( ( )) ( ( ))
( , , ) ( )

( ( )) ( ( ))
|

T

L X S L X G L X e
I t b E L X t

S L X S R X

β ξ
β β β

μ
β β

β
′⎛ ⎞Λ

⎜ ⎟= − <
⎜ ⎟−⎝ ⎠

 

( ( )) ( ( )) ( ( ))
( )

( ( )) ( ( ))
|

T

R X S R X G R X e
E R X t

S L X S R X

β ξ
β β β

μ
β β

′⎛ ⎞Λ
⎜ ⎟+ <
⎜ ⎟−⎝ ⎠

 

( ( )) ( ( )) ( ( ))
( )

1 ( ( ))
|

T

L Z S L Z G L Z e
E L Z t

S L Z

β ξ
β β β

μ
β

′⎛ ⎞Λ
⎜ ⎟− <
⎜ ⎟−⎝ ⎠

 

and 

2

( ( )) ( ( )) ( ( ))
( , , ) ( )

( ( )) ( ( ))
|

T

L X S L X G L X e
I t b E L X t

S L X S R X

β ξ
β β β

μ
β β

β
′⎛ ⎞Λ

⎜ ⎟= ≥
⎜ ⎟−⎝ ⎠

 

( ( )) ( ( )) ( ( ))
( )

( ( )) ( ( ))
|

T

R X S R X G R X e
E R X t

S L X S R X

β ξ
β β β

μ
β β

′⎛ ⎞Λ
⎜ ⎟− ≥
⎜ ⎟−⎝ ⎠

 

( ( )) ( ( )) ( ( ))
( ) .

1 ( ( ))
|

T

L Z S L Z G L Z e
E L Z t

S L Z

β ξ
β β β

μ
β

′⎛ ⎞Λ
⎜ ⎟+ ≥
⎜ ⎟−⎝ ⎠

 

The least favourable direction γ  is defined implicitly through equation (14) as 
0

( )
|

d t
dt
β

β β β=

Λ
∇  

0
( ) |tβ β β βλ == ∇ . 

In order to establish semiparametric efficiency of the modified profile likelihood estimator of the 
parameter β  we need to verify that all assumptions −0 8A A  given in Slud and Vonta [11] are satisfied 

in the current situation. For this we will need to impose further regularity conditions on the function G  
and specify the spaces V , G  and 0G . This task however is deferred to another paper. 
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A two-level construction system is considered to be composed of several different building projects iU , ni ≤≤1 , at the lower 

level and a control device at the upper one. The upper system’s level is required to produce a given target amount  V  by a given 
due date D  subject to a chance constraint, i.e. the least permissible probability p  of meeting the target on time is pregiven. Each building 

project iU  has several possible speeds 1iv , 2iv , ... , imv , which are subject to random disturbances. The project’s output can be 

measured only at preset inspection (control) points. The target amount is gauged by a single measure, e.g. in square meters, and may 
be rescheduled among the projects. For each unit, the average costs per time unit for each project and the average cost of performing 
a single inspection at a control point to observe the actual output at that point are given. 

We present a two-level on-line control model under random disturbances, which centres on minimizing the system’s expenses 
subject to the chance constraint. The suggested two-level heuristic algorithm is based on rescheduling the overall target among  
the projects both at 0t = , when the system starts functioning, and at each emergency point, when it is anticipated that a certain 
project is unable to meet its local target on time subject to a chance constraint. At any emergency point t  the remaining system’s 
target tV  is rescheduled among the projects; thus, new local targets itV , ni ≤≤1 , ∑ =i tit VV , are determined. New local 

chance constraint values itp  are determined too. Those values enable the system to meet its overall target at the due date subject to 
the pregiven chance constraint p . 

Keywords: production speed, cost-optimisation, target amount reassignment, chance constraint, inspection point  
 
1. Introduction 
 

In recent years the problem associated with developing multilevel on-line production control 
models under random disturbances for flexible manufacturing systems has been discussed in the literature 
[1–13, 15, 16]. Most of those investigations deal with not fully automated plants of 'man-machine' type 
where the output cannot be measured continuously on-line, but only at preset control points. The main 
idea of the interaction problems between different levels in hierarchical control systems is based on 
the conception of emergency. By using the idea that hierarchical levels can interact only in special 
situations, the so-called emergency points, one can decompose a general and complex multi-level 
problem of optimal production control into a sequence of one-level problems. 

Two different optimisation cases are usually considered: 
1. Case with a conflicting two-criteria objective, namely, to maximize the probability of completing  

the production on the due date, and to minimize the number of control points; but the first criterion is 
dominant. 

2. The objective is to maximize the expected net profit. 
Note that most of the papers outlined above do not implement a chance constraint in the on-line 

production control model. In our opinion, minimizing the system's expenses to meet the target on time, 
i.e. at a given due date, is not to be the only goal in the course of the long-term cooperation with various 
customers. To honour the company's good name, an additional requirement has to be inserted in the model: 
the production system has to meet its due date on time with a pregiven confidence probability. Thus, a 
chance constraint has to be implemented in the control model. 
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A two-level construction system is considered to be composed of several different building 
projects iU , ni1 ≤≤ , at the lower level and a control device at the upper one. The upper system’s 
level is required to build a given target amount V  by a given due date D  subject to a chance constraint, i.e. 
the least permissible probability p  of meeting the target on time is pregiven. Each building project iU  

has several possible speeds 1iv , 2iv , ... , imv , which are subject to random disturbances. The project’s 
output can be measured only at preset inspection (control) points. The target amount is gauged by a single 
measure, e.g. in square meters, and may be rescheduled among the projects. For each project, the average 
building costs per time unit for each speed and the average cost of performing a single inspection at  
a control point to observe the actual output at that point are given. 

Golenko-Ginzburg et al. [7] have developed a cost-optimisation on-line control model which for  
a single project determines both control points and speeds to be introduced at those points, in order to 
minimize the project’s expenses within the planning horizon, subject to the chance constraint. We present 
a two-level on-line control model under random disturbances, which centres on minimizing the system’s 
expenses subject to the chance constraint. The suggested two-level heuristic algorithm is based on 
rescheduling the system’s target among the production units both at 0t = , when the system starts 
functioning, and at each emergency point, when it is anticipated that a certain project is unable to meet its 
local target on time subject to a chance constraint. At any emergency point t  the remaining system’s 
target tV  is rescheduled among the projects; thus, new local targets itV , ni1 ≤≤ , ∑ =

i tit VV , are 

determined. New local chance constraint values itp  are determined too. Those values enable the system 
to meet its overall target at the due date subject to the pregiven chance constraint p .  

After reassigning to each project iU  its new target itV  and the chance constraint value itp , the projects 

first work independently and are controlled separately. At each k -th control point ikt  of project iU , 
given the actual amount already produced, decision-making centres on determining both the next control 
point 1k,it +  and the index j  of the new speed ijv  to proceed with up to that point, mj1 ≤≤ . The on-line 

control for each project proceeds either until the next emergency point, or until the due date D . 
Rescheduling the remaining system’s target amount tV  among the projects is carried out by using 

heuristic procedures. Determining chance constraint values itp  is carried out by using a cyclic 
coordinate descent method in combination with a two-level simulation model. 
 
2. Notation 
 

Let us introduce the following terms: 
S  - the two-level construction system composed of n  building projects iU , 

ni1 ≤≤ ; 
D  - the due date (pregiven); 

tD  - the length of the remaining planning horizon at moment t , tDDt −= ; 
F  - the actual moment the target amount is completed (a random value); 
p  - the chance constraint, i.e. the minimal permissible confidence probability of 

accomplishing the system’s plan on time (pregiven); 

itp  - the chance constraint value for each project iU  determined at the emergency 
moment 0t ≥ , ni1 ≤≤  (to be determined as an optimized variable); 

iks  - the index of the speed chosen by the decision-maker at the control point ikt ; 

ikt  - the k -th inspection moment (control point) of project iU , iN,...,1,0k = ; 
em
qt  - the q -th emergency moment at the system level, emNq1 ≤≤  (a random 

value); 

iN  - the number of inspection moments for each project iU ; 

emN  - the number of emergency moments (a random value); 
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ijv  - the j -th speed of project iU  to construct its target, mj1 ≤≤  (a random 

value with pregiven density function ( )vfij ); 

ijv  - the average of speed ijv . It is assumed that for each project iU  speeds  1iv , 

2iv , ... , imv  are sorted in ascending order of their average values and are 

independent of t . Thus, value imv  is the maximal average speed for project iU ; 

V  - the pregiven system target (planned program) gauged by a single measure 
(target amount); 

( ) ( )∑
=

=
n

1i

f
i

f tVtV  - the actual system’s output observed at moment t  (a random value); 

itV  - the target amount assigned to project iU  at the emergency point t  (to be 

determined); note that ∑ =
i

tit VV ; 

( )tV f
i  - the actual output of project iU  observed at moment t , Dt0 ≤≤ ; 

( ) 00V f
i =  (a random value); 

tV  - the system’s remaining target amount at moment t , VV0 = ; 

( )[ ]j,V,tVW it
f

ip  - the p -quantile of the moment target amount itV  will be completed on conditions 

that: (a) speed ijv  is introduced for project iU  at moment t  and will be used 

throughout, and (b) the actual observed output of project iU  at moment t  is 

( )tV f
i ; 

m  - the number of possible speeds (common to all projects); 
d  - the minimal time span between two consecutive control points ikt  and 1k,it +  

(pregiven); equal for all projects;

ih  - the search step for determining optimal values itp ; 
Δ  - the minimal value of the closeness of inspection moment ikt  to the due date 

D  (pregiven and equal for all projects);

ija  - lower bound of random speed ijv  (pregiven); 

ijb  - upper bound of random speed ijv  (pregiven); 

C  - the total operational costs, penalties and charges accumulated for the system in 
the course of accomplishing the target amount (a random value); 

emC  - the average cost of rescheduling the remaining target amount tV  among 

projects iU  by the system at a routine emergency moment 0t ≥ ; 

ijC  - the average processing cost per time unit of speed ijv , ni1 ≤≤ , mj1 ≤≤  

(pregiven); note that for a fixed i  relation 21 jj ≤  results in 
21 ijij CC < ; 

insC  - the average cost of performing a single inspection of a project (pregiven, equal 
for all projects); 

( )tC f
i  - the actual accumulated processing and inspection costs calculated at moment 

t  for project iU , Dt0 ≤≤ , ni1 ≤≤ , ( ) 00C f
i = ; 

∗C  - the penalty paid to the customer by the system for not accomplishing the target 
amount on time, i.e. when DF >  (a single payment, pregiven); 

∗∗C  - the penalty cost for each time unit of delay DF −  (pregiven); 
∗∗∗C  - storage charges per time unit for the target amount's completion before the due 

date (pregiven). 
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3. The Control Model 
 

A two-level control model is suggested where each level faces a stochastic optimisation problem. 
 
3.1. The Problem at the System Level (Problem A) 
 

At each emergency point em
qtt = , emNq1 ≤≤ , 0t em

1 = , determine local production plans itV , 

ni1 ≤≤ , together with local chance constraints itp , in order to minimize the expected total expenses 
 

{ }
Cmin

itit p,V
 (1) 

 

subject to the chance constraint 
 

( ){ } pVDVPr f ≥≥ .  (2) 
 

Note that random value C  satisfies 
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where 
 

⎩
⎨
⎧ >

=
,otherwise0

DFif1
δ  (4) 

 

and values { }iks  and { }ikt  are obtained by solving Problem B at the project level. 

Values { }itV  at each emergency point t , including 0t = , are determined according to a widely 
used heuristic procedure [4, 12], namely 
 

∑
=

= n

1i
im

im
tit

v

vVV  , (5) 

 

where imv  is the maximal construction speed which can be introduced for the building project iU . 

As to values { }itp , they are determined by using one of the classical search procedures for 
optimising a multi-dimensional non-linear function, e.g. a cyclic coordinate descent algorithm [3–5, 14]. 
The search procedure is carried out via simulation, by undertaking numerous realizations of a simulation 
model at the lower level in order to obtain representative statistics. The simulation model represents  
the process of manufacturing for several building projects iU  with input values { }itV  and { }itp , between 

two adjacent emergency points em
qt  and em

1qt + . In the case of a routine emergency call the problem at the 

section level is resolved, new values { }itV  and { }itp  are determined, and the manufacturing process 

proceeds at the lower level, for each project iU  independently. 
 

 
3.2. The Problem at the Project Level (Problem B) 
 

The cost-optimization control model for a single building project has been formulated in [2, 7].  
We have modified that problem for the case of several projects with additional cost parameters emC , 

∗C , ∗∗C  and ∗∗∗C . 
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For the case of an independent project iU , given the input values itV , itp , d , Δ  and ijv , 

mj1 ≤≤ , the problem is to determine both control points { }ikt  and building speeds { }
ikisv  to 

minimize the construction expenses 
 

{ } ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧

+−= ∑
−

=
+ insi

1N

0k
ik1k,iisv,t

CNttCMinJ
i

ik
ikisik

 (6) 

 

subject to 
 

( ){ } itit
f

i pVDVPr ≥≥ , (7) 
 

tt 0i = , (8) 
 

( ){ }[ ]iti
f

iiTiN VTVPr:Tmint
i

i
≥= , (9) 

 
dtt ik1k,i ≥−+ , (10) 

 
Δ≥− iktD , 1Nk0 i −≤≤ , (11) 

 

qminjs
mq1ik ≤≤

==   ( )[ ] Dq,V,tVW:q it
f

ip ≤∀  . (12) 

 
Restriction (8) means that after reallocating target amounts at the routine emergency point t ,  

the starting moment to proceed constructing, i.e. the first control point to undertake decision-making and 
to determine 0is  and 1it , is t . Note that at all emergency points the remaining target amount, as well as 

the due date, are updated, i.e. the ordinate 0t =  is shifted to the right. Restriction (9) means that the last 
inspection point is the moment target amount itV  is reached. Restrictions (10) and (11) ensure the closeness 
between two consecutive control points, as well as the closeness of the routine inspection point to the due 
date. Restriction (12) means that the speed to be chosen at any routine control point ikt  must not exceed  

the minimal speed which guarantees meeting the deadline D  on time, subject to the chance constraint (7).  
The general idea of solving problems (6)–(12), which is a very complicated stochastic 

optimization problem, is as follows. At each control point ikt  decision-making centers on the assumption 
[7] that there is not more than one additional control point before the due date. Two speeds have to be 
chosen at point ikt : 
 

1. Speed 
1ijv , ik1 sj = , which has to be actually introduced at point ikt  up to the next control  

point 1k,it + . 

2. Speed 
2ijv , 1k,i2 sj += , which is forecast to be introduced at control point 1k,it +  within the period 

[ ]D,t 1k,i + . 
 

Thus, 1j  is determined in accordance to Eq. (12) and 2j  is determined by honoring chance constraint 

(7). In [7] at each routine control point ikt , all possible couples are singled out. The couple, which 
delivers the minimum of forecasted manufacturing and control expenses, has to be chosen. Since couple 
( )21 j,j , together with the inspected value ( )ik

f
i tV  and values D  and itV , fully determines the next 

control point 1k,it + , speed 
1ijv  is introduced within the period [ ]1k,iik t,t + . At moment 1k,it +  decision-

making has to be carried out anew. 
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4. The General Idea of the Two-Level Heuristic Algorithm 
 

The general idea of the suggested heuristic algorithm is as follows: at each routine emergency 
point em

qt , emN,...,1,0q = , decision-making centres on minimizing the future costs from point em
qt  

until F , including the penalty and the storage costs. The costs representing the past (interval [ ]em
qt,0 ) 

are not relevant for this on-line control problem, and there is no need to remember the past decision [9]. 
The only relevant information to be stored is em

qt  and ( )em
q

f
i tV . Thus, decision-making at the system 

level is carried out only at emergency points em
qt  including the moment 0t =  the system starts constructing. 

Decision-making at the system level at each routine emergency moment em
qtt =  centers on 

determining both new chance constraint values { }itp  and new target amounts itV  for the remaining 

planning horizon [ ]D,t . Values { }itp  are obtained via simulation, by a combination of a search 
algorithm and an on-line one-level control algorithm for several projects. The latter work independently 
and are controlled separately at inspection points. It is generally assumed that at the beginning of the 
work all the available resources, i.e., the building teams, are previously allocated among the projects. 
Those resources remain unchanged within the planning horizon, i.e. no resource reallocation is performed. 
Thus, the corresponding construction speeds ijv  for each project iU  remain unchanged too. 

If for a certain project iU  at a routine inspection point ikt  it is anticipated that the project cannot 

meet its target itV  on time subject to the previously determined chance constraint itp , an emergency is 

then called, and decision-making is affected at the system level. The remaining target tV  at iktt = , 

together with the remaining time ikt tDD
ik

−= , is then updated. New quasi-optimal values { }itp , 

iktt = , together with new target amounts { }itV , are then determined. The newly corrected plan is assigned 
to all building projects, and the construction process proceeds further, until either the new emergency 
point or until the moment the target amount is completed. Thus, decision-making at the system level 
centers on numerous recalculations of the system’s plan subject to the chance constraint. This is carried 
out by using a forecasting simulation model with input values { }itit p,V , iktt = . The matrix 

{ }itit p,VZ =  which delivers the minimum of total accumulated costs subject to the chance constraint 
p , is taken as the optimal corrected plan. Afterwards, that corrected plan is passed to the projects, and 

on-line decision-making is carried out at the project level. 
 
Conclusions and Future Research 
 

The following conclusions can be drawn from the study: 
1. The two-level control model under consideration is a further development in the area of production 

control. The suggested control algorithm enables meeting the target amount on time subject to a chance 
constraint for two-level man-machine production systems under random disturbances. 

2. The developed control model can be used for various semi-automated production systems [1, 9] under 
random disturbances where the outputs (target amounts) can be measured only at pregiven control points 
and are gauged by a single measure (money terms, square or cubic meters, percentage completion of 
the project, etc.). When a building construction company performs a building project, units are 
teams, which can work with several alternative speeds, while the output of a team is usually 
measured in percentage completion of the project. 

3. The system's target amounts are transferable and may be rescheduled among the production units. 
4. For all previously developed multilevel semi-automated production systems under random disturbances 

the risk average principle has been implemented in the control model at the lower level [1, 3–6, 8–13]. 
Those models do not deal with chance constraints. The model under consideration is based on 
another principle, namely, the chance constraint principle [2, 7] which is very effective for cost 
objectives. 

5. Future research may be undertaken to develop three-level control models, e.g. factories, etc., with 
chance constraints at each hierarchical level. 
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The paper presents the development and supplementation of an advanced Human Reliability Analysis technique – Performance 

Evaluation of Teamwork method with approaches and mechanisms of reflexive analysis for prevention of erroneous communication 
and decision-making. 
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1. Introduction 
 

The efficient operators’ teamwork, as group interaction, emanates some fundamental characteristics – 
integration, coordination, synchronization, communication and leadership. The crew of operators needs 
successful integration of individual thoughts and actions. Every operator has a specific and unique role 
and his correct performance contributes to the crew’s success. It means that the causes for crew failure 
could be due not only to inability and unreliability of each individual crew member but also to the crew 
error in coordination and synchronization of the operator’s individual contribution to the common work. 

The group mental process becomes especially critical for the whole crew performance in risky, 
complex and dynamic situations as accidents and incidents when the crew is under stress and the urgency 
of tasks is frequently prerequisite for inclusion of other variables and initiators for erroneous actions.  
In such work conditions the situation is very dynamic and the crew is threatened by unforeseen 
circumstances and circumventions (e.g., equipment failures, operator’s violations and errors). The operators 
are exposed to an increasing information stream and the workload also increases. The way out is good 
communication that allows for correct tasks distribution, coordination and manipulations synchronization. 
It also makes possible the addition of cognition individual processes and enables the group leader to make 
objectively necessary decisions in the given situation. 

From psychological point of view communication is a complicated and multidimensional space of 
a new “psychic reality” of contact. Existence of alternatives in the development of that reality is a premise 
for risk occurrence. Risk is related to the situation, individual, teamwork and social contexts development 
that affects considerably the relation objective-result. 

Considerable part of all operators’ erroneous actions is based on their communication. One of the most 
effective tools for social cognitive study of this communicative basis is the method of reflexive analysis [1]. 

The paper presents the issues of dealing with cognition and communication aspects of operators’ 
performance. They are evaluated on the base of macroscopic “second-by-second” context model of cognition 
and communication processes. The human action context is represented as a field of interaction between 
humans, machine, technology, organization and society. All together they form the fieldwork and this 
context influences dynamically their configuration. Some useful achievements of mathematical psychology 
are applied to context quantification and dynamic reconfiguration of cognition and communication processes 
modelling. A simplified probabilistic approach to dynamic quantification of operators’ performance and 
communication errors identification is demonstrated by the Performance Evaluation of Teamwork (PET) 
method. This approach is illustrated by retrospective human reliability analysis (HRA) of the accidents 
based on scenario chronological archives of the FSS-1000 (full-scope simulator of WWER-1000) of 
Kozloduy nuclear power plant (NPP) obtained during the regular practical training of crews. 
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2. Operators’ Erroneous Action Classification and Reflexive Analysis 
 

The operator’s work contains actions based on different hybrid interactions in local “man-machine”, 
“man-technology”, “man-organization”, “man-society” and “man-man” systems. Communication between 
people for the global hybrid system is especially very important feature because it constitutes, organizes 
and configures all global system interactions, determines different forms of functioning and guarantees 
functional redundancy and diversity. 

Operator’s erroneous actions can be relatively insignificant, with local influence on operator’s 
work but they also can be crucial in case of serious accidents and emergency situations. It is a matter of 
concern of the safety analyses of organization, technology and performance, whether the crew 
communication causes errors or makes the operator’s work secure and reliable. 

The operator’s errors strongly depend on operator’s knowledge and performance manner.  
The most of current HRA methods distinguish between two basic operator’s error modes – errors of 
cognition and errors of execution. Such concepts of Human Erroneous Action (HEA) were used by PET 
method to propound the HEA classification that is shown on Figure 1. The communicative constituents of 
operator’s erroneous performance could be insufficient or imperfect knowledge of working matter and 
communication manner, incorrect communicative actions on the executive level during the teamwork 
performance. The classification on Figure 1 also presents another popular version of HEA distinction – between 
errors of omission (EOO) and errors of commission (EOC).  

The operator’s errors study must cover social instruments of cognition that give an advantage to 
the analysis of social interaction between operators. Such instruments are the methods of reflexive 
cognition and reflexive analysis. The reflection is especially useful in the investigation of interaction. It is 
a form of “feedback” and an important mechanism for getting insight into the way human psyche 
functioning projects the operator’s active attitude to reality. 
 

 

Figure 1. Human erroneous action classification 
 

As seen on Figure 1, the subject of reflexive analysis could be all feedbacks in realization of 
human actions – latent errors, violations and recoveries. They appear in an iterative individual cognition 
form and crew communication form. These forms could be identified and distinguished experimentally by 
running different accident and normal scenario on the full-scope, multifunctional or computer-based 
simulators of NPP. This identification can be considered as the initial point of reflexive analysis application. 
 
3. Reflexive Analysis 
 
3.1. Basic Features of Reflexive Cognition 
 

A reflexive cognitive process aims to understanding the rules that individuals employ to reveal 
meanings externalised in their actions. The social world is a world based on meanings and images.  
The reflection is a way of social cognition that assigns motives, social meanings and values to people  

Erroneous human action mode paths 
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in order to reveal motives and values that give rise to certain actions. The social cognitive process should 
be investigated concurrently and sequentially on the base of following mechanisms: typing, scenario 
analysis, styling and individual history. Some communicative barriers between operators that also cause 
erroneous actions could be identify and overcome by reflexive analysis. 

As mentioned above, the reflection is a form of “feedback”. Its cognitive meaning includes 
cognitive knowledge about a given object obtained by the change of positions of examination. This change 
of two positions, or moving to third “independent” position, allows for getting profound and comprehensive 
knowledge about the object. It is very important for investigation and prevention of operator’s erroneous 
actions, especially where performance shaping factors (PSF) have complex configuration and hierarchy of 
casual-consecutive connections.  

The most traditional illustration of reflexive knowledge is a type “I know that you know that  
I know”. The social world is organized on the base of objective meanings. So our thoughts and 
conclusions about an operator’s error as a kind social event depend on our subjective interpretation of  
the actions of other people. The reflection allows peculiar “distinguishing” of the object and provides  
a “look from aside”. Such an individual or collective alienation from the situation creates a virtual form of 
reality. If we can look at the situation from aside, so we could be transformed into objective judges of 
what is happening. 

Reflection allows to the subject of social perception to reconstruct elements of the inner world of 
other people. Through the creation of the image of the other’s inner world operator can lead imaginary 
communication with another operator as a preliminary or sequent step to the real communication. By such 
mental modelling and transformation an operator acquires information that goes beyond the simple 
reflection of a separate communicative act [2]. 

It is necessary to choose a new point of view in order to make a reflexive look from aside to a specific 
situation. To choose a specific point of view it is necessary to estimate its usefulness for getting an insight 
into the situation, for making it clear and well understood. The more various reflexive positions the 
analyst (the investigator of operator’s errors) possesses, the more successfully he will analyse the specific 
situations of erroneous actions.  

In a communication situation, where operator’s errors are available, there is a bilateral process of 
reflection between the operator, that has acted erroneously and the analyst of these erroneous actions. 
These new reflexive positions include: the operator as he is in reality; the operator as he imagines himself; 
the operator as he is imagined by the other operator; the operator as he is imagined by the investigator. 
 
3.2. Reflexive System Approaches 
 

In the particular case of reflection of the communication between two operators, the thoughts of 
both operators are put to the reflection in order to understand reasons for their decisions for actions. As a result, 
a common reflexive system is organized that generalizes and analyses the information obtained by social 
cognition. 

Any activity can be investigated on the base of its communicative context that is transformed  
in the object of reflection. The communicative reflection is considered as a situational reflection of 
communication. 

The reflexive system accumulates information of cognitive and practical nature. This information 
is obtained, organized and used on the base of teleological, morphological and genealogical approaches. 
These are approaches for primary analysis of the investigated object to reveal its basic features. 

 
Teleological Approach. This approach consists of: setting one’s own goal and the object’s goal, 

investigating the goal-situation vector, evaluation of the observer’s impact on the reality, evaluation of 
synchronous relations, analysis of the entire mutual exchange “inside” and “outside” the object. 

Teleological (purpose-oriented) approach begins with the question: “Why?” It is oriented to 
systems that have abilities to identify their own goals (including the means to achieve them), 
opportunities and limits. The operators’ work is a system of this kind in spite of all the diversity of 
behaviours. 

Morphological Approach. It is discovering the most important quality of the object structure from 
the point of view of the specific analysis and object development and introducing the systematic principle 
for investigation of different levels of the object’s existence.  
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Morphological approach to reflection studies is interested in the “full field of knowledge” of  
a given object. The methods of negation and construction are especially effective. In the end, more 
thorough and comprehensive knowledge about object could be achieved that is not reduced only to 
extreme standpoints and covers all shades and “soft” manifestations. 

 
Genealogical Approach. It is an analysis of the tendencies in the family biography by using the 

principle of genesis of single biographical facts. 
When genealogical approach is applied, the reflexive cognition is interested in the origin of social 

object of study. The origin is the historical biography and “genealogical” relations to the phenomena in 
social periphery of cognition. The problems into consideration are: “Did similar operator’s errors happen 
in the past?”, “What do they look like?”, “Which phenomena are they related to and different from?”, 
“What does usually happen during this operator’s error?” etc.  

The reflection cognition determines the structure of reflexive analysis [2]. 
 
3.3. Reflexive Mechanisms 
 

In reflexive analysis, the social cognitive process is developed on the base of four mechanisms: 
typing, scenario analysis, styling and individual history. The object is examined through the prism of 
these four mechanisms from the new point of view [2]. 
 
3.3.1 Typing 
 

Any world interpretation is connected with our preliminary “familiarization” with it. In the subjective 
field of meanings the typing is connected with repetition; similarity; locality in linear causality; 
associative analogy of likeness. In comparison to the typical symptoms related to the object, where both 
sides of interpersonal communication are not coherent, we could use two modes of reflection. The first 
one consists in change of the point of view of one operator to the point of view of other. The second mode 
uses coincidence of the relevant point related to the object. 

The typing is based on stereotypes and human individual experience. A rich social experience can 
help the analyst of operator’s erroneous actions to localize more exactly the point of view to the typical 
symptoms of erroneous actions and cognition and execution connected to it. Additionally, it should be 
taken into account that such important symbolic systems as myth, tradition, authority, ritual and prejudice 
are powerful means for understanding of typing. 

The typology of the object is based on the principle of analogies: outer, behaviour, communicative, 
situation and role analogy. 
 
3.3.2 Scenario Analysis 
 

Scenarios are actions in sequence, similar in different situations. There is a variety in behaviour 
scenarios but in most of cases they differ only in details and some negligible symptoms. The scenarios 
depend both on outer conditions and the psychic qualities of a person. There are two scenario modes: 
pragmatic-reflexive and theoretical-reflexive. 

Some examples of pragmatic-reflexive scenarios are: “there is no time for anything”, “nothing 
comes of it again”, etc. Theoretical-reflexive scenarios can be described as proactive, reactive, with open 
or closed end, etc. 

In reflection cognition, it is appropriate to divide scenarios into outer and inner ones. The outer 
scenarios are imposed on a subject by outer sources, such as norms, professional rules, other subjects, etc. 
The inner scenarios are mental models of the sequence of actions that leads to a given result. Both types 
of scenarios of operator’s errors must be investigated. The reflexive analysis reveals the way of refraction 
of objective to subjective in the operator’s consciousness and to what extent he has controlled his 
behaviour in the specific working situation. 

Scenarios related to the object are scenarios of development and behaviour. 
 
3.3.3 Styling 
 

The styling is biographically determined behaviour that reflects the individual predisposition to 
specific actions in specific situations. The individual style is the usual way a person solves of typical 
problem. 
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In conformity with one’s individual style the operator uses the maximum compensatory 
mechanisms in order to apply all necessary qualities to achieve a given purpose. The individual style of 
operator is a very important feature for the analysis of causes for operator’s error. The modification  
of individual style is not impossible but it is a very difficult task. That is why the management of  
an operators’ crew should preliminary take measures for synchronization of individual styles of the crew 
members. The individual style of communication can change for different people in different features.  
For example, some operators have a formal style of communication and others show an intimate, friendly 
style. It should be noted that the style of communication can reflect directly the causes of erroneous 
actions. 
 
3.3.4 Individual History 
 

The individual history includes specific events in a person’s life and his own attitude to them. 
Every human action is biographically determined. The individual history is often perceived as a “personal 
lifetime”. Its reflexive analysis allows finding a person’s driving forces, worldly perspective, and  
the often used ways of behaviour. As a result, a frequency register of the most important behaviors  
and the most typical responses of the operator are obtained. The operators that make errors are different 
but everybody is relatively identical to one’s individual history. Because of that we can prognosticate  
an operator’s resilience against erroneous actions in hybrid system communication based on a preliminary 
study of his individual history. 
 
4. Evaluation of Crew Communication in Main Control Room by the PET Method 
 

The Performance Evaluation of Teamwork method gives opportunity to take into account 
dynamical differences in operators’ achieved knowledge during their cognitive process and the arising 
need of natural communication between crew members [3]. It consists of two reliability models of processes 
of cognition and communication, represented as directed graphs. They are based on quantification of individual 
context of each operator in situation by successively applying of methods “Violation of Objective Krebs” 
and “Combinatorial Context Model”. A quantified individual context probability is used to obtain a cognitive 
error probability (CEP) of the success of individual cognition for each operator and the success of 
decision-making for operator’s crew. 

A probability of natural communication (PNC) arising between two operators of the crew is 
evaluated as difference of individual CEP of these operators. 
Because of the complexity, dynamics and risk of processes on NPP it is obligatory to apply an initiated 
communication not only to the crew working in the main control room (MCR) but also to the conversations 
between the related operators outside the MCR, such as supervisors, dispatchers, etc. The workplace 
instructions, technological regulations, working and emergency procedures describe not only the licenses, 
duties and subordination of each operator but also specific orders and reports (communication) that 
operator must perform in a given situation. This initiated communication could be also modelled and its 
impact on the crew error probability can be evaluated by the PET method. 

A probability of initiated communication (PIC) between two operators of the crew is accepted as 
a complement probability to the PNC (PNC + PIC = 1). 

The study issues concerning natural and initiated communication impact on three MCR crews 
reliability are shown briefly below. Each of the investigated operators’ crews ran twice the accident 
scenario ‘Steam Generator Tube Rupture” (SGTR) during their regular training on FSS-1000 of Kozloduy 
NPP with WWER-1000 (Russian pressurized water reactor). 
 
4.1. Special Features of Scenario and Its PET Model 
 

The study data of the PET model are obtained from the FSS-1000 training program, operation and 
accident procedures of the Kozloduy NPP, unit 6. The available computer means of FSS-1000 made 
possible the on-line data mining for registered events, controlled technological parameters and monitored 
operator’s and instructor’s actions. The possibilities of digital audio-visual system (AVS) were used for: 
operator’s cognitive processes modelling, prognosis of probable performance shaping factors (PSF) 
influence to the crew operator’s actions, communication and decision-making and the evaluation of their 
effect. Because of the lack of individual microphones to record the conversations between operators 
during scenario running the timing of the unit supervisor orders and operator’s report to them were filled 
in preliminary prepared written forms by the FSS-1000 instructor monitored training classes by the AVS. 
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The PET communication reliability model used for MCR operator crews of NPP with WWER-
1000 is shown on Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Main Control Room Crew Communication Reliability Model of NPP with WWER-1000 

 
The training class description and accident timing were presented partially in [4] and fully in [5]. 

Two crews and related operators (6 investigated archives in total) have performed repeated erroneous 
actions (mistakes or violations) that have changed the accident course and need special attention with 
respect to the used equipment and procedures. The erroneous action is “Unclosed valve in accident gas freeing 
system” (YR) that is applied for depressurising of primary circuit. It leads to the membrane breaking of 
bubbler tank and increasing of pressure and humidity at the containment. The admission of two leaks 
from the primary circuit (from steam generator and primary valves) is an accident beyond design basis 
because two design accident events had coincided. The results for efficiency of communication for the crew 
reliability (the negative difference between crew CEP) are shown on Figure 3 and 4 below for the SGTR 
scenario with violation and without violation respectively.  

The mental processes of cognition, communication and decision-making are iterative 
processes. With regard to the model simplicity and conservatism one-step iteration in both digraph 
reliability models is used. They include Rasmussen’s Step-Ladder (SLM) model of individual 
cognition [3], model of the crew’s mutual communication and decision-making with the assumption that 
the supervisor (decision-maker) is absolutely reliable if he has the entire information about  
the situation. This assumption should be made because a PET model for decision-making is not 
available yet. 

The List of communications of crew “17a” and their durations in scenario SGTR are presented in 
Table 1 below. 

 
Figure 3. Communication Efficiency of 17a Crew with violation 
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Figure 4. Communication Efficiency of 18a Crew without violation 

 
Table 1. List of communications of “17a” crew in scenario “Steam Generator Tube Rupture” 
 

N Duration, s Content 

1 132–140 Supervisor orders to SRO/RO to scram reactor because of leak „>50l/h” 

2 176–286 Supervisor orders to SRO to turn off the first main coolant pump (MCP1) 

3 202–284 Supervisor orders to OFWP/TO to isolate first stem generator (SG1) and turn off 1-of-3 turbo-feed-
water pump. 

4 212–382 Supervisor orders SRO/OR to put on regulator YP04 in automatic mode and cooling with rate of 
20°С/h” 

5 382–807 Supervisor orders to OT to start emergency cooling with rate of 60°С/h through steam dump system to 
the condenser up to 52kgf/cm2 

6 982–1101 Supervisor orders the TO to close first quick closing valve (TX50S06) and its bypasses (TX50S23,24) 
in 70–75 kgf/cm2 

 
4.2. PET Communication Study Results 
 

The study demonstrates indisputably that the teamwork decision-making has advantages over  
the individual decision-making. It is especially efficient when mistake or violation occurs (see 17a vs. 18a 
on Figures 3 and 4). In these cases the role of communication for decision-making support enhances. 

The comparison of initiated and natural communication (PIC and PNC) shown on Figure 3 demonstrates 
that the PIC has very positive influence on successive cognition and decision-making. However, the PET 
analysis makes it evident that PIC could be in time or late and the positive influence reduces for the latter 
case. 

The efficiency of communication for the crew reliability is defined as ∆CEP=CEPSupervisor-CEPCrew. 
The positive values of ∆CEP mean that Supervisor completes the individual cognitive process and negative 
values mean that it is not completed. The PET communication study demonstrates the positive influence 
of natural and initiated communication, so the good practice requires active crew communication and 
synergic teamwork [6]. 
 
5. Reflexive PET Communication Analysis 
 

This is an analysis of the new, externalised point of view obtained on the base of investigation of 
the main features of the object. It follows from the definitions of natural and initiated communication that 
PNC is determined in the first place by the rates of iterative individual cognitive processes of the crew 
members and PIC depends on operator’s individual willing and interpersonal relations. These factors contribute 
mostly for the active communication between the operators in a crew. 

As mentioned above, this is an initial point for reflexive communication analysis by the PET 
method. The PET evaluations for PNC and PIC present a rather rough guess, so they require qualitative 
interpretation based on features, approaches and mechanisms of the reflexive analysis that were described 
in the previous section. 
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As a results of the PET analysis based on four scenarios are were run by six crews two times 
varying one PSF at each scenario, different individual and crew CEP, PNC, PIC and communication 
efficiency were obtained. After that it is necessary to use reflexive analysis to explain qualitatively  
the variation in these communicative results and in the abilities of the operators in one crew or in different 
crews but performing the same job. 

The variation in PET cognition and communication results are explained by qualitative position 
analysis and the following position modes: 

 ‘Fusion’ Position. It consists of identification and imitation. 
 ‘Way out’ Position. This position follows adverse, ambivalent and love-hate position or 

positions different in major qualities or in minor qualities. 
 Overcoming the ‘Astigmatic’ Position. It is necessary to overcome the “astigmatic” position, 

i.e. the position of different roles, such as “the professional is prone to extreme stand-point”. 
However, the formal presentation of the reflexive position analysis implementation and  

the systematisation of the PET results based on scenario analysis must be preceded by collecting 
additional information about operators by using also other reflexive mechanisms as typing, styling and 
individual history [7].  
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The estimation of the suggested number of clusters in dataset is an ill posed problem of essential relevance in cluster analysis. 

A group (cluster) is characterized by a relatively high similarity among its elements in addition to a relatively low similarity to 
elements of other groups. High stability in partitions, obtained from the same data source, is logically classified as a high 
consistency of the clustering process. Thus, the number of clusters that maximizes cluster stability can serve as an estimator 
for the “true” number of clusters. In the current paper we consider a probabilistic approach to this problem resting upon 
the Gaussian clusters model. We claim that sequences of clustered samples can be interpreted as Gaussian distributed i.i.d. samples 
drawn from the same source, if the number of clusters is chosen correctly. The samples closeness, within the clusters, can be 
measured by means of the p-values, calculated for the appropriate Hotelling’s T-square statistic. Data outliers and clustering 
algorithm’s shortcomings can yield small p-values. However, we presume that their empirical distribution is least concentrated at 
the origin, if the number of clusters is chosen correctly. Our procedure can roughly be described as a generation of such 
a distribution with a sequential application of a concentration test.  

 
Keywords: clustering, Hotelling's criteria, cluster validation  

 
1. Introduction 

 
Cluster analysis is an essential tool, in machine learning, commonly employed in order to identify 

meaningful groups, named clusters. Items belonging to the same cluster are expected to be more similar 
one to another in comparison with elements belonging to different clusters. Most widespread iterative 
clustering algorithms, such as k-means, EM and k-medoids, are typically carried out in three steps. 
The first one is the initialisation step. It is intended to set an initial partition. In the second step the data 
set is partitioned to the “best” possible clusters. Here, elements are assigned to clusters so that some 
predefined function is optimised. The third step compares the attained partition to the previous one. 
If the difference is less than a predefined stopping threshold the algorithm stops, otherwise it returns to 
the second step. The partitioning phase is usually expressed by assigning a label to each element. This label 
identifies the cluster to which the element belongs. In general, the elements of the labelling set do not 
have specific meanings thus, they can be permuted from one instance to another.  

Another clustering method-type is designed to yield the optimal (“true”) number of clusters. 
The current paper is addressed to handle this problem, which is recognized as an “ill posed” one [20], [14]. 
For example, an answer here can depend on the scale in which the data is measured (see, for example [6]). 
Many approaches have been offered. Hitherto, none of them has been accepted as superior.  

From the geometrical point of view cluster validation has been considered in [11], [19] (C-index), 
[4], [18], [21], [33], [13], [26] and [34] (the Gap Statistic method). Stability based methods measure 
the cluster variability under repeated invocations of a clustering algorithm on samples drawn from 
the same data source. Low variability in partitions is interpreted as high consistency in the obtained result 
[7]. So, in papers [24], [2], [3] the stability is evaluated by the fraction of times that a pair of elements 
maintain the same membership under a rerun of the algorithm. In  [27] a stability function uses  
the Loevinger’s measure of isolation. The prediction-based resampling method Clest [10] employs, 
de-facto, external partition correlation indexes as a stability magnitude. In papers [29] and [23] a theoretical 
justification, of the cluster validation problem, by means of the stability concept has been discussed.  

Nonparametric estimation of the underlying density provides another methodology to the determination 
of the “true” number of clusters. This approach assumes that the clusters correspond to density peaks. 
Thus, the clustering procedure appoints each item to a “domain of attraction” of the density modes. 
Evidently, Wishart [37] offers to look for the modes, as the first step in order to discover a cluster 
structure. He suggested that clustering methods must be able to expose and “resolve distinct data modes, 
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independently of their shape and variance”. Based on this idea Hartigan ([16] Section 11 and [17]) 
introduced the notion of “high density clusters”. The clusters amount has been defined as the quantity of 
disjoint areas where densities go beyond a given threshold. So, clusters are presented by islands of “high” 
density in a sea of “low” density. This concept has been later employed in numerous papers (see, for 
example [8], [9] and [32]).  

A methodology based on the goodness of fit test procedure has been considered in [28], [15]. 
Other approaches relying on the goodness of fit tests have been offered in [35]. Here, the etalon cluster 
distributions are constructed using a model intended to represent a mixing of samples within the clusters. 
In [1], such a model has been provided by means of an asymptotically normally distributed behaviour of 
the edges, connecting points from different samples, in a Minimal Spanning Tree built in a cluster. 
The paper [36] uses the binomial distribution to model the quantities of the K-Nearest Neighbours 
belonging to the own point’s sample. In the works [35] and [1] partitions stability has been described by 
means of distances between clustered samples drawn from cluster cores versus the ones drawn from the whole 
population.  

In the current paper we consider a probabilistic approach, to this problem, resting upon the Gaussian 
clusters model. Our concept proposes a statistical homogeneity, of these simulated samples, in the case of 
the “true” number of clusters. Given a clustering algorithm, we asses the “true” number of clusters 
via the stability of the whole dataset partition, constructed by the algorithm. Indeed, we assume that 
the clustering algorithm reflects the inner data structure, and the stability is characterized by samples 
“drawn” from clusters or samples occurrences in the clusters. We claim that sequences of clustered 
samples can be interpreted as normally distributed i.i.d. samples, if the number of clusters is chosen 
correctly. The samples closeness within the clusters is measured by means of the values calculated 
for the appropriate Hotelling’s T-square statistic. Data outliers and clustering algorithm’s shortcomings 
can cause small p-values. However, we presume that their empirical distribution is least concentrated at 
the origin, if the number of clusters is chosen correctly.  
 
2. The Cluster Model 

 
The main clustered object is a data space X considered as a finite subset of the Euclidean 

space .dℜ  kC denotes the set {1,…,k} and kψ  is the set of all possible permutation of the set kC . 

A partition (clustering) 1{ }k k…π πΠ = , ,  of X is a set of k non-empty clusters such that:  
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Each partition of the set X provides a mixed decomposition of the underlying distribution XP :  

1

k

X i i
i

P w Pπ
=

= .∑  (1) 

Such clustering based decompositions have been considered from the information theory point of 
view (see, [29], [31]). Every item in the set X belongs, with certain probability, to each of the clusters so 
that, a clustering solution is imaged as a set of associating probability distributions. This association is 
termed “fuzzy membership in a cluster”. A hard clustering situation appears, as a partial case, when each 
point is assigned to one of the clusters with the probability 1.  

From the information standpoint, clustering is the basic approach for the data compression by 
throwing away the unrelated information. A loss compression can be made by means of assigning the data 
items to clusters so that the mutual information  
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is minimized. A difference between the relevant and irrelevant information can be provided by a distortion 
function (cost) ( )jE x  evaluating the energy of assigning a point x X∈  to the cluster .jπ  The minimization 

of ( )I XkΠ ,  is constrained by the expected distortion  

,

( ) ( ) ( ) ( ).k j j
x j

d X P x P x E xπ,Π = |∑  

The formal solution of this task is provided by the Boltzmann-Gibbs distributions 
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is the partition function,  

T
1=β  is the Lagrange multiplier and T is interpreted in a physical analogy for the system temperature. 

ForT = ∞ , each point is equally associated with all clusters, and 0T =  leads to a hard clustering 
situation.  

Let us now suppose that hard clusters are defined by the vectors { }jY y= ,  j=1,…, k  such that  
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where jΣ  are the clusters covariance matrices. The marginal distribution of Y becomes 
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is the so-called “the free energy” of the partition. A model closely related to one arises in clustering 
problems as a variant of the underlying distribution (1):  

1
( ) ( )

k

j j j
j

f x p G x y
=

= | ,Σ ,∑  (3) 

where ( )G x y| ,Σ  is the Gaussian density with the mean y and the covariance matrix Σ . The maximum-
likelihood estimation of the model parameters is provided by means of the well known EM algorithm. 
The standard k-means algorithm is its partial case (see, for example [12], [5]), when 

1 1
2   1    j kI j k p p pσΣ = , = , ..., , = = ... = ,where I is the identity matrix and 2σ  is the unknown 

common clusters dispersion. The essential difference between the approaches is that, in the free energy 
optimisation approach, no prior information except of (2) is assumed. Here, the cluster distributions are 
directly obtained from the suitable Boltzmann and Gibbs distributions.  
 
3. The Approach Description 

 
In the framework of our approach, we assume that the stable partition corresponds to the 

decomposition (3). For two i.i.d. disjoint samples S1 and S2, independently drawn from ,dX ⊂ℜ  

and a partition ( )k XΠ , we could consider the sample occurrences in clusters:  

, 1 2 1i j i jS S i j kπ= ∩ , = , , = ,..., .  
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A distance between the sets 1 jS ,  and 2 jS ,  can be measured by the Hotelling’s two-sample T-square 
statistic: 

( ) ( )1 22 1
1 2 1 21 2

1 2

( ) j j
j j j jj j

j j

S S
S S W S SS St S S

′
, , −

, , , ,, ,
, ,

, = − ,−
+

�  

where 
_

1, jS and 
_

2, jS  are the sets means and W is the variance-covariance matrix. Under our presumption, 

actually presenting the null hypothesis according to the inner cluster distributions, the sets 1, jS  and 2 jS ,  

for each 1j k= ,...,  could have been, consistently, drawn from the Gaussian distribution ( )j jG x y| ,Σ .  

In this case the variable ( )jj SSt ,2,1
2 ,ˆ  has the Hotelling’s T-square distribution 2

1 2( 2)j jT d S S, ,, + −  

with parameters d and 1 2 2j jS S, ,+ −  if 1 2 2 0j jS S, ,+ − >  (see, for example, [25]). In this context and 
under the null hypothesis, a cluster merit can be represented as the p-value calculated for the observed 
( )jj SSt ,2,1

2 ,ˆ :  

22
1 2 1 21 ( 2)( ( ))j j j j jT CDF d S S S Stδ , , , ,= − , + − , ,�  (4) 

where 2T CDF  denotes the Cumulative Distribution Function of the corresponding Hotelling’s T-square 
distribution. Consequently, the partition quality is given by:  

1
( ) mink jj k

δ δ
≤ ≤

Π = .  (5) 

I.e. the partition is characterized by the cluster which mostly differs from a Gaussian one.  
Two main problems arise in the implementation of the proposed methodology. The first one is that 

the samples occurrences in the clusters can not be directly obtained since the required data stable partition 
is unknown. Moreover, according to the definition, samples involved in the calculation of the Hotelling’s 
two-sample T-square statistic have to be independently drawn. The second one is caused by the fact that 
the corresponding p-values are inherently small, thus the null hypothesis can be rejected even when 
the true number of clusters is tested. 

We handle the first problem by the procedure detailed in [1] and [35], which is proposed to 
simulate independent cluster occurrences in the clusters. A clustering algorithm used for this purpose is 
an important ingredient of the approach, because partitions constructed by means of the algorithm are 
intended more or less to reflect the inner hidden data structure, corresponding to the underlying mixture 
distributions described by (3). Cluster solutions offered by different algorithms can be essentially 
different.  
Here, we iterate the clustering process as follows: Let S be a subset of X. A clustering algorithm kΔ  is 
a function which maps S on Ck. Obviously, such a function supplies a partition of S. For a given pair of 
samples S1 and S2, three partitions are introduced.  
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Each item is located in the partition kΠ  and in one of the other partitions 1k ,Π  or 2k ,Π . On the other 
hand, a cluster can be differently marked in these partitions due to the fact that the clusters labels have no 
meaning. We overcome this difficulty by locating the permutations iψ , i=1, 2 of the set Ck which 
minimizes the misclassified quantities  
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where ( )I •  is the indicator function. The Hungarian method [22] solves this problem by O(k3) 

complexity. After changing the cluster labels of the partitions k i,Π ,  i = 1, 2 consistent with iψ∗,  

i = 1, 2 the sets  

{ ( ) ) 1 2 1 }j i i k iS x S j i j kα, ,= ∈ | Π = , = , , = ,...,  (6) 

can be considered as independent samples occurrences in the clusters.  
As for the second problem, we propose to overcome this obstacle by making an inference on 

the number of clusters by relying on a big amount of data. Thus, a decision can be made by constricting 
an appropriate empirical distribution of ( )kδ Π  for several different numbers of clusters. It is naturally anticipated 
that the distribution having the shortest left tail belongs to the true number of clusters. A meta-algorithm, 
which implements the offered method, can be expressed as follows:  

Algorithm  

1. Repeat for each tested number of clusters from kmin to  kmax;  
2. Repeat the following steps for pairs of samples randomly drawn without replacement;  
3. Simulate the samples occurrences in the clusters;  
4. Calculate, according to (4), the p-values of the distances between the occurrences of different 

samples within the clusters;  
5. Calculate the partition merit, according to (5);  
6. The estimate of the true number of clusters is the k*, for which the distribution is the least 

concentrated at the origin.  
 
4. Experimental Results 
 

This section presents the experimental results obtained from an implementation of the described 
methodology. First of all, let us present the used notations:  

• mink  - the minimal tested number of clusters (the default value is 2);  

• maxk  - the maximal tested number of clusters (the default value is 8);  

• NS - the number of drawn sample pairs;  
• M - the size of the drawn samples;  
• kΔ  - the used clustering algorithm (the default is the standard k-means algorithm);  

The distributions concentrations, at the origin, are characterized by two attributes:  
• P50 - the sample median;  
• Ng - the frequency of the lowest subgroup obtained by dividing the values range into g 

equal range subgroups (the default value of g is 30).  
The results, obtained for several synthetic and real datasets, are exposed by means of comparing 

with the “known” source number of clusters. Sequentially, in order to exhibit the approach stability, 
the procedure is repeated 10 times for each datum, and the results are represented via error-bar plots of 
P50 and Ng, calculated as function of the tested number of clusters. The bar sizes equal to two standard 
deviations found within the trials.  
 
4.1. Synthetic data 

 
The first three simulated datasets, each having a size of 4000, are drawn from mixtures of 

two-dimensional Gaussian distributions, having, correspondingly, 4, 5 and 6 components and 
owning the same standard deviation 0 35σ = . . The components means are located on the unit circle 
with  equal  angular  neighbouring  distance  from  each  other.  The  datasets  components overlap. 
The results obtained for the two first datasets for the parameters NS = 100 and M = 300 are presented 
on Figures 1–2.  
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Figure 1. Error-bar plots of P50 and N30 for the simulated four components Gaussian dataset 

 

  

Figure 2. Error-bar plots of P50 and N30 for the simulated five components Gaussian dataset 

The true number of clusters has been properly found here. However, in the case of six components 
dataset owning a very blurred cluster structure, the true number of clusters is not detected. Even in a better 
separated six component set, where 0 3σ = . , the true number of clusters has not been clearly determined.  

 

 
Figure 3. Error-bar plots of P50 and N30 for the simulated six components Gaussian dataset with 0 3σ = .  and M = 400 

 

Nevertheless, increasing the samples size to M = 400 for 0 3σ = .  yields the determination of the 
correct number of clusters (see Figure 3).  
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4.2. Real-world data 
 

The real dataset is chosen from the text collection http//ftp.cs.cornell.edu/pub/smart/.  
This set includes three sub-collections, consisting of  

• 1033 medical;  
• 1460 information science;  
• 1400 aerodynamics abstracts.  

We select the 600 “best” terms, following the common “bag of words” method and used the data 
representation by means of two leading principal components. The results presented on Figure 4 show 
that the number of clusters is properly determined.  
 

Figure 4. Error-bar plots of P50 and N30 for the three text collections dataset with NS = 100 and M = 100 

 
Analogous results are observed in the situation where only 300 “best” terms are used. This dataset 

can be considered as a “noised” version of the previous one.  
 
Conclusions 
 

In the current paper we propose a methodology for detecting the number of clusters in a data set. 
In the framework of our approach we assume that a stable partition corresponds to a small distance, 
within clusters, between pairs of i.i.d. disjoint samples. Here, the Hotelling’s two-sample T-square 
statistic is selected as a distance between the pairs of sets. It is well known that the procedures for 
detecting the true number of clusters are noisy. Thus, conclusions have to be drawn based on a reasonable 
amount of information. To overcome this difficulty we construct empirical distributions of the distance 
between partitions, for all possible numbers of clusters, and the selected “true” number of clusters, is 
the one for which the distribution is the least concentrated at the origin. 

To exhibit the performance of the proposed methodology we provide several numerical simulations. 
It is realized that it performs quite well even under an adverse situation.  
 
References  
 
1. Barzily, Z., Volkovich, Z., Akteke-Ozturk, B., Weber, G.-W. On a minimal spanning tree approach 

in the cluster validation problem, Informatica, Vol. 2, 2009. 
2. Ben-Hur, A., Elisseeff, A., Guyon, I. A stability based method for discovering structure in clustered 

data. In: Proceedings of Pacific Symposium on Biocomputing, 2002, pp. 6–17.  
3. Ben-Hur, A. and I. Guyon. Methods in Molecular Biology / M. J. Brownstein and A. Khodursky (Ed.). 

Humana Press, 2003, pp. 159–182.  
4. Calinski, R. and J. Harabasz. A dendrite method for cluster analysis, Communications in Statistics, 

Vol. 3, 1974, pp. 1–27.  
5. Celeux G., Govaert, G. A classification EM algorithm and two stochastic versions, Computational 

Statistics and Data Analysis, Vol. 14, 1992, pp. 315–332.  
6. Chakravarthy, S. V., Ghosh, J. Scale-Based Clustering Using the Radial Basis Function Network, 

IEEE Transactions on Neural Networks, Vol. 7(5), 1996, pp. 1250–1261.  
7. Cheng, R. and G. W. Milligan. Measuring the influence of individual data points in a cluster 

analysis, Journal of Classification, Vol. 13, 1996, pp. 315–335.  



 
 

Applied Statistics and Operation Research 

 72

8. Cuevas, A., Febrero, M., Fraiman, R. Estimating the Number of Clusters, The Canadian Journal of 
Statistics, Vol. 28 (2), 2000, pp. 367–382.  

9. Cuevas, A., Febrero, M. and R. Fraiman. Cluster Analysis: A Further Approach Based on Density 
Estimation, Computational Statistics and Data Analysis, Vol. 28, 2001, pp. 441–459. 

10. Dudoit S., Fridlyand, J. A prediction-based resampling method for estimating the number of clusters 
in a dataset, Genome Biology, Vol. 3(7), 2002, pp. 1–21. 

11. Dunn, J. C. Well Separated Clusters and Optimal Fuzzy Partitions, Journal Cybern., Vol. 4, 1974, 
pp. 95–104.  

12. Fraley, C. and A. E. Raftery. How Many Clusters? Which Clustering Method? Answers Via Model-Based 
Cluster Analysis, The Computer Journal, Vol. 41(8), 1998, pp. 578–588. 

13. Gordon, A. D. Identifying genuine clusters in a classification, Computational Statistics and Data 
Analysis, Vol. 18, 1994, pp. 561–581.  

14. Gordon, A. D. Classification. Boca Raton, FL: Chapman and Hall, CRC, 1999. 
15. Hamerly, G. and C. Elkan. Learning the k in k-means. In: Proceedings of the Seventeenth Annual 

Conference on Neural Information Processing Systems (NIPS), December, 2003, pp. 281–288. 
16. Hartigan, J. A. Clustering Algorithms. Wiley, 1975. 
17. Hartigan, J. A. Consistency of Single Linkage for High-Density Clusters, Journal of the American 

Statistical Association, Vol. 76, 1981, pp. 388–394.  
18. Hartigan, J. A. Statistical theory in clustering, J. Classification, Vol. 2, 1985, pp. 63–76.  
19. Hubert, L. and J. Schultz. Quadratic assignment as a general data-analysis strategy, British J. Math. 

Statist. Psychology, Vol. 29, 1976, pp. 190–241.  
20. Jain, A., Dubes, R. Algorithms for Clustering Data. New Jersey: Englewood Cliffs, Prentice-Hall, 1988. 
21. Krzanowski W., Lai, Y. A criterion for determining the number of groups in a dataset using sum of 

squares clustering, Biometrics, Vol. 44, 1985, pp. 23–34.  
22. Kuhn, K. The Hungarian method for the assignment problem, Naval Research Logistics Quarterly, 

Vol. 2, 1955, pp. 83–97.  
23. Lange, T., Roth, V., Braun, M., Buhmann, J. M. Stability-based validation of clustering solutions, 

Neural Computation, Vol. 15(6), 2004, pp. 1299–1323.  
24. Levine, E., Domany, E. Resampling Method for Unsupervised Estimation of Cluster Validity, Neural 

Computation, Vol. 13, 2001, pp. 2573–2593.  
25. Mardia, K. V., Kent, J. T. and J. M. Bibby. Multivariate Analysis. Academic Press, 1979. 
26. Milligan, G. and M. Cooper. An examination of procedures for determining the number of clusters in 

a data set, Psychometrika, Vol. 50, 1985, pp. 159–179.  
27. Mufti, G., Bertrand, P., El Moubarki, L. Determining the number of groups from measures of cluster 

validity. In: Proceedigns of ASMDA, 2005, pp. 404–414.  
28. Pelleg, D., Moore, A. X-means: Extending K-means with efficient estimation of the number of 

clusters. In: Proceedings of the 17th International Conf. on Machine Learning. San Francisco, CA: 
Morgan Kaufmann, 2000, pp. 727–734. 

29. Rose, K., Gurewitz, E. and G. Fox. Statistical mechanics and phase transitions in clustering, Physical 
Review Letters, Vol. 65(8), 1990, pp. 945–948. 

30. Roth, V., Lange, T., Braun, M. and J. Buhmann. A resampling approach to cluster validation. In: Proc. 
Intl. Conf. on Computational Statistics, 2002, pp. 123–128. 

31. Still, S. and W. Bialek. How Many Clusters? An Information-Theoretic Perspective, Neural Computation, 
Vol. 16(12), 2004, pp. 2483–2506.  

32. Stuetzle, W. Estimating the Cluster Tree of a Density by Analyzing the Minimal Spanning Tree 
of a Sample, J. Classification, Vol. 20(5), 2003, pp. 25–47.  

33. Sugar, C. and G. James. Finding the Number of Clusters in a Data Set: An Information Theoretic 
Approach, Journal of the American Statistical Association, Vol. 98, 2003, pp. 750–763. 

34. Tibshirani, R., Walther, G. and T. Hastie. Estimating the number of clusters via the gap statistic, 
J. Royal Statist. Soc. B, Vol. 63(2), 2001, pp. 411–423. 

35. Volkovich, Z., Barzily, Z. and L. Morozensky. A statistical model of cluster stability, Pattern Recognition, 
Vol. 41(7), 2008, pp. 2174–2188.  

36. Volkovich, Z., Barzily, Z., Avros, R. and D. Toledano-Kitai. On application of the K-nearest neighbors 
approach for cluster validation. In: Proceedings of the XIII International Conference Applied Stochastic 
Models and Data Analysis (ASMDA), 2009.  

37. Wishart, D. Mode Analysis: A Generalization of Nearest Neighbor, which Reduces Chaining Effects. 
In: Numerical Taxonomy. London: Academic Press, 1969, pp. 282–311.  

 
Received on the 21st of June, 2010 



 
 

Applied Statictics and Operation Research 

 73

Computer Modelling and New Technologies, 2010, Vol.14, No.4, 73–76 
Transport and Telecommunication Institute, Lomonosova 1, LV-1019, Riga, Latvia 

 
PREDICTIONS ON THE FORMATION  
OF NERVE-MUSCLE CONNECTION 

 
I. Nowik 

 
The Department of Industrial Engineering and Management, SCE-Shamoon College of Engineering 

Beer-Sheva, 84100, Israel 
E-mail: iritno@sce.ac.il  

 
During the first couple of weeks after birth neurons that innervate a muscle “compete” with each other to innervate a maximal 

number of muscle fibres. The result of this competition is that the less active neurons innervate more muscle fibres than the more 
active neurons. This is called the “size principle” and it means that the less active neurons win in more competitions. This is 
surprising, as looking at the isolated muscle fibre (i.e., one battle) a competitive advantage to the more active neurons is observed. 
Using the approach of game theory we explain, in a previous paper [1], how this may happen. In the current paper we present 
several predictions that follow from our model. 
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1. Introduction 
 

A muscle is composed of many fibres. At birth, each muscle fibre is innervated by several neurons 
called motoneurons (MNs) but during the first couple of weeks after birth, a competitive process called 
“synapse elimination” abolishes the connections of all MNs but one, which we call “the winner at that 
muscle fibre”. As each MN innervates initially many muscle fibres, it engages in many competitions 
simultaneously, winning at some and losing at others. When the competition period ends each muscle 
fibre is innervated by only one MN, but each MN innervates a group of muscle fibres, called a “muscle 
unit”. When an electrical stimulus arrives at the MN's cell body, if it is higher than the MN's activation 
threshold, then it activates the MN, which in turn, activates all the fibres in its muscle unit. At the end of 
synapse elimination, the less active MNs (i.e., MNs with higher activation thresholds) have larger muscle 
units than the more active MNs. This is called “The Size Principle”. The size principle is well established 
empirical fact. It is found in the motor system of almost all vertebrates, and is thought of as one of  
the most fundamental principles in the organization of motor-unit behavior, therefore it is important to 
understand how it evolves. In viewing the period of synapse elimination as a game in which MNs are 
competing to innervate a maximal number of muscle fibres, the translation of the size principle is that  
the less active MNs win in more competitions than the more active MNs. This means that being less 
active is “advantageous” in this process. But surprisingly, the majority of experiments that have manipulated 
the activity of MNs during synapse elimination seem to point to the opposite conclusion, that it is the more 
active MNs that are advantageous in this process. In particular, all the experiments that were done at  
the isolated muscle fibre suggest some competitive advantage to the more active MNs. Thus, the less 
active MNs are disadvantage in the single battles (i.e., single muscle fibre) but manage, somehow, to win 
the war (i.e., win in more muscle fibres). In this work we explain why the less active MNs win in more 
competitions and we resolve the paradox of seemingly contradicting experimental data. The results of this 
work are proved mathematically and are presented in a separate paper [1]. In order to illustrate these 
results we additionally simulated the game using MatLab. In the present paper, we concentrate on several 
predictions that follow from our model.  
 
2. The Model 
 

The players are the  MNs  innervating one muscle.  As we are interested in the connection between  
the activity level of a MN and the size of it's muscle units, we define the strategy of each MN as its 
activity level,* and define the payoff as the final size of its muscle unit. We assume that the activity levels 
                                                      
* As in evolutionary games, it is not assumed that players choose their strategies, but rather they are determined by the genes. Unlike 
evolutionary games, the activity levels do not change along the game, thus from an evolutionary game theory stand point this is  
a one stage game. 
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of the MNs are independent identically distributed random variables.† We divide the MNs into two equal 
sized groups according to their activity levels: M-group contains the 50% more active MNs and L-group 
contains the 50% less active MNs. This division does not imply that MNs in the same group cooperate in 
any manner (e.g., share resources). It is only done for mathematical convenience.  

We would like to define the activity level of a muscle fibre, namely the frequency of its activation. 
As the MNs connecting to the muscle fibre are the ones to activate it, we define the level of activity of  
a muscle fibre as the sum of activity levels of the MNs connecting to it. 
 

There are two rules in the game, based on experimental results: 
 

1. The competitions at the muscle fibres end at different times, according to a decreasing level of 
activity of the muscle fibres, namely the first competition to end, is the one occurring at the most 
active muscle fibre and the last competition to end occurs at the least active muscle fibre. 

2. When a MN wins a muscle fibre this reduces its future winning probabilities at other muscle fibres. 
 

The main idea of our model and the key factor in understanding why the less active MNs win in 
more competitions is realizing that the time of winning at a muscle fibre plays a critical role in the process. 
When a MN wins at a muscle fibre it must devote resources for maintaining this connection, and thus it 
has less available resource for competing at other muscle fibres. In such circumstances it is advantageous 
to win in later stages of the process rather than in earlier ones, because winning at a late stage will affect 
only the fewer competitions that are not yet resolved (i.e., the MN will lack resources and compete poorly 
only in the few remaining competitions), whereas winning at earlier stages will negatively affect more 
competitions and cause the MN to lose in more competitions. This is exactly what the less active MNs do; 
they mainly take part in competitions that end at later stages of the game and thus, these are the 
competitions in which they win. The reason for our claim that the less active MNs take part in 
competitions that end relatively late is as follows. According to rule 1 the time in which a competition 
ends is determined according to the activity level of the muscle fibre but this, in turn, is determined 
according to the activity level of the MNs connecting to it. Therefore a muscle fibre that is mainly 
connected by more active MNs will be more active and thus its competition will end at early stage of 
the process. Similarly, a muscle fibre that is mainly connected by less active MNs will be less active and 
thus its competition will end at later stages of the process. Summarizing this argument - the more active 
MNs tend to win at earlier stages of the process and the less active MNs tend to win in later stages of 
the process. This difference in the times of winning works in favour of the less active MNs, because, as 
explained, it is advantageous to win later rather than earlier. As a result of this advantage, the less active 
MNs win, in total, more competitions than the more active MNs. Thus even though, the less active MNs 
may have some disadvantage at the single battle (single muscle fibre), because they “invest” and win 
more in later competitions, then in total, they win in more competitions and thus 'win the war' yielding 
the size principle.  

We now present several predictions that follow from our model. We use MatLab to illustrate some 
of these predictions. 

 
3. Predictions 
 

The predictions presented here are of two types. The first, are predictions that relate to known 
experimental results. In such case we show that our model is consistent with these results. The second 
type, are new predictions that follow from our model.  
 
3.1. The MN Winning at a Muscle Fibre is Expected to be Less and Less Active as Synapse 

Elimination Proceeds 
 

This prediction follows directly from the rule 1 listed above. 
 
3.2. The Role of Neuronal Indentity in Synapse Elimination  
 

In a paper by Kasthuri and Lichtman [2], all muscle fibres that were co-innervated by the same 
two MNs were examined on a late stage of synapse elimination (between the seventh to ninth days after 
birth). At this late stage of the game, these two MNs were usually the last two competitors left at these 

                                                      
† The distribution density is assumed to be symmetrical, e.g., uniform or normal distribution. 
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muscle fibres. The competitions all ended with the same winner. This winner was the one that had  
a smaller muscle unit at that time. Our model predicts this experimental result according to rule 2.  
 
3.3. Selective Stimulation 

 
Ridge and Betz [3] selectively stimulated the activity of some of the MNs innervating a muscle. 

This resulted in larger muscle units for the stimulated group. According to our model, selective 
stimulation is expected to have opposite effects; raising the winning probabilities of the stimulated MNs 
during the competition period, but also specifically bringing forward competitions at muscle fibres that 
are innervated by stimulated axons (thus reducing their actual winning probabilities).  

To introduce stimulation in our model, the MNs were divided to “stimulated” and “un-stimulated” 
groups (instead of “more active” and “less active” MNs). Figure 1a shows a simulation of our model that 
follows the stimulation procedure of Ridge and Betz [3]. As seen, our model yields the same result as in 
the experimental results. In addition, we predict that executing the same procedure earlier will prove to 
be less successful for the stimulated group (Figure 1b) (see [1] for details regarding the simulation 
procedure). 

 
Figure 1. The effect of selective stimulation according to our model. 

a) As in Ridge & Betz[3], 5 consecutive short stimulations were applied, each for a fraction of 0.015 stages (corresponding to 4 hrs 
of stimulation per day, for 5 days). Depicted, is the difference in the number of winnings between the stimulated and the un-stimulated 
groups. The stimulated group (dotted line) won in significantly more competitions than the control (smooth line) P < 0.03, one-tailed t-test.  

b) Executing the same procedure earlier is less successful for the stimulated group 
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3.4. The Size of the Muscle is not a Factor in the expression of the Size Principle  
 

We measure the expression of the size principle by the difference in the number of wins (between 
the M-group and L-group), divided by the number of fibres in the muscle. It follows from the mathematical 
analysis of our model (see [1]) that a large muscle (i.e., a muscle with many fibres) expresses the size 
principle to the same extent as a small muscle. This is also shown in the simulation presented on Figure 2. 

 
Figure 2. According to our model the expression of the size principle does not depend on the size of the muscle.  

Depicted is the difference W between the number of wins of the two groups, divided by the number of fibres N  
in the muscle. As seen, All along the game, there is no significant difference in the expression of the size principle  
for different values of N 

 
Conclusions 
 

In this paper we presented several predictions that follow from our model for the competition 
between MNs innervating one muscle. Although the assumptions of the game are based on experiments, 
they are easily generalized for application to a much wider scope of situations, for example economical 
systems. When facing a multi-stage 'game', in which resources are limited and are needed for 
maintenance of previous wins, winning later is advantageous, thus the strategic implication is that if one 
needs to allocate his resources in advance, one should invest more in later competitions rather than in 
earlier ones.  

 
References 
 
1. Nowik, I. The game MNs play, Games and Economic Behavior, Vol. 66, 2009, pp. 426–461. 
2. Kasthuri, N., Lichtman, J. W. The role of neuronal identity in synaptic competition, Nature, Vol. 424, 

2003, pp. 426–30. 
3. Ridge, R. M. and W. J. Betz. The effect of selective, chronic stimulation on motor unit size in developing 

rat muscle, J. Neurosci, Vol. 4, 1984, pp. 2614–20. 

 
Received on the 21st of June, 2010 



 
 

Authors’ index 

 77

Computer Modelling & New Technologies, 2010, Volume 14, No. 4 
Transport and Telecommunication Institute, Lomonosova 1, Riga, LV-1019, Latvia 
 

 
 

Authors' index 
 
 
 
 
 

Avros R. 65 
Barzily Z. 65 
Ben-Yair A. 14 
Bischoff W. 7 
Golenko-Ginzburg  D. 50 
Greenberg D.  14 
Greenglaz L. 19 
Gurevich G. 6,31 
Guseynov S. 19 
Huber C. 40 
Iliev V.A. 57 
Kopytov E. 19 
Laslo Z. 6,50 
Nowik I. 73 
Petkov G.I. 57 
Puzinkevich E. 19 
Toledano-Kitai D. 65 
Vexler A. 31 
Volkovich Z.  65 
Vonta F.  40 

 



 
 

 78

Computer Modelling & New Technologies, 2010, Volume 14, No. 4 *** Personalia 

 
 

 

Yuri N. Shunin (born in Riga, March 6, 1951) 
• Vice-Rector on Academic Issues (Information Systems Management Institute), 

professor, Dr.Sc.Habil., Member of International Academy of Refrigeration 
• Director of Professional Study Programme Information Systems (Information Systems 

Management Institute) 
• Director of Master Study Programme Computer systems (Information Systems 

Management Institute) 
• University study: Moscow physical and technical institute (1968–1974).  
• Ph.D. (physics & mathematics) on solid state physics (1982, Physics Institute of 

Latvian Academy of Sciences), Dr.Sc.Habil (physics & mathematics) on solid 
state physics (1992, Ioffe Physical Institute of Russian Academy of Sciences)  

• Publications: 400 publications, 1 patent 
• Scientific activities: solid state physics, physics of disordered condensed media, 

amorphous semiconductors and glassy metals, semiconductor technologies, heavy 
ion induced excitations in solids, mathematical and computer modelling, system 
analysis 

 

 
 
 

Igor V. Kabashkin (born in Riga, August 6, 1954) 
• Vice-rector for Research and Development Affairs of Transport and 

Telecommunication Institute, Professor, Director of Telematics and Logistics 
Institute  

• PhD in Aviation (1981, Moscow Institute of Civil Aviation Engineering) 
Dr.Sc.Habil. in Aviation (1992, Riga Aviation University), Member of the 
International Telecommunication Academy, Member of IEEE, Corresponding Member 
of Latvian Academy of Sciences (1998) 

• Publications: 420 scientific papers and 67 patents 
• Research activities: information technology applications, operations research, electronics 

and telecommunication, analysis and modelling of complex systems, transport 
telematics and logistics 

 

 

 

Filia Vonta 
• Assistant Professor, Department of Mathematics, National Technical University of 

Athens, Greece 
• Education-employment: she received a MA in 1988 and a PhD degree in 1992 

from the University of Maryland, USA, in Mathematical Statistics. From 1993 to 
2009 she was employed at the Department of Mathematics and Statistics of 
the University of Cyprus, Cyprus 

• Scientific interests: semiparametric Statistics, Survival analysis, Analysis of 
Medical Data 

• Publications: more than 30 in refereed journals and books 

 
 

Doron Greenberg (born in Israel, 1955) 
• Senior Lecturer and Head of the Financial Branch, the Department of Economics 

and Business Administration and the Department of Industrial Engineering, Ariel 
University Center of Samaria, Ariel, Israel 

• University study: Leon Recanati Graduate School of Business Administration, 
Tel-Aviv University, Israel (1982–1985) 

• University study: The Technion, Israel Institute of Technology, Haifa, Israel 
(1978–1980) 

• Ph.D. (Economics) on applying option theory to investments in R&D (1992, the University 
of Houston, USA) 

• Publications: about 30 refereed articles and refereed letters in scientific journals 
• Scientific activities: economic capital risk management, promoting ethics in 

organizations, production planning and control, planning and controlling network 
projects, industrial scheduling, managing reliability and safety 

 



 
 

 79

Computer Modelling & New Technologies, 2010, Volume 14, No. 4 *** Personalia 

 

Dimitri Golenko-Ginzburg (born in Moscow, November 24, 1932) 
• Professor, Industrial Engineering and Management Department, Ariel University 

Center of Samaria, Ariel, Israel 
• Professor, Industrial Engineering and Management Department, Ben-Gurion 

University of the Negev, Beer-Sheva, Israel (1988-2004) 
• Full Professor (tenured position), Institute of National Economics, Uzbekistan 

Ministry of Higher Education, Tashkent (1977–1979) 
• Full Professor (tenured position), Moscow Economico-Statistical Institute, USSR 

Ministry of Higher Education,  Moscow (1967–1977)  
• University study: Moscow State University, Department of Mathematics (1954–1958) 
• University study: Moscow Institute of National Economics, Department of 

Economics (1950–1954) 
• Ph.D. (Applied Mathematics) on simulating probability processes on computers 

(1962, Moscow Physico-Technical Institute) 
• Publications: 15 books, about 500 refereed articles and refereed letters in scientific 

journals 
• Scientific activities: production planning and control, planning and controlling 

network projects, industrial scheduling, managing reliability and safety 

 

 

Avner Ben-Yair (born in Moscow, May 19, 1961) 
• Lecturer, Industrial Engineering and Management Department, SCE – Sami 

Shamoon College of Engineering, Beer-Sheva, Israel (2002–2010) 
• Health and Safety-at-Work Engineer, Baran Engineering Co., Israel (1996–1999) 
• Health and Safety-at-Work Engineer, AVX Israel, Jerusalem (1986–1996) 
• University study: Ben-Gurion University of the Negev, Beer-Sheva, Israel (1999–2001) 
• University study: Moscow Polygraphic Institute, Department of Mechanical 

Engineering (1979–1985) 
• Ph.D. (Industrial Engineering and Management) on harmonization models in strategic 

management and safety engineering (2004, Ben-Gurion University of the Negev) 
• Publications: 90 refereed articles and refereed letters in scientific journals 
• Scientific activities: system performance and effectiveness, reliability and failure 

analysis, fault tree analysis, trade-off optimisation models for organization systems, 
risk analysis and contingency planning, maintainability and hazard analysis techniques, 
economic aspects of safety, production planning, scheduling and control, strategic 
management, network models structure and project scheduling, cost optimization 
and PERT-COST models 

 



 
 
Computer Modelling & New Technologies, 2010, volume 14, No 4 *** CUMULATIVE INDEX 

 80

CUMULATIVE INDEX 
 
COMPUTER MODELLING and NEW TECHNOLOGIES, volume 14, No. 4, 2010 

(Abstracts) 

 
W. Bischoff. Residual Partial Sums Techniques for Fixed Designs to Find Change-Points in 
Linear Regression, Computer Modelling and New Technologies, vol. 14, No 4, 2010, pp. 7–13. 

We investigate a data set describing the quality of a production process. By the information of 
these data it has to be decided whether the quality is constant or whether the quality changes. Our null 
hypothesis is that the quality is constant that is a linear regression. In practice it is popular to investigate 
the partial sums of the least squares residuals to look for changes in linear regression. The partial 
sums of the least squares residuals can be embedded into the class of continuous functions. By this 
procedure we obtain a stochastic process with continuous paths. It is called residual partial sum 
process. If the number of observations is large enough a projection of the Brownian motion can be 
considered as approximation (with respect to weak convergence) of the residual partial sum process. 
This projection of the Brownian motion can be used to establish non-parametric tests of Cramér-von 
Mises and Kolmogorov-Smirnov type to test for changes in linear regression. We use this procedure 
to test the data for constant quality. 

Keywords: residual partial sum limit processes, linear regression models, fixed designs, 
Brownian motion, projections of Brownian motion, reproducing kernel Hilbert space, change-point 
problem 

 
D. Greenberg, A. Ben-Yair. Beta-Distribution Models in Stochastic Project Management, 
Computer Modelling and New Technologies, vol. 14, No 4, 2010, pp. 14–18. 

A research is undertaken to justify the use of beta-distribution p.d.f. for man-machine type activities 
under random disturbances. The case of using one processor, i.e., a single resource unit, is examined. 
It can be proven theoretically that under certain realistic assumptions the random activity – time 
distribution satisfies the beta p.d.f. Changing more or less the implemented assumptions, we may alter 
to a certain extent the structure of the p.d.f. At the same time, its essential features (e.g. asymmetry, 
unimodality, etc.) remain unchanged. The outlined above research can be applied to semi-automated 
activities, where the presence of man-machine influence under random disturbances is, indeed, very 
essential. Those activities are likely to be considered in organization systems (e.g. in project management), 
but not in fully automated plants.  

Keywords: random activity duration, time – activity beta-distribution, operating by means of 
a single processor, convergence to a beta-distribution “family” 

 
E. Kopytov, S. Guseynov, E. Puzinkevich, L. Greenglaz. Continuous Models of Current 
Stock of Divisible Productions, Computer Modelling and New Technologies, vol. 14, No 4, 
2010, pp. 19–30. 

In the given paper we investigate the problem of constructing continuous and unsteady 
mathematical models to determine the volumes of current stock of divisible productions using 
apparatus and equations of mathematical physics. It is assumed that time of production distribution 
and replenishment is continuous. The constructed models are stochastic, and have different levels of 
complexity, adequacy and application potentials. The simple models are constructed using the theory 
of ordinary differential equations, for construction of more complex models the theory of partial 
differential equations is applied. Furthermore for some of proposed models we have found  
an analytical solution in the closed form, and for some of proposed models the discretization is carried 
out using stable difference schemes.  

Keywords: inventory control model, current stock, divisible production, equations of mathematical 
physics 
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G. Gurevich, A. Vexler. Statistical Inference Using Entropy Based Empirical Likelihood 
Statistics, Computer Modelling and New Technologies, vol. 14, No 4, 2010, pp. 31–39. 

In this article, we show that well known entropy-based tests are a product of empirical 
likelihood ratio. This approach yields stable definitions of entropy-based statistics for goodness-of fit 
tests and provides a simple development of two-sample tests based on samples entropy that have not 
been presented in the literature. We introduce the distribution-free density-based likelihood techniques, 
applied to test for goodness-of-fit. In addition, we propose and examine nonparametric two-sample 
likelihood ratio tests for the case-control study based on samples entropy. The Monte Carlo simulation 
study indicates that the proposed tests compare favourably with the standard procedures, for a wide 
range of null / alternative distributions.  

Keywords: empirical likelihood, entropy, goodness-of-fit tests, two-sample nonparametric 
tests, case-control study  

 
F. Vonta, C. Huber. On the Estimation of Structural Parameters in Frailty Models for Interval 
Censored and Truncated Data, Computer Modelling and New Technologies, vol. 14, No 4, 2010, 
pp. 40–49. 

We consider survival data that are both interval censored and interval truncated. We assume  
a semiparametric frailty or transformation model for the survival function and consider censoring and 
truncation distributions as in Huber, Solev and Vonta [6], [7]. We propose the use of modified profile 
likelihood estimators for the structural parameter of the model as in Slud and Vonta [11]. For fixed 
values of the structural parameter, we derive the least favourable parametrization of the nuisance 
infinite-dimensional parameter, on which the definition of the modified profile likelihood estimator is 
relied upon. We discuss the semiparametric efficiency of the modified profile likelihood estimator of 
the finite-dimensional regression parameter in the presence of the infinite-dimensional nuisance 
parameter, that is, the baseline cumulative hazard function. 

Keywords: frailty models, least favourable model, interval censored and truncated data, 
semiparametric estimation  

 
D. Golenko-Ginzburg, Z. Laslo. Upon Controlling Several Building Projects in a Two-Level 
Construction System, Computer Modelling and New Technologies, vol. 14, No 4, 2010, pp. 50–56. 

A two-level construction system is considered to be composed of several different building 
projects iU , ni ≤≤1 , at the lower level and a control device at the upper one. The upper system’s 
level is required to produce a given target amount  V  by a given due date D  subject to a chance constraint, 
i.e. the least permissible probability p  of meeting  the target on time is pregiven. Each building project iU  

has several possible speeds 1iv , 2iv , ... , imv , which are subject to random disturbances. The project’s 
output can be measured only at preset inspection (control) points. The target amount is gauged 
by a single measure, e.g. in square meters, and may be rescheduled among the projects. For each unit, 
the average costs per time unit for each project and the average cost of performing a single inspection 
at a control point to observe the actual output at that point are given. 

We present a two-level on-line control model under random disturbances, which centres on 
minimizing the system’s expenses subject to the chance constraint. The suggested two-level heuristic 
algorithm is based on rescheduling the overall target among the projects both at 0t = , when the system 
starts functioning, and at each emergency point, when it is anticipated that a certain project is unable 
to meet its local target on time subject to a chance constraint. At any emergency point t  the remaining 
system’s target tV  is rescheduled among the projects; thus, new local targets itV , ni ≤≤1 , 
∑ =i tit VV , are determined. New local chance constraint values itp  are determined too. Those values enable 
the system to meet its overall target at the due date subject to the pregiven chance constraint p . 

Keywords: production speed, cost-optimisation, target amount reassignment, chance constraint, 
inspection point 

 
G. I. Petkov, V. A. Iliev. Performance Evaluation of Teamwork Reflexive Analysis, Computer 
Modelling and New Technologies, vol. 14, No 4, 2010, pp. 57–64. 

The paper presents the development and supplementation of an advanced Human Reliability 
Analysis technique – Performance Evaluation of Teamwork method with approaches and mechanisms 
of reflexive analysis for prevention of erroneous communication and decision-making. 

Keywords: reflection, reflexive analysis, typing, scenario analysis, styling, communicative barriers, 
Human Reliability Assessment (HRA), risk, human erroneous actions, Performance Evaluation of 
Teamwork (PET) method  
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Z. Volkovich, Z. Barzily, D. Toledano-Kitai, R. Avros. The Hotelling’s Metric as a Cluster 
Stability Measure, Modelling and New Technologies, vol. 14, No 4, 2010, pp. 65–72. 

The estimation of the suggested number of clusters in dataset is an ill posed problem of 
essential relevance in cluster analysis. A group (cluster) is characterized by a relatively high similarity 
among its elements in addition to a relatively low similarity to elements of other groups. High stability 
in partitions, obtained from the same data source, is logically classified as a high consistency of  
the clustering process. Thus, the number of clusters that maximizes cluster stability can serve as  
an estimator for the “true” number of clusters. In the current paper we consider a probabilistic 
approach to this problem resting upon the Gaussian clusters model. We claim that sequences of 
clustered samples can be interpreted as Gaussian distributed i.i.d. samples drawn from the same 
source, if the number of clusters is chosen correctly. The samples closeness, within the clusters, can 
be measured by means of the p-values, calculated for the appropriate Hotelling’s T-square statistic. 
Data outliers and clustering algorithm’s shortcomings can yield small p-values. However, we presume 
that their empirical distribution is least concentrated at the origin, if the number of clusters is chosen 
correctly. Our procedure can roughly be described as a generation of such a distribution with a sequential 
application of a concentration test.  

Keywords: clustering, Hotelling's criteria, cluster validation 
 
I. Nowik. Predictions on the Formation of Nerve-Muscle Connection, Modelling and New 
Technologies, vol. 14, No 4, 2010, pp. 73–76. 

During the first couple of weeks after birth neurons that innervate a muscle “compete” with each 
other to innervate a maximal number of muscle fibres. The result of this competition is that the less 
active neurons innervate more muscle fibres than the more active neurons. This is called the “size principle” 
and it means that the less active neurons win in more competitions. This is surprising, as looking at 
the isolated muscle fibre (i.e., one battle) a competitive advantage to the more active neurons is observed. 
Using the approach of game theory we explain, in a previous paper [1], how this may happen.  
In the current paper we present several predictions that follow from our model. 

Keywords: game theory, size principle, computational neuroscience 
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COMPUTER MODELLING and NEW TECHNOLOGIES,  14.sējums, Nr. 4, 2010 
(Anotācijas)  

 
V. Bišofs. Atlikušo daļējo summu tehnikas nemainīgiem projektiem, lai atrastu maiņas punktus 
lineārajās regresijās, Computer Modelling and New Technologies, 14.sēj., Nr.4, 2010, 7.–13. lpp. 

Rakstā tiek izpētīta datu rinda, kas apraksta ražošanas procesa kvalitāti. Saskaņā ar šo datu 
sniegto informāciju, ir jānolemj, vai kvalitāte ir konstanta, vai tā mainās. Mūsu nulles hipotēze ir, ka 
kvalitāte ir konstanta, kas ir lineāra regresija. Praksē ir ierasts izpētīt daļējās summas no mazākās 
kvadrātu starpības, lai redzētu izmaiņas lineārajā regresijā. Daļējās summas no mazākās kvadrātu 
starpības var tikt ievietotas nepārtraukto funkciju klasē. Līdz ar šo procedūru mēs iegūstam stohastisko 
procesu ar nepārtrauktiem ceļiem. Tas tiek saukts par atlikušo daļējo summas procesu. Ja novērojumu 
skaits ir pietiekami liels, Brauna kustības projekcija var tikt uzskatīta kā atlikušā daļējās summas 
procesa aproksimācija (pieņemot, ka konverģence ir vāja). Šī Brauna kustības projekcija var tikt 
pielietota, lai noteiktu Cramér-von Mises neparametriskos testus un Kolmogorova-Smirnova tipa 
testus lineārās regresijas izmaiņām. Mēs lietojam šo procedūru, lai testētu datus konstantai kvalitātei. 

Atslēgvārdi: atlikušās daļējās summas limita procesi, lineārās regresijas modeļi, nemainīgie 
projekti, Brauna kustība, Brauna kustības projekcija, maiņas punkta problēma 

 
D. Grīnbergs, A. Ben-Jears. Beta sadales modeļi stohastiskajā vadības projektā, Computer 
Modelling and New Technologies, 14.sēj., Nr.4, 2010, 14.–18. lpp. 

Pētījumā tiek pamatots beta-sadales p.d.f. lietojums cilvēka-ierīces tipa aktivitātēm pie nejaušiem 
traucējumiem. Tiek izskatīts viena procesora lietojuma gadījums, t.i., viena vienīga resursa vienība. 
Var tikt teorētiski pierādīts, ka pie noteiktiem reāliem pieņēmumiem nejauša darbība – laika sadalījums 
apmierina beta p.d.f. Vairāk vai mazāk pamainot ieviestos pieņēmumus, mēs varam zināmā mērā 
pārveidot p.d.f. struktūru. Tanī pašā laikā tā pamata īpašības (e.g. asimetrija, uni-modalitāte, etc.) 
paliek nemainīgas. Iepriekšminētais pētījums var tikt pielietots semi-automatizētām darbībām, kur 
cilvēka-ierīces ietekmes klātbūtne pie nejaušiem traucējumiem, bez šaubām, ir ļoti būtiska. Šīm darbībām 
jābūt izskatītām organizācijas sistēmās (e.g. projekta vadībā), bet ne pilnīgi automatizētās rūpnīcās. 

Atslēgvārdi: nejaušas darbības turpināšanās, laiks – darbības beta-sadalījums, darbojoties  
ar viena vienīga procesora līdzekļiem, konverģence beta-sadalījuma ‘kopā’  

 
J. Kopitovs, S. Guseinovs, E. Puzinkevičs, L. Gringlazs. Dalāmās produkcijas kārtējo 
sortimentu nepārtrauktie modeļi, Computer Modelling and New Technologies, 14.sēj., Nr.4, 
2010, 19.–30. lpp. 

Dotajā rakstā autori pēta nepārtrauktu un nestabilu matemātisko modeļu uzbūvi, lai noteiktu 
dalāmās produkcijas kārtējo sortimentu, lietojot matemātiskās fizikas vienādojumus un ierīces. Tiek 
pieņemts, ka produkcijas sadales laiks un atkārtota piepildīšana ir nepārtraukta. Uzbūvētie modeļi ir 
stohastiski un tiem ir sarežģītības, atbilstības un pielietojumu potenciāla dažādi līmeņi. Vienkāršie modeļi 
ir uzbūvēti, pielietojot vienkāršu diferenciālvienādojumu teoriju, sarežģītāku modeļu uzbūvei tiek 
pielietota daļēja diferenciālvienādojumu teorija. Turpmāk dažiem no piedāvātajiem modeļiem autori 
ir atraduši analītisku risinājumu slēgtā veidā un dažiem no piedāvātajiem modeļiem tiek izstrādāta 
diskretizācija, lietojot stabilas atšķirības shēmas. 

Atslēgvārdi: inventāra kontroles modelis, kārtējais krājums, dalāmā produkcija, matemātiskās 
fizikas vienādojumi 

 
G. Gurevičs, A. Vekslers. Statistiskās metodes, lietojot entropiju, pamatotu uz empīriskās 
varbūtības statistiku, Computer Modelling and New Technologies, 14.sēj., Nr.4, 2010, 31.–39. lpp. 

Šajā rakstā autori parāda, ka vispārzināmie uz entropiju bāzētie testi ir empīriskās varbūtības 
proporcijas produkts. Šī pieeja prasa stabilas uz entropiju bāzētas statistikas definīcijas labskanības 
testiem un nodrošina divu paraugu testu vienkāršu izstrādi, kas pamatoti uz paraugu entropiju, kas nav 
līdz šim prezentēti literatūrā. Autori piedāvā sadales brīvu uz blīvumu bāzētu varbūtības tehnikas, kas 
pielietots labskanības testēšanai. Papildus autori piedāvā un novērtē neparametriskus divu paraugu 
varbūtības proporciju testus gadījuma-kontroles izpētei, kas pamatota uz paraugu entropiju. Monte 
Karlo simulācijas izpēte norāda, ka piedāvātie testi salīdzināmi ar standarta procedūrām plašai 
nulles / alternatīvas sadales rindai. 

Atslēgvārdi: empīriskā varbūtība, entropija, labskanības testi, neparametriskie divu paraugu 
testi, gadījuma-kontroles izpēte 
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F. Vonta, K. Hubers. Par strukturālo parametru novērtēšanu trausluma modeļos intervāla 
cenzētajiem un nogrieztajiem datiem, Computer Modelling and New Technologies, 14.sēj., Nr.4, 
2010, 40.–49. lpp. 

Autori izskata paliekošos datus, kuri ir kā intervāla cenzētie, tā arī intervāla nogrieztie dati. 
Tiek pieņemts semi-parametrisks trausluma vai transformācijas modelis izdzīvošanas funkcijai un tiek 
izskatītas cenzētās un nogrieztās distribūcijas, kā tas ir parādīts, skat. Huber, Solev un Vonta [6], [7]. 
Autori piedāvā modificētā profila varbūtības novērtētājus modeļa strukturālajam parametram, kā tas ir 
parādīts, skat. Slud un Vonta [11].  

Strukturālā parametra fiksētām vērtībām mēs iegūstam vismaz izdevīgu parametrizāciju no 
neierobežoti-dimensionāla parametra traucējuma, uz kā balstās modificētā profila varbūtības novērtējuma 
definīcija. 

Atslēgvārdi: trausluma modeļi, vismazākā izdevīguma modelis, intervāla cenzētie un nogrieztie 
dati, semi-parametriskā novērtēšana 

 
D. Golenko-Ginzburgs, Z. Laslo. Par dažu ēku projektu kontroli divlīmeņa būves sistēmā, 
Computer Modelling and New Technologies, 14.sēj., Nr.4, 2010, 50.–56. lpp. 

Divlīmeņa būves sistēma – tā sastādās no vairākiem dažādiem projektiem iU , ni ≤≤1 ,  
zemākajā līmenī un kontroles ierīce uz augstākā. Augstākās sistēmas līmenim ir paredzēts veikt dotā 
uzdevuma daudzumu V ar doto maksājumu datumu D atkarībā no gadījuma ierobežojuma, i.e. tiek 
iepriekš dots paredzamais uzdevums laikā vismazākajā atļaujamajā varbūtībā p . Ikvienam ēkas 

projektam iU  ir vairāki iespējamie ātrumi 1iv , 2iv , ... , imv , kuri ir nejaušo dislokāciju subjekti. 
Projekta iznākums var būt mērīts tikai pašreizējās inspekcijas (kontroles) punktos. Uzdevumu daudzums 
tiek kalibrēts ar vienkāršu mēru, piem., kvadrātmetros, un var tikt pārplānots starp projektiem. Katrai 
vienībai tiek dotas vidējās izmaksas uz laika vienību katram projektam un vidējās izmaksas, lai veiktu 
vienkāršu inspekciju kontroles punktā, lai novērotu faktisko iznākumu punktā. 

Autori prezentē divlīmeņu tiešsaistes kontroles modeli pie nejaušiem traucējumiem, kas centrējas 
uz izmaksu samazināšanos atkarīgas no gadījuma ierobežojumiem. Piedāvātais divlīmeņu heiristiskais 
algoritms ir pamatots uz vispārējo uzdevuma pārplānošanu starp projektiem kā pie 0t = , kad sistēma 
uzsāk darbību, tā pie katra kritiskā stāvokļa punkta, kad tas tiek sagaidīts, ka konkrēts projekts nespēj 
pārvarēt tā vietējo mērķi laikā pakļautu gadījuma ierobežojumam. Katrā kritiskā stāvokļa punktā 
t atlikušais sistēmas mērķis tV tiek pārplānots starp projektiem; tādējādi jauni lokālie mērķi itV , 

ni ≤≤1 , ∑ =i tit VV , tiek noteikti. Bez tam tiek noteiktas arī jaunas lokāla gadījuma ierobežojuma 
vērtības itp  . Šīs vērtības sekmē sistēmai pārvarēt tā vispārējo uzdevumu saskaņā ar maksājumu datumu 
atkarībā no iepriekš dotā gadījuma ierobežojuma p . 

Atslēgvārdi: ražošanas ātrums, izmaksu optimizācija, uzdevumu daudzuma reasignējums, gadījuma 
ierobežojums, inspekcijas punkts 

 
G. I. Petkovs, V. A. Iļjevs. Komandas darba refleksīvās analīzes veikuma novērtēšana, Computer 
Modelling and New Technologies, 14.sēj., Nr.4, 2010, 57.–64. lpp. 

Rakstā autori parāda progresīvo Human Reliability Analysis tehniku – komandas darba veikuma 
novērtēšanas metode ar refleksīvās analīzes pieejām un mehānismiem, lai aizkavētu kļūdaino komunikāciju 
un lēmumu pieņemšanu. 

Atslēgvārdi: refleksija, refleksīvā analīze, cilvēka kļūdainās darbības, cilvēka uzticamības 
izvērtēšana (Human Reliability Assessment (HRA)), komandas darba veikuma novērtēšanas metode 

 
Z. Volkovičs, Z. Barzili, D. Toledano-Kitai, R. Avros. Birojviesošanas metrika kā klastera 
stabilitātes mērs, Modelling and New Technologies, 14.sēj., Nr.4, 2010, 65.–72. lpp. 

Piedāvātā klasteru skaita datu kopās novērtēšana ir nepareizi ierosināta būtiskas saistības problēma 
klasteru analīzē. Grupa (klasters) tiek raksturota ar relatīvi augstu līdzību starp tās elementiem, turklāt 
elementiem no citām grupām ir relatīvi zema līdzība. Augsta stabilitāte nodalījumos, kas iegūta no tā 
paša datu avota, tiek loģiski klasificēta kā klasteringa procesa augsts nepretrunīgums. Tādējādi 
klasteru skaits, kas palielina klasteru stabilitāti, var kalpot kā novērtētājs patiesam klasteru skaitam. 
Dotajā rakstā autori izskata varbūtības pieeju šai problēmai, pamatojoties uz Gausa klasteru modeli. 
Autori uzskata, ka klasteru paraugu sekvences var būt interpretētas kā Gausa sadalītie i.i.d. paraugi, 
izvilkti no tā paša avota, ja klasteru skaitlis ir izvēlēts pareizi. Paraugu tuvums klasteros iekšā var tikt 
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mērīts ar p-vērtību palīdzību, aprēķinātu atbilstošam Birojviesošanas T-kvadrāta statistiķim. Datu 
nepiederošie un klasteringa algoritma nepilnīgums var dot mazas p-vērtības. Tomēr autori pieņem, ka 
to empīriskais sadalījums ir vismazāk koncentrēts oriģinālā, ka klasteru skaits ir izvēlēts pareizi. 
Minētā procedūra var būt aptuveni aprakstīta kā šādas sadales ar koncentrācijas testa secīgu lietošanu 
paaudze. 

Atslēgvārdi: klasterings, Birojviesošanas kritēriji, klastera validācija 
 
I. Noviks. Nervu-muskuļu savienojuma veidošanās paredzēšana, Modelling and New Technologies, 
14.sēj., Nr.4, 2010, 73.–76. lpp. 

Pirmo pāris nedēļu laikā pēc piedzimšanas neironi, kas inervē muskuli ‘sacenšas’ cits ar citu, 
lai inervētu maksimālu skaitu muskuļu šķiedru. Šīs sacensības rezultāts ir, ka mazāk aktīvie neironi 
inervē vairāk muskuļu šķiedru nekā aktīvākie neironi. Tas tiek saukts par “lieluma principu” un tas nozīmē, 
ka mazāk aktīvie neironi vinnē vairākās sacensībās. Tas ir pārsteidzoši, skatoties uz izolētas muskuļu 
šķiedras (i.e. viena kauja) salīdzinoša priekšrocību pret aktīvākiem neironiem, kas tiek arī pētīts 
konkrētajā rakstā. Pielietojot spēles teorijas pieeju, mēs skaidrojam, iepriekšējā rakstā [1], kā tas var notikt. 
Šajā rakstā autori parāda dažus paredzējumus, kas izriet no viena modeļa. 

Atslēgvārdi: spēles teorija, lieluma princips, skaitļošanas neirozinātne 
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