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Editors’ Remarks 

 

**************************************************** 

Endless Time 
by Rabindranath Tagore 

 
Time is endless in thy hands, my lord.  
There is none to count thy minutes.  

 
Days and nights pass and ages bloom and fade like flowers.  

Thou knowest how to wait.  
 

Thy centuries follow each other perfecting a small wild flower.  
 

We have no time to lose,  
and having no time we must scramble for a chance.  

We are too poor to be late.  
 

And thus it is that time goes by  
while I give it to every querulous man who claims it,  
and thine altar is empty of all offerings to the last.  

 
At the end of the day I hasten in fear lest thy gate be shut;  

but I find that yet there is time. 

**************************************************** 

Rabindranath Tagore (1861–1941)   
 

 
 This 17th volume no. 1 presents actual papers on two main topics of Journal 

specialization, namely, Operation Research, Computer Simulation and Mathematical Modelling. 
Contributors of this issue represent scientific institutions of Belarus, Poland, Australia, USA, 

India, Latvia, and Israel. Our journal policy is directed on the fundamental and applied sciences 

researches, which are the basement of a full-scale modelling in practice. This edition is the 
continuation of our publishing activities. We hope our journal will be interesting for research 

community, and we are open for collaboration both in research and publishing. We hope that 
Journal’s contributors will consider the collaboration with the Editorial Board as useful and 

constructive.    

 
EDITORS       

 

 

Yu.N. Shunin 

 

 

I.V. Kabashkin 

                                                           
 Rabindranath Tagore (1861–1941) – Greatest writer in modern Indian literature, Bengali poet, novelist, educator, who won the 

Nobel Prize for Literature in 1913. Tagore was awarded the knighthood in 1915, but he surrendered it in 1919 as a protest against 

the Massacre of Amritsar, where British troops killed some 400 Indian demonstrators protesting colonial laws. Tagore's reputation 

in the West as a mystic has perhaps misled his Western readers to ignore his role as a reformer and critic of colonialism. 
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OPTIMIZING THE MANAGEMENT OF TRAFFIC LIGHT OBJECT 

BASED ON NATURAL ALGORITHMS 
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The article proposes an adaptive control method for traffic lights, which operates at the strategic level of management.  

The algorithm uses data on changes in the intensity during the day, which provides forecasting module (for the experiments used 
neural network prediction). An adaptive algorithm is based on finding the minimum of delay at the crossroad, based on genetic 
algorithm and the method of ‘swarm of bees’. 

 
Keywords: traffic light, adaptive control, genetic algorithm, artificial bee colony algorithm 

 
1. Introduction 
 

Crossroads are the most important nodes of the road network of the city. The largest losses are 
observed by the use of the roadway. The main parameter that characterizes the management of traffic 
lights is the average delay of transport at crossroads. The minimizing of this parameter leads to  
an improvement quality of service at the crossroads.  

 

 

Figure 1. The scheme of traffic light object 

 

Scheme of a typical traffic light object is shown on Figure 1. 
The optimization problem consists in the fact that to choose a number and duration of cycles in  

a controlled cycle in which the delay for traffic would be minimal. To calculate the delay formula can be 
used [1]: 
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where С – duration of the traffic light cycle, s; 
λ – proportion of the green signal for the direction in the cycle; 
qi – traffic volume in this direction, vehicle/s; 
x – coefficient of loading. 

 

Then the target function for the optimization task is as follows:  
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where wi – weighting factor of importance (priority) direction of optimization. 
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The coefficients wi are determined at the design stage. It is also possible that at which these values 

will change during the day. If all values are equal to one, then the intersection is considered to be 

equivalent for each of the directions of optimization. 

Thus, a complex target function f depends on many parameters tzi. It is required to find such values tzi, 

which satisfy (2). 

To solve the problem of optimization methods were chosen: 

1)  the genetic algorithm, 

2)  the method of ‘swarm of bees’. 

 

2. Application of Genetic Algorithm for Adaptive Management at the Crossroads 
 

Genetic Algorithms – adaptive search methods, which in recent times are often used for solving  

a functional optimization. They are based on the genetic processes of biological organisms: biological 

populations evolve over several generations, subject to the laws of natural selection and the principle of 

“survival of the fittest”, an open Charles Darwin. Genetic algorithm is a simple model of evolution in 

nature, implemented by the algorithm. It is used as an analogue of the mechanism of genetic inheritance, 

as well as an analogue of natural selection. This preserves the biological terminology in a simplified form. 

To simulate the evolutionary process, initially generated by a random population i.e. some individuals 

with a random set of chromosomes (numeric vectors). A genetic algorithm simulates the evolution of this 

population as a cyclic process of crossing individuals and change of generations. 

The life cycle of the population – a few random crossings and mutation, which resulted in  

a population, is added to a number of new individuals. The selection of a genetic algorithm – it is the 

process of forming a new population from old one, after which the old population is removed. Following 

the selection of a new population again used the operation of crossover and mutation, then again there is  

a selection, and so on (Figure 2). 

 

 

 
Figure 2. Steps of genetic algorithm 

 
Step 1 – Create the initial population. 

Each member of the population consists of a set of chromosomes tzi, mi ,1 . 

 
Figure 3. A set of chromosomes of an individual with a fitness function 

 
I member of the population of chromosomes contains a value tzi, which is equal to the duration of 

the i-th phase of the traffic light cycle, if the value is zero, then this phase is not in the cycle of regulation. 

The value of the genome for each chromosome is in the interval (tmin,tmax). Number of phase’s m and 

variations of flow are defined at the design stage of the system. At this stage, as well as during crossing 

check the admissibility condition of existence of this individual. Testing is to analyse all phases and check 

on the condition that the entire cycle of time allocated for each direction of motion. If this condition is not 

satisfied, the fitness function is calculated with an error, so not to waste time on the calculation of this set 

of chromosomes varies. 



 

 

Operation Research 
 

9 

 

Step 2 – Crossing. 

The selection of a genetic algorithm is closely related to the principles of natural selection in 
nature as follows:  

 The fitness of the individual – the value target function (fitness function) for this individual. 

 Survival the most adapted – the population of the next generation is formed in accordance 
with the target function. The more adapted an individual, the greater chance of his 
participation in the crossover. 

 

Model selection defines how to build the next generation population. As a rule, the probability of 
an individual's participation in crossing is taken proportional to its fitness. Thus, each successive 
generation will be on average better than the last. The probability of involvement of i-th member of  
the population as a crossing is determined by: 
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After determination of individuals i.e. members crossing, the operation itself is executed 
crossover. 

Single-point crossover works as follows. First, randomly select a point of discontinuity (break 
point – the area between adjacent values in a row.). Both the parent structure is broken into two segments 
at this point. Then, corresponding to different segments of the parents stick together and produce two 
offspring genotypes; can be applied to multi-point crossover or uniform crossover. In uniform crossover, 
each gene is inherited by the first parent first child with a given probability; otherwise it is passed to  
the second child. 

 

Step 3 – Mutation. 

After the end stage of the crossover, mutation operators are performed. For each of the individual 
is subjected to mutation of each gene with probability Pm. The population obtained after mutation 
overwrites the old one. The mutation changes the value for the individual genome tzi to some value in  
the range [–5,5]. 

 

Step 4 – Selection. 

At this stage there is the sorting of all genotypes of the objective function; and the inclusion of the 
next generation of individuals with the best target function values (Eq. (2)). Just switch on parental 
genotypes are there with the best values of f, in accordance with the principles of “elitism”. The use of 
“elitism” cannot lose a good interim solution. 

Then the steps of the algorithm are performed again starting from the second. So occurs the limited 
number of epochs (an acceptable calculation time), resulting in the best option solving the optimisation 
problem is chosen. Genomes of the options will be used to specify the structure and duration of phases for 
the traffic light cycle. 

Genetic algorithm is a combined method of iterate and gradient descent. The mechanisms of 
crossover and mutation, in a sense part of the implement then iterative method, and the selection of  
the best solutions – gradient descent. 

 
3. The Method of “Swarm of Bees” for the Solution of the Optimisation of Management  

at the Crossroads 
 

One of the newest varieties of genetic algorithms is the search algorithm for ‘swarm of bees’.  
The algorithm for finding the global extrema of functions of complex multidimensional emerged relatively 
recently. In [2] first described the basis of the method Particle Swarm Optimization. 

Every bee in the swarm is considered as a particle or agent. All swarm particles act individually in 
accordance with one control principle: to move towards the best personal and global best position, 
constantly checking the value of the current position. 

The position coordinates of the bees in the study is m-dimensional space. 

The personal best position (BPP) is a position with the best value of the target function, discovered 

by a bee. Each bee has its own BPP. At each point along the path of the bee compares the value of  
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the target function at the current position with a value of BPP. If the current position is set to the suitability of  

the above, the importance of BPP is replaced by the value of the current position. The global best position 

(BGP) is defined as the position with the best value of the target function, found all the swarm. 

Information about the value of BGP is available for each individual bee. If in the process of moving from 

a bee finds a position with the best target function replaced by the current position of the BGP of the bees. 

Description of the algorithm for finding the optimal solution using the ‘swarm of bees’ method is 

given below. 
 

Step 1.  

Similarly, the genetic algorithm creates a population of bees, each of which contains m coordinates 

and the current value of the optimality of f (which is determined by the formula (2)). Also, there is given  

a random initial speed of movement. Each coordinate corresponds to the duration of some phases in  

the traffic light cycle tzi. 
 

Step 2. 

Each bee in the swarm moves in a new direction in accordance with its position and speed. Checks 

exit bee’s solutions of bounds, and limit the actions required are performed. 
 

Step 3. 

For each bee we calculate the value of the objective function in its new position. Comparing this 

value with the value of the BPP bees, and if necessary, replace the BPP's current position. Comparing this 

value with the value of BGP swarm, and if necessary, replace the current position of the BGP. 
 

Step 4.   

For each bee calculate new speed of movement in accordance with the equation: 
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where 
j
iv  – speed of the bees in the measurement of i to j iteration; 

w – inertia weight, the number (located in the interval [0,1]) reflects the extent to which the particle 

retains its original speed; 

pi, gi – value of the i position, respectively, for the BPP and the bees swarm of BGP; 

21,  – random value in the range [–1, 1]; 

c1,c2 – constant weighting factors determining the attraction of its own BPP and BGP of swarm. 
 

The parameter c1 determines what effect on the particle has its memories of BPP, and c2 

determines what effect on the particle has the rest of the swarm. These factors are sometimes considered 

as a cognitive and social factor. 
 

Step 5.  

Checking the termination condition of the algorithm (5) if the search is completed, executed  

the transition to Step 3. 

As an estimate of the current state of the search process is proposed to use the average value for 

the swarm of Euclidean distance ε from each bee to the centre of gravity of the cluster: 
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where k – population size; 
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The search result is a swarm of BGP. The value of the response function at this point in relation to 

the known value of global optimisation determines the accuracy of search results. An important advantage 

of this method for finding the optimal solution is its robustness, i.e. it keeps performance at rather 

complex response surfaces, as well as the presence of the stochastic component in the measured value of 

the response function. 

 
4. Results of Testing Algorithms 

 

For the beginning let’s generate the intensity of the 8 tests of 15 minutes, equivalent to 2 hours. 

Table 1 shows the intensity of the input streams at a crossroads. 

 
Table 1. Initial intensity for adaptive algorithms 

 

№ 
The intensity of the i phase, 15 min 

1 2 3 4 

1 157 86 162 124 

2 142 153 165 112 

3 145 157 167 114 

4 157 135 159 126 

5 156 138 166 130 

6 144 116 174 120 

7 140 116 161 114 

8 166 122 145 117 

 

At received intensities using adaptive algorithms obtain the duration of the phase traffic light 

cycle. These data are summarized in Table 2 for the genetic algorithm in Table 3 for the algorithm 

‘swarm of bees’. 

 
Table 2. Duration of the phases of the genetic algorithm 

 

№ 
Duration of the i phase of the traffic light cycle 

1 2 3 4 1+3 2+4 

1 32 0 23 0 0 14 

2 21 29 0 0 14 14 

3 18 0 32 0 0 28 

4 27 0 0 0 14 14 

5 19 0 0 21 14 24 

6 39 27 0 0 26 14 

7 16 0 35 0 22 14 

8 38 32 0 0 23 14 

 
Table 3. Duration of the phases of the algorithm of bee swarm 

 

№ 
Duration of the i phase of the traffic light cycle 

1 2 3 4 1+3 2+4 

1 18 0 0 0 14 14 

2 27 0 32 0 0 14 

3 0 23 30 0 14 14 

4 0 0 0 0 39 19 

5 0 0 0 0 31 24 

6 28 0 38 14 19 14 

7 0 0 31 0 14 17 

8 0 0 0 0 17 14 

 

The inputs to the algorithm are the intensity, where for five phase equals the amount of  

the intensities of the first and third, and 6 phase – the second and fourth. 

Figure 4 shows the dynamics of the queue number 2 for the rigid control and adaptive, based on 

genetic algorithm. 
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Figure 4. The dynamics of the queue for the genetic algorithm 

 
Figure 5 shows the dynamics of the queue number 2 for the rigid control and an adaptive algorithm 

based on ‘swarm of bees’. 

 

 

Figure 5. The dynamics of the queue for the algorithm bee swarm 

 
Comparison of changes in the length of the queue of two adaptive algorithms is shown on 

Figure 6. 

 

 

Figure 6. The dynamics of the queue adaptive algorithms 
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Statistics on the queue for the first 15 minutes is shown in Table 4. 
 

Table 4. Statistics queues for the first 15 minutes 

 

№ 
Number of 

queue 

The maximum value of 

queue 

The average value of 

queue 
Average time in queue 

Rigid algorithm 

1 

Queue1 22 7,726 45,298 

Queue 2 10 1,598 34,097 

Queue 3 23 8,088 44,732 

Queue 4 19 5,8 40,85 

The genetic algorithm 

2 

Queue1 15 4,14 24,014 

Queue2 9 1,482 30,507 

Queue3 16 5,35 30,205 

Queue4 16 5,285 39,44 

The algorithm of ‘swarm of bees’ 

3 

Queue1 9 1,108 6,45 

Queue 2 6 0,902 18,259 

Queue 3 12 4,711 25,363 

Queue 4 11 3,276 23,411 

 
5. Conclusions 
 

The article considers the option to optimise the management of traffic lights at the level of 

strategic management. 

The proposed methods: genetic algorithm and the method of ‘swarm of bees’ are methods for solving 

the optimisation problem in traffic management, its effectiveness in comparison with a rigid management 

mode is shown. Since the information for calculating the parameters of traffic lights cycle continuously 

enters to the adaptive control module, it allows responding in a quicker way to the current transport 

situation at the crossroads. Method of ‘swarm of bees’ shows better performance in comparison with the 

genetic algorithm. 

These methods belong to a class of strategic management and are a synthesis of control algorithms 

for a sequence of phases and the calculated algorithm for determining the duration of the cycle and 

phases. 
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State-transition models are often used in reliability analysis and one specific approach of this kind is the subject of this 

paper. By incorporating elements of both the deterioration process and the maintenance activities (inspections and repairs) in a semi-

Markov model, a common computational platform has been created which serves as a foundation for various dependability studies 

that can investigate different maintenance scenarios. Having available some basic model it is possible to adjust its parameters so that 

it represents some hypothetical new maintenance policy and then to examine an impact which changing to the new policy has on 

various reliability characteristics of the system. Particularly, this paper discusses an extension of the generic adjustment algorithm to 

specific situations of the so-called model saturation when, as a result of tweaking the model towards higher repair frequencies, sum 

of repairs probabilities in the states reach the maximum value and there is no room for further increase. The general idea is to 

modify the model in such cases by forcing some non-zero value of a repair probability in those states where it is zero initially but in 

a manner that will not destroy the overall model behaviour.  

After theoretical presentation of the modified method its effectiveness is illustrated on practical examples. It is shown that 

the proposed extension allows to successfully evaluating a class of cases that has not been properly handled by the generic method 

and thus broadens the range of dependability studies that can be effectively evaluated. 

 

Keywords: state-transition deterioration model, semi-Markov process, model adaptation, maintenance analysis, model 

adjustment 

 

 

1. Introduction 
 

Cost-effective maintenance is the crucial point in management of any complex contemporary 

technical system. Selecting the optimal maintenance strategy is not an easy task and often requires extensive 

analysis of reliability, security, safety and economic aspects. Finding a reasonable balance between extensive 

and frequent maintenance actions on one side and redundant and excessive maintenance expenses on 

the other is the key point in reliable yet cost-effective system operation. 

The subject of this paper is connected with original methodology that assists a person who decides 

about maintenance activities by evaluating risks and costs associated with choosing different maintenance 

strategies. Instead of searching for a globally optimal solution to a problem: “what maintenance strategy 

would lead to the best dependability parameters of system operation incurring the minimal cost”, in this 

approach different maintenance scenarios can be examined in “what-if” studies and their reliability and 

economic effects can be compared so that a person managing the maintenance is assisted in making 

informed decisions ([1–3]). 

Our method of deterioration representation based on Markov models has been presented originally 

in [1] and its specific extensions are further described in [4–8]. Additionally, presentations in [9] and [10] 

concentrated on one important aspect of the methodology: fully automatic adjustment of the model to 

possible modifications of the maintenance policy that are often required in studies requested by the user. 

In this work we extend the research in this context with additional studies related to the problem of  

so-called model saturation that may occur when increased repair frequencies are requested and, furthermore, 

we propose an automatic modification mechanism that remedies the saturation limits. 

The main content of the paper is divided in three parts. The first one (section 2) briefly summarizes 

the method of automatic model adjustment to the requested repair frequencies, which is the core task in 

maintenance studies, the second part (section 3) discusses specific issues of the adjustment when 

probability saturation occurs and proposes an extension that circumvents these kinds of problems, while 

the third part (section 4) is devoted to practical verification of the extension and includes real-world 

examples of reliability analyses which are based on this approach. 
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2. Modelling the Ageing Process 
 

In this chapter we will briefly resume basic information about Markov models and the adjustment 

procedure that has been included in [9]. Further, in Chapter 3, this information is used for discussion of 

model saturation phenomenon and its proposed remedies. 

 
2.1. Construction of the Model 
 

Deterioration is a complex process and its modelling is not an easy task. In the literature there are 

numerous approaches proposed that, in general, try to encompass the three major factors that affect 

equipment wear: physical characteristics of the object under consideration, operating practices, and the 

maintenance policy. In the proposed solution especially the maintenance activities relate to the events and 

actions that should be properly incorporated in the representation and should be described with 

a distinctive set of parameters that would later be used in maintenance studies. 

One of the approaches that can properly incorporate all the above suppositions about the aging 

process and maintenance activities is based on state-space (Markov) model ([12–17]). A Markov model 

consists of the states the equipment can assume in the process, and the possible transitions between them. 

The method described in this paper is based on a model of the Asset Maintenance Planner (AMP) that has 

been initially developed and implemented by George J. Anders and Henryk Maciejewski ([18–19]). 

For structure of a typical AMP model see Figure 1. In the model, the deterioration progress is 

represented by a chain of deterioration states  D1 … DK, which then leads to the failure state F. In most 

situations, it is sufficient to represent deterioration by three stages: an initial  (D1), a minor  (D2), and  

a major  (D3)  stage of deterioration (K = 3). This last is followed, in due time, by equipment failure (F). 

Other states are related to the maintenance activities: regular inspections (Is states) result in decisions to 

continue with, e.g., minor  (Ms1)  or major  (Ms2)  repair or to return to the deterioration state Ds without 

any repair. The expected result of all repair actions is a single-step improvement in the deterioration 

chain. 

 

 

 
2.2. Adjusting the Model to Modified Repair Frequencies 

 

Preparing the Markov model for some specific equipment is not an easy task and requires expert 

intervention. The goal is to create the model representing closely the real-life deterioration process known 

from the records that usually describe equipment operation under a regular maintenance policy with some 

specific frequencies of inspections and repairs. The model itself permi ts calculation of the repair 

frequencies and compliance of the computed and recorded frequencies is a very desirable feature that 

verifies trustworthiness of the model. In this sub-section, we will summarize the method of model 

adjustment proposed in [9] and [10] that aims at reaching such compliance. It can be used also for 

a different task of a fully automatic generation of a model for some hypothetical new maintenance policy 

with modified frequencies of repairs. Such a task is typical during evaluation of various maintenance 

scenarios. 
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Figure 1. The state-transition model representing the deterioration chain with inspection and repair states 

(an example with two types of repairs is shown) 
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In our analysis let the deterioration model under consideration consists of  K  deterioration states 
and R repairs. Also, let  P

sr 
 denotes probability of selecting maintenance r in state  s  (assigned to the 

decision after inspection state Is) and  P
s0 

 represents probability of returning to state  Ds  from inspection  
Is which corresponds to a situation when no maintenance is scheduled as a result of the inspection.  
The foremost condition that must be met at all times is that in all deterioration states  s = 1 … K: 

 

0P P 1s sr

r

  . (1) 

 

Let  F
r
  represents the frequency of some repair  r  as it is generated by the model. The problem of 

model adjustment can be formulated with various assumptions and with different goals in mind but in this 
approach it is defined as follows: 

Given an initial semi-Markov model  M0,  with internal structure representing deterioration, 
inspection and repair states as described above and producing the initial vector of repair 

frequencies  F0 = [ 1

0F , 2

0F  … R

0F ],  modify the probabilities P
sr

 assigned to transitions from 

inspections states Is so that the resulting model generates some requested vector of goal 
frequencies  FG. 

There are various approaches that can be used in order to accomplish such model modification. 
In the proposed solution, a method of iterative approximations has been chosen in order to preserve 
an original construction of the model  M0  as mush as possible. In this method a sequence of  tuned  models 
M0, M1, M2,… MN   is evaluated with each consecutive model approximating desired goal with a better 
accuracy. Starting with  i = 0  and the initial model  M0,  the procedure consists in the following steps: 

1°  for the current model Mi compute its vector of repair frequencies Fi ; 

2°  evaluate an error of Mi as a distance between vectors FG and Fi; 

3°  if the error is within the user-defined accuracy , consider Mi as the final model and stop the procedure 
(N = i); otherwise proceed to the next step; 

4°  create a new model Mi+1 by tweaking values of sr

iP , then correct 0P si  according to condition (1); 

5°  return to the step 1° for the next iteration.  

Of all the steps 1–5, it is clear that adjusting probabilities sr

iP  in step 4 is the heart of the whole 

method. This is accomplished with the following two assumptions. 
The first assumption is a restrictive condition: if the probability of some particular repair must be 

modified, it is modified   proportionally  in  all  deterioration states, so that during the adjustment the proportion 
between this repair probabilities over all states remains unchanged and is the same as in  M0: 

 i, r   r1

0P : r2

0P : … : Kr

0P   ~  r

i

1P : r

i

2P : … : Kr

iP . (2) 

Now only R scaling factors, denoted as  Xi+1 = [ 1

1X i
, 2

1X i
, … R

i 1X 
], must be found to compute all 

new probabilities and to create the next model  Mi+1: 

srr

i

sr

i 011 PXP  
,   r = 1…R, s = 1…K . (3) 

Moreover, and this observation leads to the second assumption, although the frequency of a repair 
r  depends on the probabilities of all repairs (modifying probability of one repair changes, among others,  
state durations in the whole model; thus, it changes the frequency of all states) it can be assumed that, in a case 
of a single-step small adjustment, its dependence on repairs other than r can be considered negligible and 

   rir

i

R

iii

r

i

r

i XFX...X,XFF 21  . (4) 

Now, generation of a tweaked model in step 4 is reduced to of solving a set of  R  equations in the form: 

  r

G

r

i

r

i FXF   (5) 

and this can be accomplished with one of the standard root-finding numerical algorithms. 
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Additionally it should be pointed out that applying equation (3) with Xi+1 > 1 may, in some state s, 

violate the condition 

1P 1  

r

sr

i . (6) 

Such situation needs special tests and, if detected, execution of a scale-down transformation: 





R

r

sr

DsDs

srsr SS
1

P,PP .
 (7) 

Efficient numerical methods for approximate solving the equation (5) and, consequently, 

implementing the whole adjustment procedure of the steps 1–5, were presented in [9] and [10]. 

 

3. Modifying the Model in Case of Probability Saturation 
 

As it was discussed in [9] and [10], the above defined procedure can successfully adjust repair 

probabilities P
sr

 when the goal (the FG vector) include the frequencies that are lower than the ones for 

which the model was created (the  F0  vector). That is, the method does not have problems if the model is 

transformed for studies like “what if some or all repairs are performed with lower frequency and 

deterioration rate is increased”. In these kinds of situations the  P
sr

 values need to be scaled down 

and the numerical algorithms are capable of their precise tuning so that the goal is reached in a reasonably 

limited number of iterations. On the other hand, adjusting the model to the repair frequencies that are 

substantially higher than the original ones may lead to so called  model saturation – a condition in which 

repair probabilities reach the limit (6) and there is no room for further increase if the adjustment procedure is 

limited only to the simple scaling expressed by equation (3). In this situation bringing together two 

requirements such as tuning the model towards high repair frequencies, and at the same time keeping 

the modifications of the internal structure within a safe range, which does not break the proper relation 

with the original, it is a particular task that needs a devoted new development. 

 
3.1. The Problem of Model Saturation 

Discussion included in [6] investigated main challenges that are brought when the goal vector  FG 

contains increased values of repair frequencies. The two main factors that were recognized were as 

follows: (1) although it may seem that in the initial (minor) deterioration state no repairs are performed 

after inspections, still some non-zero probabilities are required in  D1  if purely hypothetical questions 

like “What if I start some repair twice as often as previously?” shall be allowed; (2) including an option of 

not doing any repair after inspection in the later deterioration states, albeit with small probability, is also 

desirable because it increases ability of the model to represent diverse maintenance configurations found 

in the studies. 

For the purpose of this presentation, we will illustrate these issues with an example of two models with 

three deterioration states and two repairs: minor (index 1) and major (index 2). Thus, there are a total of 

 6 repair probabilities in the model that will be fine-tuned by the procedure: P
11

 and P
12

 in deterioration 

state D1, P
21

 and P
22

 in D2, P
31

 and P
32

 in D3. Initial distribution of the probabilities is presented in 

Table 1. The model 1 has been created with assumption that although there are no repairs in the first state 

D1, when the equipment is in subsequent states  D2  and  D3 every inspection leads to some sort of repair 

and in these states the totals SD2 = SD3 = 1 (P
20

 = P
30

 = 0). Looking at the probability distribution in each 

state it can be seen that in the medium deterioration state  D2  the minor repair evidently prevails  (P
21

 = 0.8) 

while in the major deterioration state  D3  the distribution is in favour of the major repair with only a little 

more balanced allocation of probabilities (P
32

 = 0.7). The model 2 is a sibling of 1 with one important 

difference: repair probabilities in  D2  and  D3 are lowered to, respectively, 80% and 95% of the values 

taken from 1, which means that after inspections in these states it is possible to return to  Ds  without 

undertaking any repair:  P
20

 = 0.2  and  P
30

 = 0.05.  

 
Table 1. Repair probabilities in the sample models used as examples in this work 
 

Deterioration state D1 D2 D3 

Repair probability P11 P12 P21 P22 P31 P32 

Model 1 0 0 0.80 0.20 0.30 0.70 

Model 2 0 0 0.64 0.16 0.28 0.67 
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The studies which will be analysed in the further part of this work will consist in generation of  

a sequence of models adjusted to goal frequencies created by modifying frequency of the major repair 

(index 2): 

 201

0 F,F  GF , (8) 

where the factor  will increase from 0.5 (frequency of the major repair reduced by half) to 2.0 (the repair 

performed twice as often), in steps of 0.1. Values of  in the figures and in the following discussion will 

be expressed as %. To create a field of discussion the frequency of the major repair was selected as 

the varying parameter of  FG  just for an example, but equivalent results could be demonstrated with 

changing frequencies of the minor repair. The figures will include graphs presenting variations of 

repair probabilities  P
sr

  and their sums  SDs  in particular deterioration states of the final adjusted models 

as functions of the  factor. 

The problem of probability saturation is illustrated in Figure 2 which shows major repair probabilities in 

all states for models 1 and 2 tuned with the standard procedure described in the previous section (upper 

graphs) along with sums of probabilities over all states (lower graphs). Probability of the minor repair is 

not included to preserve space. Although it does not remain constant (see, for example, discussion in [6]) 

its variation does not demonstrate any significant aspects of saturation mechanism and just follow 

the general rules of repair inter-dependence. 

 

 

 
The graphs show that both models can be successfully adjusted only up to the point of saturation 

which is reached for  = 100% for the model 1 (i.e. the initial model is already saturated) and 120% for 

model 2. This shows that in this particular case of model 2 probabilities  P
20

 = 0.2  and   P
30

 = 0.05 leave 

potential which is enough for 20% increase in frequency of the major repair. In both cases in the 

saturation points ( = 100% and 120%) probabilities in states  D2  and  D3  sum up to unity and cannot 

be further increased, while in  D1  the  P
12

 is zero and applying the scaling factor as in equation (3) cannot 

produce any growth. On the other hand, the procedure has no problems with adjustment towards lower 

frequencies and in such cases the probabilities are scaled accordingly which only confirms discussions 

presented in [9] and [10]. 
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Figure 2. Adjusting the models 1 (left) and 2 (right) to the modified frequency of the major repair with the standard procedure  

(in case of model saturation the iteration stops reporting a fatal error) 
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3.2. Automatic Modification of the Model in Case of Saturation 

The above example of unsuccessful tuning can be used also for illustration of the main idea of  

the proposed extension to the algorithm: if the model gets saturated during the adjustment iteration but 

there is still some state with null repair probability, the process can be continued in the same iterative way 

after some non-zero probability is introduced into this state. Such modification, though, goes far beyond 

the restrictive assumption expressed by equation (2) and, being a more serious invasion into the structure 

of the model, must be applied in a cautious and thoughtful manner. 

As it was investigated in [7], the following two particular issues must be taken into account:  

(1) forcing a non-zero probability in some state before it is not absolutely necessary, i.e. prior to model 

saturation, instantly changes reaction to the adjustment iterations, hence may change the final result of the 

tuning also in cases when the standard procedure applied to the unmodified model would be able to 

produce the correct result; (2) replacing the null value of  P
sr
, even if delayed up to the moment of 

saturation, but with probability which is too high for the needs of the situation also may affect the final 

result in a way that is against the general idea of the conservative tuning which tries to preserve the 

structure of the original model with minimal possible modifications. Consequently, it is advantageous to 

minimize the value of the newly introduced probability even below the anticipated level: the standard 

adjustment procedure that continues afterwards would increase it accordingly on the cost of extra 

iterations anyway, whereas the overestimated value would adversely corrupt the adjustment process and 

harm the result – the goal frequencies would be reached but with unwanted changes of the model 

structure ([7]). 

Taking all these aspects into account, the following approach has been selected as the optimal and 

robust solution. In order to limit the changes of the already implemented method, the overall process of 

the 5 steps outlined in section 2.2 remains unchanged while only the internal procedure of  probability 

tweaking in step 4 becomes extended. The procedure receives as the input the current  Mi  model and 

produces as the output the next  Mi+1  model in a sequence of operations that can be illustrated by the 

pseudo-code from Listing 1. 

The operation begins as the previous unmodified method: initially, in the line no. 2 the scaling 

factors  X
r
  are computed using any of the numerical approximation methods (NOLA, secant or  falsi), as 

it was described in detailed discussions of [9] and [10]. Afterwards, the conditional instruction in the line 

no. 3 divides the rest of the code into two parts which are executed either for non-saturated (lines 4 ÷ 10) 

or for saturated (lines 12 ÷ 26) models. The model is considered saturated (which is tested as the condition 

of the line 3) if in all states  SDs = 1 (probabilities reached their maximum) or SDs = 0 (probabilities are 

zero and cannot be increased by simple multiplication) and any of the X
r
 factor is greater than 1 (if all 

probabilities are to be decreased during the adjustment the saturation is not an obstacle and the standard 

method should not be altered). If the model is not saturated, the standard procedure just multiplies the 

probabilities by the tweaking factors (second part of the line 5 actually implements the equation (3)) and, 

per every state, the new values are scaled down if their sum exceeds the limit (lines 6 ÷ 9 implement  

the equation (7)). 

The actual extension to the algorithm is included in the special processing path included in the 

lines 12 ÷ 26 which is executed if the model has reached the saturation state. In this case, in the beginning 

values of predicted average increases of the probabilities are computed in line 13 and stored in auxiliary 

dAvgInc[] array. Details of this computation has been omitted for brevity, but the code actually repeats 

the standard path similar to that of lines 4 ÷ 10 with the only difference that the new values are not 

assigned but they are used for storing the  P
sr
  changes in elements of the  dAvgInc[] array. If, afterwards, 

for any repair r the accumulated change is negative (a common case when this particular repair frequency 

should be lowered) it is replaced with zero while positive values are later used in forcing non-zero P
sr

 

values. The rest of the processing is executed on state-by-state basis and is expressed with a single 

for...each instruction spanning lines 14 ÷ 26. In every state, each probability is either multiplied by 

the scaling factor if it is positive and such multiplication does lead to any increase (line 17 analogous to 

the equation (3)), or it is replaced with its pre-computed average increase in other states  dAvgInc[r].  

The line no. 19 implements the actual operation of replacing a zero value of  P
sr

 with a positive one, 

which is the essence of the method. Afterwards, in lines 22 ÷ 25 the probabilities are scaled down if their 

sum exceeds the limit, although this conditional operation usually will not be executed in states where  

the probability increase was done as the condition in the line no. 23 will not be fulfilled. 

Usually, once a non-zero probability has been forced into the model, the further iterations operate 

on a non-saturated model and they can proceed only with the regular scaling operations of the lines 4 ÷ 10. 
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4. Practical Verification of the Proposed Extension 
 

4.1. Modification of Repair Probabilities in the Case Study Model 

To illustrate operation of the modification method we will analyse adjustment progress in the case 

of model 2 adjusted for  = 200%, i.e. for a maintenance policy with the major repair performed twice as 

often as in the initial one. In this case the goal frequency vector equals to  201

0 F2,F GF  and this was 

the topmost value taken into account in the discussion of point 3.1. As it was then demonstrated, without 

modification this model can be tuned only up to the factor  = 120% and any further increase in 
frequency F

2
 leads to model saturation (see Figure 2). 

Figure 3 can be used to analyse how the modification mechanism has worked on the model in this 
case. In the graphs we can see how the probabilities (P

sr
 and their sums SDs) changed when in each 

iteration the  TweakProbs() procedure was called. In total, 28 iterations were needed to reach the goal 

for imposed accuracy of 1% (in practical studies smaller precision is usually acceptable). 
 

1.  procedure TweakProbs( MarkovModel M ) 

2.   EstimateTweakFactors( M, X ); // …with numerical method NOLA, secant or falsi 

3.   if not ModelSaturated( M ) then 

4.  
 // The model IS NOT saturated, use the standard procedure 

 for each s in M.DeteriorationSates do 

5.   for each r in M.Repairs do  P
sr

 := P
sr

  X
r
; 

6.  
 ;P

r

sr

DsS
 

7.   if SDs > 1 then 

8.   for each r in M.Repairs do  P
sr

 := P
sr

  / SDs; 

9.   end if; 

10.   next s; 

11.   else 

12.  
 // Model IS saturated 

 double dAvgInc[ R ]; // an array for predicted average increases of P
sr
 

13.   EstimateAverageProbIncrease( M, X, dAvgInc ); 

14.   for each s in M.DeteriorationSates do 

15.   for each r in M.Repairs do 

16.   if P
sr
 > 0 then 

17.  
 // The probability is above zero, apply the regular scaling 

 P
sr

 := P
sr

  X
r
; 

18.   else 

19.  
 // The probability is zero, force the positive value 

 P
sr

 := dAvgInc[ r ]; 

20.   end if; 

21.   next r; 

22.  
 ;P

r

sr

DsS
 

23.   if SDs > 1 then 

24.   for each r in M.Repairs do  P
sr

 := P
sr

  / SDs; 

25.   end if; 

26.   next s; 

27.   end if; 

28.  end procedure; 

 
Listing 1. Pseudo-code of the procedure used for detecting saturation of the model and its further modification 
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Initially, the sums equalled to, respectively, SD1 = 0, SD2 = 0.80, SD3 = 0.95 and this left some room 

for increases in the first three iterations after which both SD2 reached SD3 the maximum (1.0). With P
12

 = 0 

this was identified as the situation of model saturation (test ModelSaturated() in line 3.) and, making the 

actual modification, P
12

 was replaced with and average predicted increase of  P
s2 

 as it was evaluated by 

EstimateTweakFactors() subroutine in line 2. Additionally, one can note that during the first 3 iterations 

before model modification increases of   P
22

  and  P
32

 values were accompanied with slight decreases of   P
21

 

and  P
31

 values – this was caused by the scaling operation (equation 7) which, in case of nearly-saturated 

model, can visibly change probabilities other than the one being adjusted. 

 

 
 
After the P

12
 probability got a non-zero value, the increase in the further iterations concentrated on 

this parameter. Starting with  P
12

 = 0.09  in iteration no. 4  it quickly raised to 0.1 and then stabilized at 

the final level of 0.12. Simultaneously, the growth of P
12

 was accompanied by related fluctuations of 

probabilities of the major repair in the other two states. In the medium deterioration state  D2  the  P
22

 was 

initially raised from 0.16 to 0.38 but after modification of the model in iteration no. 4 it was somewhat 

lowered back to the final value of 0.28. In the major deterioration state  D3  the  P
32

 probability followed 

the same path: before model modification (i.e. before model saturation) it was enlarged from 0.67 to 0.86 

but then, when  P
12

 took over the main burden of increasing the major repair frequency, it reverted to 

slightly lower range settling finally at the value of 0.78. 

In cases of both probabilities we can see the same behaviour: after initial growth in the first 

iterations before model saturation, when  P
12

 was zero and did not take part in the tuning process, after 

modification of  P
12

 both probabilities were decreased returning, to some extent, towards their initial 

values. This shows that the proposed modification of the model not only expanded tuning capabilities to 

the level needed for reaching the adjustment goal, but also released the stress from the states that remain 

unmodified: probabilities in these states to some extent return towards the initial values and within this 

aspect the final model is closer to the original one. 

Figure 4 demonstrates the final results of the tuning of both case models over the whole range of  
parameter from 50 to 200%, as it was analysed in point 3.1. By the virtue of the method, the results are 

identical to those included in Figure 2 up to the point of saturation:  = 100% for model 1 and  = 120% 
for model 2. After those points it can be seen that the results do not exhibit any unexpected fluctuations or 
erroneous instabilities: the P

12
 value begins to raise with  P

22 
 and  P

32
  remaining at the saturation levels but 

the overall growth runs as anticipated. 
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Figure 3.  Iterations of the modified adjustment algorithm for the model 2 and the goal  201

0 F2,F GF : variation of the repair 

probabilities in the deterioration states D1 ÷ D3 (a ÷ c) and sums of repair probabilities in each state (d) 
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4.2. Application of the Modified Models in Exemplary Reliability Analyses 

Ability to create a Markov model modified for a specific maintenance policy is the starting point 
to various reliability analyses. 

A convenient way to represent the deterioration process is by the life curve of the equipment ([5]). 
Such a curve shows the relationship between asset condition, expressed in either engineering or financial 
terms or simply as percentage of “as new” condition, and time. Starting with 100% value shape of  
the curve illustrates advancements of the deterioration process for the equipment operating in some  
application environment and undergoing regular inspections, while the overall length of the curve 
represents the average expected life of the equipment up to the point of its failure. To create a life curve 
from a Markov model representing some equipment and its maintenance activities, first its overall length 
is calculated as the average first passage time (FPT) from the first deterioration state  (D1)  to the failure 
state (F) in the model. Afterwards, solving the model for state probabilities of all consecutive 
deterioration states makes possible computing state durations, which in turns determine shape of  
the curve. 

 

 
 

Figure 5 shows the life curves computed from the models that all originated from the case study 
model 2 and were then adjusted to various frequencies of the major repair using the method presented in 

this paper. The goal frequencies were derived from the initial frequency 2

0F : 2

0F ×  0.8, 2

0F  × 1.2, and 

2

0F  × 1.4 (the case 2

0F  × 1.0 represents the unchanged frequency so it corresponds to the original 

unmodified model). Comparing shapes and, first of all, lengths of the curves one can judge if the savings 
or the extra costs caused by reduced or extended maintenance are justified by the changes in equipment 
lifetime. In particular, in this specific case it can be seen that although increasing the major repair 

frequency by 20% ( 2

0F  × 1.2) extends expected equipment lifetime by 17% (from 16.9 to 19.7 years) 

further increase to 2

0F  × 1.4 extends the lifetime only by extra 2% to 20.1 years. 

 

5. Conclusions 
 

In this work we were dealing with a deterioration modelling methodology which was designed to 

help in choosing effective yet cost-efficient maintenance policy. Incorporating in the state-transition semi-

Markov model elements of both deterioration characteristics of the object and the maintenance activities 

(inspections and repairs), a common computational foundation has been created for various dependability 

 Model 1 Model 2 

 

 
 

Figure 4. Adjusting the models 1 (left) and 2 (right) to the modified frequency of the major repair  

with the extended procedure proposed in this paper 
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studies on possible maintenance scenarios. Specifically, this paper presented an extension of the model 

adjustment algorithm which was proposed and refined in our previous works. The general idea is to 

modify the model during the iteration by forcing a value greater than zero for a repair probability in 

situation when this probability reach the limit in other states, i.e. the model saturates. This extension 

allows to successfully evaluating a class of cases that was not properly handled by the original method 

and broadens the range of dependability studies that can be effectively evaluated. 

 

 

Figure 5.  Life curves computed from Markov models adjusted to different frequencies of the major repair 
 

The proposed approach strives to be as conservative as possible with regard to the amount of 

alterations introduced to the existing model. While the original method constrains the adjustment 

operations so that the distribution of the repair probabilities over all deterioration states is altered to the 

least possible degree, the modification introduced by this extension is a far more significant one and must 

be applied in a very cautious manner in order to avoid deformation of the model and corruption of the 

produced results. Consequently, there is a growing need for methods that would evaluate trustworthiness 

of the generated results, for example definition of new metrics of the model that would quantitatively 

assess extensions of its modification and would allow estimating the range of its valid use. 
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Prediction intervals for order statistics are widely used for reliability problems and other related problems.  

The determination of these intervals has been extensively investigated. But the optimality property of these intervals has not been 
fully explored. In this paper, in order to discuss this problem, a risk function is introduced to compare prediction intervals.  
In particular, new-sample prediction based on a previous sample (i.e., when for predicting the future observation in a new sample 
there are available the data only from a previous sample), and within-sample prediction based on the early observed data from  
a current experiment (i.e., when for predicting the future observation in a sample there are available the early observed data only 
from that sample). We restrict attention to families of distributions invariant under location and/or scale changes. The technique 
used here for optimization of prediction intervals based on censored data emphasizes pivotal quantities relevant for obtaining 
ancillary statistics. It allows one to solve the optimization problems in a simple way. An illustrative example is given. 

 
Keywords: order statistic, prediction interval, risk function, optimisation 
 
 

1. Introduction 
 

Prediction of an unobserved random variable is a fundamental problem in statistics. Patel [1] 
provides an extensive survey of literature on this topic. In the areas of reliability and life-testing, lifetime 
data are often modeled via the Exponential and the Weibull in order to make predictions about future 
observations. Prediction intervals are constructed to have a reasonably high probability of containing  
a specified number of such future observations. These limits may be helpful in establishing warranty 
policy, determining maintenance schedules, etc. For a very readable discussion of prediction limits and 
related intervals, see Hahn and Meeker [2]. Many authors have reported their efforts for constructing 
prediction limits for the Weibull and for the related extreme value distributions (see Patel [1]). Mann and 
Saunders [3] proposed prediction limits for the Weibull which make use of only two or three order 
statistics (see also Mann [4]). Antle and Rademaker [5] used simulation to produce a table of factors to 
use with ML estimates to obtain prediction limits. Lawless [6] proposed prediction limits based on  
a conditional confidence approach; his limits require both determination of the ML estimates and 
numerical integration. Engelhardt and Bain [7–8] and Fertig, Meyer and Mann [9] have proposed various 
approximate prediction limits for the Weibull. Mee and Kushary [10] provided a simulation based 
procedure for constructing prediction intervals for Weibull populations for Type II censored case. This 
procedure is based on maximum likelihood estimation and requires an iterative process to determine the 
percentile points. Bhaumik and Gibbons [11] and Krishnamoorthy et al. [12] proposed approximate 
methods for constructing upper prediction limits for a gamma distribution. Consider the following 
examples of practical problems which often require the computation of prediction bounds and prediction 
intervals for future values of random quantities: (i) a consumer purchasing a refrigerator would like to 
have a lower bound for the failure time of the unit to be purchased (with less interest in distribution of  
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the population of units purchased by other consumers); (ii) financial managers in manufacturing 
companies need upper prediction bounds on future warranty costs; (iii) when planning life tests, engineers 
may need to predict the number of failures that will occur by the end of the test to predict the amount of 
time that it will be take for a specified number of units to fail. Some applications require a two-sided 
prediction interval that will, with a specified high degree of confidence, contain the future random 
variable of interest. In many applications, however, interest is focused on either an upper prediction 
bound or a lower prediction bound (e.g., the maximum warranty cost is more important than the 
minimum, and the time of the early failures in a product population is more important than the last ones). 
Conceptually, it is useful to distinguish between ‘new-sample’ prediction and ‘within-sample’ 
prediction. For new-sample prediction, data from a past sample are used to make predictions on a future 
unit or sample of units from the same process or population. For example, based on previous (possibly 
censored) life test data, one could be interested in predicting the time to failure of a new unit, time until  r  

failures in a future sample of  m  units, or number of failures by time  t
 
 in a future sample of  m  units. For 

within-sample prediction, the problem is to predict future events in a sample or process based on early 

data from that sample or process. If, for example,  n  units are followed until  t  and there are  k  observable 

failures,  X1  <  X2 < <  Xk, one could be interested in predicting the time of the next failure, X(k+1); time 

until l additional failures, X(k+l);  number of additional failures in a future interval  (t,t

).  In general, to 

predict a future realization of a random quantity one needs the following: 
1) A statistical model to describe the population or process of interest. This model usually 

consists of a distribution depending on a vector of parameters  . In this paper, attention is restricted to 
families of distributions which are invariant under location and/or scale changes. In particular, the case 
may be considered where a previously available complete or type II censored sample is from a continuous 

distribution with  cdf F((x–) / ),  where  F()  is known but both the location  () and scale () parameters 
are unknown. For such family of distributions the decision problem remains invariant under a group of 

transformations (a subgroup of the full affine group) which takes   (the location parameter) and   

(the scale) into c + b and c, respectively, where b lies in the range of , c > 0. This group acts 
transitively on the parameter space. 

2) Information on the values of components of the parametric vector  . It is assumed that only 
the functional form of the distribution is specified, but some or all of its parameters are unspecified.  
In such cases ancillary statistics and pivotal quantities, whose distribution does not depend on the unknown 
parameters, are used. 

The technique used here for constructing prediction intervals (or bounds) emphasizes pivotal 
quantities relevant for obtaining ancillary statistics. It represents a simple procedure that can be utilized 
by non-statisticians, and which provides easily computable explicit expressions for both prediction bounds 
and prediction intervals. The technique is a special case of the method of invariant embedding of sample 
statistics into a performance index (see, e.g., Nechval et al. [13–18]) applicable whenever the statistical 
problem is invariant under a group of transformations, which acts transitively on the parameter space. 

 
2. Within-Sample Prediction Problem  
 

For within-sample prediction, the problem is to predict future events in a sample or process based 
on early data from that sample or process. For example, if  n  units are followed until  tk  and there are  k 
observed failures,  t1, …, tk, one could be interested in predicting the time of the next failure  tk+1;  time 
until l additional failures,  tk+l;  number of additional failures in a future interval. 

 
2.1. Location-Scale Family of Distributions 
 

Consider a situation described by a location-scale family of probability distribution functions, 

indexed by the vector parameter   = (,), where   and  ( > 0) are respectively parameters of location 

and scale. For this family, invariant under the group G of positive linear transformations: x ax + b with 
a > 0, we shall assume that there is obtainable (from some informative experiment) the first  k order 

statistics  X1 < X2 <  < Xk  from a random sample of size  n  with cumulative distribution function 
 

 ,/][),|(   xFxF .0   ,) (   x  (1) 

 

If Y is an independent future observation from the same sample of size n, then W =
kk SXY /)(    

(or W =
kk XXY /)(  ) is an invariant statistic, the distribution of which does not depend on  (,);  Sk  is  

a sufficient statistic (or a maximum likelihood estimator k


) for   based on  X =  (X1, X2, …, Xk).  
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2.2. Piecewise-Linear Loss Function 
 

We shall consider the interval prediction problem for the rth order statistic Xr, k < r  n, in the 

same sample of size n for the situation where the first k observations X1 < X2 < < Xk, 1  k < n, have 
been observed. Suppose that we assert that an interval d = (d1,d2) contains  Xr.  If, as is usually the case, 
the purpose of this interval statement is to convey useful information we incur penalties if  d1 lies above 

Xr  or  if  d2  falls below  Xr. Suppose that these penalties are c1(d1 Xr) and c2(Xrd2), losses proportional 
to the amounts by which  Xr  escapes the interval. Since  c1  and  c2  may be different the possibility of 

differential losses associated with the interval overshooting and undershooting the true    is allowed. 
In addition to these losses there will be a cost attaching to the length of interval used. For example, it will 
be more difficult and more expensive to design or plan when the interval d = (d1,d2)  is wide. Suppose 

that the cost associated with the interval is proportional to its length, say c(d2d1). In the specification of 

the loss function,  is clearly a ‘nuisance parameter’ and no alteration to the basic decision problem is 

caused by multiplying all loss factors by 1 / . Thus we are led to investigate the piecewise-linear loss function  
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The decision problem specified by the informative experiment probability distribution function (1) and 
the loss function (2) is invariant under the group G of transformations. Thus, the problem is to find the 
best invariant interval predictor of Xr, 
 

),,( min arg dd
d

R
D

   (3) 

 

where D is a set of invariant interval predictors of Xr, R(,d) = E{r(,d)} is a risk function. 

 
2.3. Transformation of the Loss Function 
 

It follows from (2) that the invariant loss function, r(,d), can be transformed as follows: 
 

),,(),(  Vd rr   (4) 
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V = (V1,V2), V1 = /)( kr XX  , V2 = /kS ;  = (1,2), 1 = 
kk SXd /)( 1  , 2 = kk SXd /)( 2  . (6) 

 
2.4. Risk Function 
 

It follows from (5) that the risk associated with d and  can be expressed as 
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 (7) 

which is constant on orbits when an invariant predictor (decision rule) d is used, where f(v1,v2) is defined 

by the joint probability density of the first k observations X1 < X2 < < Xk and Xr, 
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2.5. Risk Minimization and Optimal Predictors 
 

The following theorem gives the central result in this section. 

Theorem 1 (Optimal invariant predictor of Xr based on X). Suppose that (u1, u2) is a random 
vector having density function 

 

),0 ,( ),(),( 21

1

0 0

21212212 















 

  uududuuufuuufu  (9) 

 

where f is defined by  f(v1,v2), and let Q be the probability distribution function of u1 / u2.  

(i) If  c / c1 + c / c2  < 1 then the optimal invariant linear-loss interval predictor of Xr based on X is 

d
* 
= (Xk + 1Sk, Xk + 2Sk), where 

 
./1)Q(     ,/)( 2211 ccccQ    (10) 

 
(ii) If c / c1 + c / c2  1 then the optimal invariant linear-loss interval predictor of Xr based on X 

degenerates into a point predictor Xk +  Sk, where  

 
)./()( 212 cccQ   (11) 

 
Proof. From (7) 
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Now  E{ r (V,)} / 1 = E{ r (V,)} / 2 = 0 if and only if (10) hold. Thus,  E{ r (V,)}  provided 

(10) has a solution with 1 < 2 and this is so if 1  c / c2  > c / c1. It is easily confirmed that this  

 = (1,2) gives the minimum value of  E{ r (V,)}.  Thus (i) is established. If  c / c1 + c / c2  1  then  

the minimum of  E{ r (v,)}  in the region  2   1 occurs where  1 = 2 =  ,    being determined by 

setting  

 

E{ r (V,(   , ))}/  = 0  (17) 

 
and this reduces to 

 

,0)](1[)( 21    QcQc  (18) 

 

which establishes (ii).  

 
Corollary 1.1 (Minimum risk of the optimal invariant predictor of Xr based on X). The minimum 

risk is given by 

 

   ),(),(),(   Vdd rErER    

 

  
 



0

212112

0 0

212111

22

21

),(),(

v

v

dvdvvvfvcdvdvvvfvc





 (19) 

 
for case (i) with  = (1,2)  as given by (10) and for case (ii) with 1 = 2 =   as given by (11). 

 

Proof. These results are immediate from (7) when use is made of  E{ r (V,)}/1 = 

E{ r (V,)}/2  =  0 in case (i) and  E{ r (V,(
  , ))}/  = 0 in case (ii).  

The underlying reason why c / c1 + c / c2 acts as a separator of interval and point prediction is that 

for c / c1 + c / c2   1 every interval predictor is inadmissible, there existing some point predictor with uniformly 

smaller risk.  

 

Theorem 2 (Optimal invariant predictor of Xr based on Xk). Suppose that  = 0 and 

 
V = (V1,V2), V1 = /)( kr XX  , V2 = /kX ;  = (1,2), 1= kk XXd /)( 1  , 2 = 

kk XXd /)( 2  . (20) 

 
Let us assume that  (u1, u2)  is a random vector having density function 
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where f0 is defined by f0(v1,v2), and let Q0 be the probability distribution function of  u1 / u2. 

(i) If c / c1 + c / c2   1 then the optimal invariant linear-loss interval predictor of Xr based on Xk is  

d
* 

= ((1 + 1)Xk, (1 + 2)Xk), where 

 

./1)(Q     ,/)( 220110 ccccQ    (22) 

 

(ii) If c / c1 + c / c2  1 then the optimal invariant linear-loss interval predictor of Xr based on Xk 

degenerates into a point predictor (1+ ) Xk, where 
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Proof. For the proof we refer to Theorem 1.  
 
Corollary 2.1 (Minimum risk of the optimal invariant predictor of Xr based on Xk). The minimum 

risk is given by 
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for case (i) with  = (1,2) as given by (22) and for case (ii) with 1 = 2 =   as given by (23). 

 
Proof. For the proof we refer to Corollary 1.1.  

 
2.6. Equivalent Confidence Coefficient 
 

For case (i) when we obtain an interval predictor for Xr we may regard the interval as a confidence 
interval in the conventional sense and evaluate its confidence coefficient. The general result is contained 
in the following theorems. 

 

Theorem 3 (Equivalent confidence coefficient for d

 based on X). Suppose that V = (V1,V2) is  

a random vector having density function f(v1,v2) (v1,v2 > 0) where f is defined by (8) and let H be  
the distribution function of W = V1 / V2, i.e., the probability density function of W is given by 
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Then the confidence coefficient associated with the optimum prediction interval d

* 
= (d1,d2), where  

d1 = Xk + 1Sk, d2 = Xk + 2Sk, is 
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Proof. The confidence coefficient for  d

 corresponding to (,) is given by 
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This is independent of (,).  
 

Theorem 4 (Equivalent confidence coefficient for d

 based on Xk). Suppose that V = (V1,V2) is  

a random vector having density function f0(v1,v2) (v1, v2 > 0), where f0 is defined by 
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and let H0 be the distribution function of W = V1 / V2, i.e., the probability density function of W is given by 
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Then the confidence coefficient associated with the optimum prediction interval d
* 

= (d1,d2), where  

d1 = (1 + 1)Xk, d2 = (1 + 2)Xk, is 
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Proof. For the proof we refer to Theorem 3.  

The way in which (26) (or (30)) varies with c, c1 and c2, and the fact that c1 and c2 are the factors 

of proportionality associated with losses from overshooting and undershooting relative to loss involved in 

increasing the length of interval, provides an interesting interpretation of confidence interval prediction. 

 
3. New-Sample Prediction Problem 

  
For new-sample prediction, data from a past sample are used to make predictions on a future unit 

or sample of units from the same process or population. For example, based on previous (possibly 

censored) life test data, one could be interested in predicting the time to failure of a new item, time until   l 

failures in a future sample of m units, or number of failures by time t in a future sample of m units. 

 
3.1. Location-Scale Family of Density Functions 

 
Consider a situation described by a location-scale family of density functions, indexed by the 

vector parameter   = (,), where  and  ( > 0) are respectively parameters of location and scale. For this 

family, invariant under the group of positive linear transformations: xax + b with a > 0, we shall 

assume that there is obtainable from some informative experiment (the first k order statistics X1 < X2 <  < Xk  

from a random sample of size n) a sufficient statistic (Mk,Sk) (or a maximum likelihood estimator 

( k


, k


)) for (,) based on X = (X1, X2,…, Xk) with density function 

 

]/ ,/)[(),|,( 0
2  kkkk smpsmp   , 

.0   ,   ,0   ,  kk sm  (31) 

 

We are thus assuming that for the family of density functions an induced invariance holds under the group 

G of transformations:  mk  amk + b,   sk  ask   or  k


 ka


+ b, k


 ka


 (a> 0). The family of 

density functions satisfying the above conditions is, of course, the limited one of normal, negative 

exponential, Weibull and gamma (with known index) density functions. The structure of the problem is, 

however, more clearly seen within the general framework. Let Y be an independent future observation 

from a new sample. If Y is invariantly predictable then W = (Y − Mk) / Sk  (or W = kkY 


/)(  ) is  

a maximal invariant pivotal, conditional on X. 

 
3.2. Piecewise-Linear Loss Function 

 
We shall consider the interval prediction problem for the sth order statistic Ys, 1  s  m, in a future 

sample of size m for the situation where the first k observations X1 < X2 < < Xk, 1  k < n, from a past 

sample of size n have been observed. Suppose that we assert that an interval d = (d1,d2) contains Ys. If, as 

is usually the case, the purpose of this interval statement is to convey useful information we incur 

penalties if  d1  lies above Ys or if  d2  falls below Ys. Suppose that these penalties are  c1(d1 Ys) and  

c2(Ys  d2), losses proportional to the amounts by which  Ys  escapes the interval. Since  c1  and  c2  may be 

different the possibility of differential losses associated with the interval overshooting and undershooting 

the true    is allowed. In addition to these losses there will be a cost attaching to the length of interval 

used. For example, it will be more difficult and more expensive to design or plan when the interval  

d = (d1,d2) is wide. Suppose that the cost associated with the interval is proportional to its length, say 

c(d2d1). In the specification of the loss function,  is clearly a ‘nuisance parameter’ and no alteration to 
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the basic decision problem is caused by multiplying all loss factors by 1/.  Thus we are led to investigate 

the piecewise-linear loss function  
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The decision problem specified by the informative experiment density function (31) and the loss function 

(32) is invariant under the group G of transformations. Thus, the problem is to find the optimal interval 

predictor of  Ys, 
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   (33) 

 

where D is a set of invariant interval predictors of Ys, R(,d) = E{r(,d)} is a risk function. 

 
3.3. Transformation of the Loss Function 
 

It follows from (32) that the invariant loss function, r(,d), can be transformed as follows: 
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where 

 

















),(                  )()(

),(                                )(

),(                  )-()(

),(

2212122212

22121212

2112122111

VVVcVVc

VVVVc

VVVcVVc

r







V  (35) 

 

V = (V1,V2),   V1 = /)( ks MY  ,   V2 = /kS ;    = (1,2),   1 = 
kk SMd /)( 1  ,   2= kk SMd /)( 2  . (36) 

 
3.4. Risk Function 
 

It follows from (35) that the risk associated with d and  can be expressed as 
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which is constant on orbits when an invariant predictor (decision rule) d is used, where f(v1,v2) is defined 

by the joint probability density function of the first k ordered observations X1 < X2 < < Xk from the past 

random sample of observations of size n and the sth order statistic Ys in the future sample of size m, 
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3.5. Risk Minimization and Optimal Predictors 
 

The following theorem gives the central result in this section. 
 

Theorem 5 (Optimal invariant predictor of Ys based on X). Suppose that (u1, u2) is a random 
vector having density function 
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where f is defined by  f(v1,v2),  and let  Q   be the probability distribution function of u1 / u2.  
 

(i) If  c / c1 + c / c2 < 1 then the optimal invariant linear-loss interval predictor of  Ys  based on  X  

is d
* 
= (Mk + 1Sk, Mk + 2Sk), where 

 

./1)(     ,/)( 2211 ccQccQ    (40) 

 

(ii) If  c / c1 + c / c2  1 then the optimal invariant linear-loss interval predictor of  Ys  based on  X 

degenerates into a point predictor Mk +  Sk, where 
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Proof. For the proof we refer to Theorem 1.  
 

Corollary 5.1 (Minimum risk of the optimal invariant predictor of Ys based on X). The minimum 
risk is given by 
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for case (i) with  = (1,2) as given by (40) and for case (ii) with 1 = 2 =   as given by (41). 

 

Proof. For the proof we refer to Corollary 1.1.  

 
3.6. Equivalent Confidence Coefficient 
 

Theorem 6 (Equivalent confidence coefficient for d

 based on X). Suppose that V = (V1,V2) is  

a random vector having density function  f(v1,v2) (v1 real, v2 > 0)  where  f  is defined by (38) and let  H  
be the distribution function of  W = V1 / V2,  i.e., the probability density function of  W is given by 
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Then the confidence coefficient associated with the optimum prediction interval d
* 

= (d1,d2), where  

d1 = Mk + 1Sk, d2 = Mk + 2Sk, is 
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Proof. For the proof we refer to Theorem 3.  

 
4. Example 
 

4.1. Within-Sample Prediction 
 

Exponential distribution. Let X1 < X2 <  < Xn be the order statistics of a random sample of size  n 
from the exponential distribution with the density  
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We shall consider the prediction problem of  Xr  for the situation where the first  k  observations  

X1 < X2 < < Xk, 1  k < r  n, have been observed. Let G be the group of transformations  
xi  = axi (i = 1, …, k, r, n, a > 0). We are now concerned with optimization of the prediction interval for Xr 

under the loss function (2). Let X = (X1, X2,…, Xk) and Xr  > Xk for r  n. Then the joint probability density 
function of X and Xr is given by 
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Using the invariant embedding technique [13–18], we then find in a straightforward manner that the joint 
density of V1, V2 is 
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It follows from (15), (49) and (50) that 
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It follows from (25) and (48) that 
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If  c / c1 + c / c2 < 1  then the optimal invariant linear-loss interval predictor of  Xr  based on  X  is given by 

 

d
* 
= (Xk + 1Sk, Xk + 2Sk), (53) 
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The confidence coefficient associated with the optimum prediction interval d
* 

= (d1,d2), where  

d1 = Xk + 1Sk, d2 = Xk + 2Sk, is given by 
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5. Conclusions 

 
In many statistical decision problems it is reasonable confine attention to rules that are invariant 

with respect to a certain group of transformations. If a given decision problem admits a sufficient statistic, 

it is well known that the class of invariant rules based on the sufficient statistic is essentially complete in 

the class of all invariant rules under some assumptions. This result may be used to show that if there 

exists a minimax invariant rule among invariant rules based on sufficient statistic, it is minimax among all 

invariant rules. 

Remark. It should be remarked that if we deal, for instance, with within-sample prediction and 

wish to obtain the best invariant prediction interval d = (d1,d2) for Xr, which has the prescribed confidence 

coefficient (or level) , we have to minimize the risk function R(,d) = E{r(,d)} under constraint 
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It can be shown that this problem is reduced to the following one: 

Minimize 
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Subject to 
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i.e., the unknown parametric vector  is eliminated from the problem.  
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Computer Modelling and New Technologies, 2013, vol. 17, no. 1, 37–50 

Transport and Telecommunication Institute, Lomonosova 1, LV-1019, Riga, Latvia 

 
Parametric change point detection schemes based on the Shiryaev-Roberts approach have been well addressed in the 

statistics and engineering literature that consider sequential techniques. High efficiency of such procedures can be partially 

explained by their known asymptotic optimal properties. Recently, Shiryaev-Roberts based procedures were proposed and examined 

in applications to the standard AMOC (at most one change) retrospective change point detection problems. The main aim of this 

article is to review and extend parametric retrospective and sequential Shiryaev-Roberts based policies, carrying out different 

contexts of the procedures’ non-asymptotic optimal properties. We utilize the general principle of the Neyman-Pearson fundamental 

lemma to show that the Shiryaev-Roberts approach implies the average most powerful procedures. We also propose techniques to 

construct novel and efficient retrospective tests for multiple change points detection. A real data example based on biomarker 

measurements is provided to demonstrate implementation and effectiveness of new tests in practice.  

 

Keywords: Shiryaev-Roberts sequential procedure; non-asymptotic optimality; retrospective change point detection; 

average most powerful 

 

1. Introduction 

 
In this article, we study parametric Shiryaev-Roberts type procedures applied to key problems of 

the statistical process control issues that include retrospective and sequential change point detection 

problems. Considerations of these problems are very important in the context of quality and reliability 

controls, special topics of statistical inference, as well as in experimental and mathematical sciences  

(e.g., Lai [13]; Gurevich and Vexler [8]).  

Firstly, we outline a main principle of the proof related to the Neyman-Pearson fundamental 

lemma (e.g., Vexler and Gurevich [26]. To this end, let us define ]1,0[  and A , B  to be any real 

numbers. Then, it is clear that  

 

     0 BAIBA , (1) 

 

where  I  is the indicator function. This inequality can be easily applied to evaluate optimal properties of 

decision rules. For example, consider the simple classification problem, where given a sample of k  

independent and identically distributed observations 
kXX ,...,1

, we want to test the hypothesis 

 

010 ~,...,X : FXH k
 versus 

111 ~,...,X : FXH k
. (2) 

 

Here 
0F  and 

1F  are known distributions with the density functions  xf0  and  xf1 , respectively. The 

inequality (1) determines that the most powerful test for (2) is the likelihood ratio test that rejects 
0H  if 
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   1 01 1
/

k k

i ii i
f X f X C

 
  , where C  is a fixed threshold. This classical proposition directly 

follows from (1), when    1 01 1
/

k k

i ii i
A f X f X

 
  , CB  ,   is considered as any decision rule 

based on the observed sample, and the expectation, under 
0H , is derived from both the sides of (1). 

Although the example mentioned above is very simple, this way of the use of (1) can be applied to show 
different aspects of optimality related to operating characteristics of complex test-statistics. In this article, 
we utilize the trivial inequality (1) to provide simple proofs of non-asymptotic optimal properties of 
retrospective Shiryaev-Roberts procedures. We consider situations related to the retrospective change 
points detections, proposing accordingly adjusted forms of the retrospective Shiryaev-Roberts procedure. 
The problem to detect more than one change-point is also analysed in this article. The real data example is 
provided to demonstrate applicability of the proposed approach in practice. Considering sequential 
change point problems, we show that any given sequential test can be evaluated via an application of (1) 
type inequalities that provide optimal properties of this test, but explanations of this optimality 
corresponding to the classical operating characteristics of tests are complicated tasks. The presented 
analysis of the sequential Shiryaev-Roberts procedure and its non-asymptotic optimal property clearly 
demonstrate this issue.  

All sections of this article are supplied with brief introductions related to the corresponding 
problem statements. In Section 2, we consider the retrospective AMOC change point problem and review 
the techniques addressed in the literature. Theoretical results, which show a non-asymptotic optimal 
property of the retrospective Shiryaev-Roberts procedures, are also presented. In Section 3, we propose 
and analyse in details adjusted forms of the retrospective Shiryaev-Roberts procedure for detecting two 
changes in distributions of independent observations. This section clearly demonstrates how this 
procedure can be adapted to be used for the multiple change point detection. A real data example 
introduced in Section 3 demonstrates that the proposed generalized Shiryaev-Roberts procedures can be 
easily applied in practice. Section 4 contributes results related to a sequential change point problem.  
We outline here the proof of a non-asymptotic optimality of the sequential Shiryaev-Roberts procedure. 
We present main conclusions in Section 5. 

 
2. Retrospective Change Point Detection  

 
The scientific literature has shown a significant interest in investigations related to retrospective 

change point detection problems (e.g., Page [18], [19]; Chernoff and Zacks [1]; James et al. [10]; Gombay 
and Horvath [2]; Gurevich and Vexler [7], [8]). These problems are directly associated with process 
capability and are important in biostatistics, engineering, education, economics and other fields (see, e.g., 
Sen and Srivastava [21]). The literature presents change point detection problems as key issues that 
belong to testing statistical hypotheses. This section focuses on the problem to detect a change in  
a distribution of independent data points. These data points are assumed to be observed before that we run 
requested procedure to analyse the homogeneity of the data points. 

Thus, let us set up 
nXX ,...,1
 to be independent observations with density functions 

ngg ,...,1
, 

respectively. The retrospective change point problem can be formulated via the notation related to 
hypothesis testing, when we want to test the null hypothesis: 
 

0i0 g  : fH    for  all  ni ,...,1  (3) 

 
versus the alternative hypothesis: 
 

10111 ......g : fggfgH n   
,  is unknown. 

 

The unknown parameter   , n2 , is called a change point. The statistical literature has investigated 

the problem (3) in parametric and nonparametric settings. In the parametric case of (3), it is assumed that 

the density functions
 0f  and 

1f  have known forms that can contain certain unknown parameters  

(e.g., Chernoff and Zacks [1]; Kander and Zacks [11]; Sen and Srivastava [21]; James et al. [10]; Gombay 

and Horvath [2]; Gurevich [6]). In the nonparametric case of (3), the functions 
0f , 

1f  are assumed to be 

completely unknown (e.g., Wolfe and Schechtman [28]; Gurevich [5]; Vexler and Gurevich [25]).  
The common distribution-free procedures for change point detection are based on signs and/or ranks 
and/or U-statistics (e.g., Gombay [3]; Gurevich [5]).  
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In this article, we attend to the parametric case of the change point problem (3). Such situations are 

widely addressed in both the theoretical and applied literature. Chernoff and Zacks [1] considered  

the problem (3) with normally distributed observations. They assumed a uniform prior distribution for  

the change point   and suggested a Bayesian approach to construct the detection rule. Kander and Zacks 

[11] adapted the Chernoff and Zacks's method to be applied to a case based on data from one-parameter 

exponential families. In this framework, Sen and Srivastava [21] presented a test-statistic utilizing  

the maximum likelihood methodology; James et al. [10]) proposed decision rules based on likelihood 

ratios and recursive residuals. Gombay and Horvath [2] considered the general case, defining density 

functions    0 0;f u f u  ,    1 1;f u f u  , 
10   , where the parameters 

0 1,   are unknown. They 

suggested using the maximal likelihood ratio:  2max 2logn k n kZ    , where 

 

   

 
0 1

0

1

0 11

01

sup ; sup ;

sup ;

k n

i ji j k

k n

ii

f x f x

f x

 



 





 
 




 

 


. (4) 

 

The Gombay and Horvath’s test rule is to reject 
0H  for large values of 

nZ .  

Following the aims of this paper, let us begin with a consideration related to a simple situation, 

where density functions 
0f  and 

1f  are known. In this case, the maximum likelihood estimation of  

the change point parameter   employed in the likelihood ratio     

n

i ii XfXf
 01 /  leads us to  

the well-known CUSUM test (e.g., Gurevich and Vexler [8]). That is, we should reject 
0H  if and only 

 if     1 0
1
max /

n

i i
k n

i k

f X f X C
 



 , where 0C  is a threshold. Alternatively, Vexler [23] proposed 

and examined a test based on the Shiryaev-Roberts approach: to reject 
0H  if  

 

 

 
1

1 0

1 1 nn
i

n

k i k i

f X
R C
n n f X 

  , (5) 

 

where 0C  is a threshold. Optimal properties of the CUSUM procedure have not been addressed in the 

retrospective change point literature. Vexler [23] and Vexler and Gurevich [9] showed the following non-

asymptotic optimal property of the test (5) for the problem (3). Let 
kP  and 

kE  ( nk ,...,0 ) respectively 

denote probability and expectation conditional on k  (the case 0k  corresponds to 
0H ). Setting in 

(1.1) nRA n /  and CB  implies 

 

1 1 1
n n nR C I R C R C

n n n


    
       

    
. (6) 

 

Without loss of generality, we suppose that 0,  1   is any decision rule based on 
nXX ,...,1

 such that 

the event  1  leads us to reject 
0H . Because of  

 

 
 
 

 
 

     
    

















n

k

n

ki

n

i

n

i

ii

i

i
n

k

n

ki i

i
n dxxf

xf

xf

nXf

Xf
E

n
RE

n 1 1 1

0

0

1

1 0

1
00 ...

111
  

          




 


n

k

k

n

k

k

i

n

i

i

n

ki

ii P
n

dxxfxfI
n 11

1

1 1

10 1
1

1...
1

 , 

 

the derivations of 
0H  – expectation applied to both the left and right side of (6) provide the next 

proposition. 
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Proposition 2.1: The test (5) is the average most powerful test, i.e. 

 























n

k

nnk CR
n

CPCR
n

P
n 1

0

111
 

   0 0 0

1

1
  rejects H   rejects H

n

k

k

P CP
n

 


  , 

 

for any decision rule [0,  1]   based on the observations 
nXXX ,...,, 21

. 

Remark 2.1. The test statistic (5) can be easily modified when the density functions 
0f  and 

1f  are 

known up to parameters. For example, one can use an approach to adapt (5) to this case via the mixture 

technique described below (e.g., Krieger et al. [12]). For instance, consider the problem (3) with a known 

density function 
0f , and    1 1 ;f u f u  , where   is an unknown parameter. In this case, we can 

represent the test (5) following the mixture methodology. That is, we choose a prior ( )   and pretend 

that ~ ( )   . Hence, the mixture Shiryaev-Roberts type statistic has the form of 

 

 

 
1(1)

1 0

;1 1
( )

nn
i

n

k i k i

f X
R d
n n f X


 

 

   . 

 

This definition provides to show the following property of the adapted change point detection scheme: 

 

   (1) (1)
1 0

1

1 1 1
 are from ; ( )

n

k n j i nj k
k

P R C X f X d CP R C
n n n

  




   
     

   
  

    0 1

1

1
 rejects H  are from ; ( )

n

k j ij k
k

P X f X d
n

   




   

 0 0 rejects HCP  , 

 

for any decision rule ]1,0[  based on the observations nXX ,...,1 . This optimality is again obtained 

using the inequality (1). In this case, the meaning of optimality mentioned in Proposition 2.1 is modified 

to be integrated over values of the unknown parameter   with respect to the function  . 

The different approach for the case, where    0 0;f u f u  ,    1 1;f u f u  , 
10   , is to 

adapt the CUSUM and Shiryaev-Roberts tests to be the next rules: to reject 
0H  if  

 

1
2
max k
k n

C
 

  , (7) 

 

and  

 

2

2

1 n

k

k

C
n 

  , (8) 

 

respectively, where 
1 2, 0C C   are thresholds and the ratios 

k , 2,...,k n , are denoted in (4). 

Gurevich and Vexler [8] conducted an extensive Monte Carlo study to compare various change point 

procedures. The powers of the modified CUSUM test (7) and the modified Shiryaev-Roberts test (8) were 

compared for different families of the null and the alternative distributions. It was shown that the test (8) 

is more powerful (not just more powerful in average) than the test (7) in most of considered scenarios. 

However, when the change point location   is relatively very close to 1, the test (7) is weakly superior to 

the test (8). Monte Carlo experiments presented in Gurevich and Vexler [8] also confirmed that the 

modified Shiryaev-Roberts test statistic (8) is usually more robust than the CUSUM test statistic (7) with 

respect to misclassifications regarding the data distributions. 
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Remark 2.2. Considering the change point problem (3) with completely unknown density functions 
0f  and 

1f , 

Gurevich and Vexler [8] proposed distribution-free forms of the CUSUM and Shiryaev-Roberts procedures 
approximating nonparametrically the likelihood ratio's components of the parametric CUSUM and Shiryaev-
Roberts test statistics. The authors used Monte Carlo studies to show that comparisons of the nonparametric 
CUSUM and Shiryaev-Roberts tests give the results similar to those of that related to the parametric tests’ 
comparisons. The nonparametric form of the Shiryaev-Roberts test is more powerful (and always more powerful 
in average) than that of the CUSUM test in most of scenarios dealt with different data distributions. 

The Shiryaev-Roberts procedure (5) can be easily adapted to be a multiple change point detection 
procedure. In the next section, we propose an extended Shiryaev-Roberts procedure for the two change 
point detection problems, presenting in details its non-asymptotic properties. We demonstrate an application 
of the proposed procedure in this section to a real data example.  

 
3. Retrospective Detection of Two Change Points  
 

In this section, we consider the problem to develop a test for  
 

0i0 g  : fH   for all  ni ,...,1  (9) 

 

versus  
 

1 1 2 21 1 1 1 1 2 3 : g ... ; ... ; ... nH g f g g f g g f             , 

 

1 , 2  are unknown change points, 1 22 n    . The density functions 0f , 1f , 2f  and 
3f  are not 

necessary known. We propose to apply the following adjusted Shiryaev-Roberts statistic for the problem (9):  
 

1 2

1 2

1 2 1

1 1

1 2 3

1(2)

1
0

1

( ) ( ) ( )
1 1

( )

k k n

i j ln n
i j k l k

n n
k k k

i

i

f X f X f X

R
n n

f X

 
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 





  
 



.  

 

Then, we reject 
0H  if  

 

(2)1
nR C

n
 , (10) 

 

where C is a test threshold at the significance level of .  

 
3.1. Non-Asymptotic Optimal Properties of the Shiryaev-Roberts Test (10) 
 

Let 
1 2,k kP  denote probability conditional on 

1 1k   and 
2 2k  . The next proposition presents  

a non-asymptotic property of the proposed test (10). 

Proposition 3.1: The proposed test (10) is the average most powerful test for (9) with known density 

functions 
0f , 

1f , 
2f  and 

3f , i.e.  

 

 
1 2 1 2

1 2 1 1 2 1

(2)
, , 0

1 1

1 1 1
P P  rejects 

n n n n

k k n k k

k k k k k k

R C H
n n n

 
   

 
  

 
    , 

 

for any decision rule [0,  1]  with fixed  
0 0P  rejects =H H   based on the observations 

nXX ,...,1
. 

Proof. The corresponding proof scheme is similar to that of Proposition 2.1. That is, using Equation (1) 

with 
(2) /nA R n  and B C , we can write 

(2) (2)1 1
0n nR C I R C

n n
  

    
      

    
. (11) 
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Taking the 
0H – expectation on both the sides of (11), we have 

 

   
0 0 0 0

(2) (2) (2) (2)1 1 1 1
H n n H n H n HE R I R C C E I R C E R C E

n n n n
    

      
          

      
. (12) 

 

It is enough to note that utilizing Equation (12), we can complete the proof, since  
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 
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, , 0

1 1

P 1 P  rejects 
n n n n

k k k k

k k k k k k

H 
   

      . 

 

When forms of the density functions 
0f , 

1f , 
2f  and 

3f  depend on unknown parameters, one can apply: 

a. The mixture approach, in which a class of likelihood ratio test statistics is constructed via  
the Bayesian methodology (see, e.g., Vexler and Gurevich [26] and Remark 2.1). Let 
 

   ;s sf u f u  , 0,...,3s  , (13) 

 

where 
0  is an unknown parameter and the vector of unknown parameters 

1 2 3( , , )    has a known prior 

1 2 3( , , )    . Then the mixture Shiryaev-Roberts statistic takes the form of 

 

1 2

1 2

1 2

1 1

1 1 2 2 3 3
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, (14) 

 

where 
0 0

1

ˆ arg max ( ; )
n

i

i

f X


 


   is the maximum likelihood estimator, under the null hypothesis, of 

0  based on the observations 
nXX ,...,1

. The appropriate test rejects 
0H  if  

 

(3)1
nR C

n
 , (15) 

 

where C  is a test threshold at the significance level of .  The following proposition presents an optimal 

property of the test (15). 

Proposition 3.2: In a class of any detection rules [0,  1]   
based on the observations 

nXX ,...,1
 for 

the problem (9) with the density functions 
0f , 

1f , 
2f ,

3f  presented at (13), the test (15) is the average 

integrated most powerful test with respect to a prior 
1 2 3( , , )     for a fixed estimate of the significance 

level 
1 2 0 1 2 0

1

ˆˆ ( , ,..., ) ( , ,..., ; )
n

n n i

i

x x x f x x x dx  


  , i.e.  
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Proof. The proof is similar to those of Propositions 2.1 and 3.1. 

Example 3.1.1: Let    2( , )s s
s N
f x f x

 
 , 0,1,2,3s  , where 2

s , 0,1,2,3s  , are fixed known 

parameters, 0  is an unknown parameter. We assume that the priors for the parameters , 1,2,3j j  , 

under the alternative hypothesis, are normal densities, i.e. 2~ ( , )j j jN   , 1,2,3j  . Then the 

mixture Shiryaev-Roberts statistic (14) is 
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2

3 2( 1)
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X X n k
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b. The estimation approach, in which a class of likelihood ratio test statistics, is constructed via the 

maximum likelihood estimation of the parameters (see Remark 2.1). Let    ;s sf u f u  , 

0,...,3s  . Then the proposed modified Shiryaev-Roberts statistic has the form of  
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. (16) 

 

The appropriate test rejects 0H  if  

 

(4)1
nR C

n
 , (17) 

 

where C  is a test threshold at the significance level of .  

Example 3.1.2. Assume    2( , )s s
s N
f x f x

 
 , 0,1,2,3s  , where expectations 

s  and variances 2
s , 

0,1,2,3s  , are unknown. Then, the statistic (16) has the form of  

2

1 2 1 2
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( 1) ( ) ( 1)
1 2 2 2

1 2 3

ˆ1 1

ˆ ˆ ˆ
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3.2. A Real Data Example 

 
In this example, we demonstrate that the proposed test (17) can be easily applied in practice.  

We apply the proposed method to analyse data from a study that was shown in Wians et al. [27].  

The same data set was utilized by Obuchowski [16] and Tian et al. [22]. These authors compared  

the diagnostic abilities of different rapid blood test-scores, including per cent transferrin saturation (%TS) 

and total iron binding capacity (TIBC), for determining blood iron concentrations. The data set was 

composed of 134 patients (55 females and 79 males) with anaemia who underwent the series of blood 

test-scores. Following previous works of Obuchowski [16] and Tian et al. [22], we focus on only the %TS 

and TIBC blood test-scores and limit the analysis to 55 female anaemia patients. The plots and the 

empirical histograms based on the %TS and TIBC data are displayed on Figure 1. Tian et al. [22] 

categorized the study subjects into three groups based on the results of ferritin concentration that provides 

a useful screening test for iron deficiency anaemia (IDA). Non-pregnant women with anaemia and a ferritin 

concentration less than 20 )/( Lg
 
were assigned to the IDA group, while those with anaemia and a ferritin 

concentration greater than 240 )/( Lg
 
were assigned to be in the anaemia of chronic disease (ACD) 

group. The intermediate group consists of the women with ferritin concentration between 20 and  

240 )/( Lg . There were 29, 14, 12 female anaemia patients in IDA, intermediate, ACD groups, respectively. 

The histograms of the %TC data and those of the TIBC measurements in each group are shown on 

Figures 2 and 3, respectively. Our interest is to detect if the underlying distributions of the %TC data 

as well as the distributions of the TIBC measurements change at two different points. In this section, 

we will formally test for the assumption made by Tian et al. [22] that suggested to consider the %TS 

measurements as three groups as well as the TIBC measurements split  into the three groups, i.e. 

there are two change points in the distribution of the %TS and also two change points in the TIBC 

measurements’ distribution.  

 

Figure 1. The left-hand side of the Figure 1 shows plots and histograms of %TS data;  

the right-hand side of the Figure 1 shows plots and histograms of TIBC data 
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Figure 2. .Histograms of %TS data in each group 

 

 

Figure 3. Histograms of TIBC data in each group 

Following the publications mentioned above in this section, we assume the %TS and TIBC data 

distributed normally. To this end, we apply the test based on the statistic (18). The mean and standard 

deviation of the %TS data are 4.55 and 2.59, respectively, whereas the mean and standard deviation of  

the TIBC observations are 345 and 120 )/( Lg , respectively. The means and standard deviations of  

the %TS and TIBC data in each group are presented in Table 1. 
 
Table 1. Means and standard deviations of the %TS data and the TIBC data in each group 

  
Group IDA intermediate ACD 

Sample size n 29 14 12 

Mean 3.5276 5.0714 5.7500 

Standard deviation 1.8820 2.5859 2.0505 

 

To approximate the p-value of the test (17), where the statistic (4) /nR n  is defined by (18), we 

propose the following methods. 
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3.2.1. The methods for the test (17)’s p-value approximation 
  

In this section, we propose and apply three different methods for p-value approximation related to 

the test (17) with the statistic (4) /nR n  by (18). 

1) The Monte Carlo technique. Since, given that observations follow a normal distribution,  

the construction of the test statistic (18), under the null hypothesis, does not depend on 

parameters 
0  and 2

0  of the null normal distribution, we can conduct the Monte Carlo study 

to obtain the p-value of the test. To execute the Monte Carlo experiment, we first draw  

50,000 replicate samples of 55 observations  ~ 0,1iX N , 1,...,55,i   and accordingly evaluate 

the generated values of the test statistics, say, (4)
55 /55j nr R   at one generation of 

1 55,...,X X , 

1,...,50,000.j   Let r  be the observed test statistic value based on the data. Then we 

determine the approximate p-value of the test as the proportion of cases when values of  jr , 

1,...,50,000j  , exceed the value of r . Following the procedures mentioned above,  

we obtain the p-value of 0.0244 based on the %TS data and the p-value close to zero based on 

the TIBC measurements (p-value  < 0.0001). Both the p-values are less than the significance 

level of 0.05  ; therefore, we recommend to reject the null hypothesis, implying that there 

are changes at two time points in both the %TS and TIBC observation distributions.  

2) Bootstrap calibration. The procedure of the bootstrap calibration (e.g., Owen [17]) is defined 

as follows. Let *b
iX , 1,...,i n , 1,...,b B , be independent random vectors sampled from 

the empirical distribution function 
nF  of the data 

iX , 1,...,i n . This resampling can be 

implemented by drawing n  random integers ( , )i b independently from the uniform 

distribution Unif [1, n], and setting *
( , )

b
i i bX X . We use 55n   and 10,000B  . Now let 

(4) * *
55 1 55( ,..., ) / 55b b

b nH R X X . This defines the order statistics 
(1) (2) ( )... BH H H   . 

Then, the critical value of the test at the significance level of 0.05   is 
(9,500)H . The p-value 

of the test can be evaluated by obtaining 
( 1) ( ): q qq H r H   , where r  is a value of the test 

statistic based on the original data set, and (1 )q n  approximates the p-value. The bootstrap 

procedure gives the corresponding p-values based on the %TS data and the TIBC 

measurements as 0.003 and 0.0001, respectively. Both the p-values are less than the 

significance level of 0.05  , supporting the conclusion that the underlying distributions of 

the %TC and TIBC measurements have significant changes at two different points. 

3) The permutation method. This procedure (e.g., Good [4]) is defined as follows. We randomly 

sample data with 55 variables from the 55 observations without replacement 10,000 times. 

Then we compute the value of the test statistic in each sample, which is denoted by 
iM , 

1,...,10,000i  . Define the corresponding order statistics by (1) (2) (10,000)...M M M   . 

Consequently, the p-value of the test can be estimated by using the value of w such that 

( 1) ( ): w ww M r M   , where r  is a value of the test statistic based on the original data set, 

and (1 )w n  approximates the p-value. By using the permutation test, the p-value based on 

the %TS data is 0.0008 and the p-value based on the TIBC measurements is close to zero  

(p-value < 0.0001). Again, both the p-values that are less than the significance level 

0.05   confirm the rejection of the null hypothesis that the %TC data has no change in  

the distribution as well as the null hypothesis that there is no change in the TIBC data 

distribution. 
 

Therefore, three methods suggest rejecting the null hypothesis. Note that, for the method 1), it is 

important that the observations under the null hypothesis are independent and identically normally 

distributed, whereas for methods 2) and 3), the observations, under the null hypothesis, are assumed to be 

just independent and identically distributed (i.i.d.). Hence, in the case where data are close to being 

normally distributed, the type I errors of methods 2) and 3) will be very close to results for method 1).  
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3.2.2. Additional study 
 

In this subsection, we consider a situation when no change is expected in the real data 

distributions. Now we test the hypotheses (9) based on the %TS observations in the IDA group (n = 29). 

By using the Monte Carlo study, the bootstrap calibration, and the permutation method as mentioned 

above, we obtain that the corresponding p-values are 0.4118, 0.1136, and 0.0921, respectively. These 

results suggest that the distribution of the %TS data in the IDA group has no significant change in this 

case. Similarly, by applying the Monte Carlo study, the bootstrap calibration, and the permutation 

method, the p-values based on the TIBC observations in the IDA group, are 0.5376, 0.6533, and 0.6662, 

respectively. These p-values indicate that there is no significant change in the distribution of the TIBC 

data in the IDA group in this case. 

 
4. Sequential Change Point Detection 

 
There are extensive references in the statistics and engineering literature on the subject of quick 

detection, with low false alarm rate, of changes in stochastic systems on the basis of sequential 

observations from the system. These problems are very important in the context of quality and reliability 

controls (e.g., Lai [13]).  

In many common situations, we assume that we survey sequentially independent  

observations ,..., 21 XX . Initially, the observations follow an in-control distribution with a density 

function 
0f . It is possible that at  -time, an unknown point in time, an accident is in effect, causing the 

distribution of the observations to change to an out-of-control distribution with a density function 
1f .  

A common performance measure for any inspection scheme is the in-control average run length 

(ARL). Let T  be the random variable corresponding to the time when the scheme signals that the process 

is out of control (distribution of the observations has changed), which henceforth will be referred to as the 

stopping time. Thus, T  is the number of observations until the alarm signal. The in-control ARL is 

defined by  
0f

E T , whereas the out-of-control ARL is defined by  
1f

E T , where we define by  fE T  

the expectation of the stopping time T  under the assumption that the observations come from  

a distribution with a density function .f  Clearly, one desires  
0f

E T  to be large and  
1f

E T  to be small. 

In the literature, a proposed index of the speed of detection is  1E T T     . The latter is the expectation 

of the delay in detection given that the change is at point   in time, and given that the stopping time T  

is larger than .   

In this section, we consider the observations 
121 ,...,, XXX  to be distributed according to  

a density function 
0f , whereas ,..., 1 XX from a density function 

1f , with an unknown   

(1 )   . The case   indicates the situation, when all observations are distributed according to 

0f . In this case, the notations P  and E  denote probability and expectation, respectively, when all 

observations are distributed according to 
0f . The sequential change point detection procedures are 

assumed to raise an alarm as soon as possible after the change, avoiding false alarms. It is well known 

that CUSUM and Shiryaev-Roberts procedures are efficient detection methods for this stated problem 

(e.g., Moustakides [15]; Mei [14]; Gurevich and Vexler [9]). The CUSUM policy is: we stop sampling of 

X s and report that a change in distribution of X  has been detected at the first time 1n  that 

     CXfXf
n

ki ii
nk

 
01

1
/max , for a given threshold ;C  similarly, the Shiryaev-Roberts procedure 

can be defined via the stopping time 

 

 inf 1 : C nT n R C   , (19) 

 

where the Shiryaev-Roberts test-statistic nR  is  

 

 

 
1

1 0

nn
i

n

k i k i

f X
R

f X 

 . (20) 
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The sequential CUSUM detection procedure has a non-asymptotic optimal property  

(e.g., Moustakides [15]). That is, if the initial and the final distributions of the observations are known, 

then the CUSUM control procedure most rapidly detect a change in distribution among all procedures 

with a common bound specifying an acceptable rate of false alarms, i.e. in-control ARL. For the 

Shiryaev-Roberts procedure, an asymptotic (as C ) optimality has been shown (Pollak [20]). To 

demonstrate the optimality of the Shiryaev-Roberts detection scheme, Pollak [20]) proved an asymptotic 

closeness of the expected loss using a Bayes rule for the change problem, with a known prior distribution 

of ,  to that using the rule 
CT .  

However, in the context of simple application of the inequality (1), the procedure (19) declares 

loss functions for which that detection policy is optimal. That is, setting 
 min ,CT n

A R  and CB   in (1) 

leads to 

 

      min , min ,
0

C CT n T n
R C I R C     ,  

 

for all [0,  1]  . Because of 
    min ,C CT n

R C T n   , we have 

 

      min , min ,C CT n T n
R C I R C     

         
1

1 0
n

k C n C

k

R C I T k R C I T n 


         . (21) 

 

It is clear that (21) can report an optimal property of the detection rule 
CT . For simplicity, noting that 

every summand in the left side of the inequality (21) is non-negative, we can focus only on 

     0n CR C I T n    .Thus, if   is defined to be a stopping time and  nI   , then 

   ,  0n CE C R I n T n     .  

This and definition (20) imply that 

 

           
1

min , min , 0
n

C C k C k C

k

C P T n P T n P T n P T n  



        .  

 

Therefore, 

 

           
1 1 1

min , min , 0
n

C C k C k C

n n k

C P T n P T n P T n P T n 
 

 

  

         , (22) 

where  

     
1 1

min ,
n

k C k C

n k

P T n P T n


 

    (23) 

     
1

min ,k C k C

k n k

P T n P T n
 

 

     

     
1

1 min , 1k C k C

k

E T k E T k






      , 

 

  0 aaIa . The inequality (22) with (23) gives the next proposition. 
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Proposition 4.1: The Shiryaev-Roberts policy (19) satisfies  
 

   
1

1n C C

n

E T n CE T








         
1

min min , 1 min ,n C C

n

E T n CE T


 








 
     

 
 . 

 

Here,  E  presents the average run length to false alarm of a stopping rule  . Small values of  E  

are privileged, whereas small values of   1nEn   are also preferable (because   1nEn   

relates to fallibility of the sequential detection in the case n ). It is clear that, if  , then 

 min , CT  detects that   faster than the stopping time CT . Consequently, Proposition 4.1 states 

the non-asymptotic optimal property of the Shiryaev-Roberts sequential procedure in the context of series 

of delays in the detection, considering the expectation  1E T 


   as the index of the speed of the 

detection. 

 
5. Conclusions 
 

The main goal of this article has been to review the parametric Shiryaev-Roberts procedures. 

Firstly, we introduced the general principals related to the retrospective change point problems.  

We provided schemes to construct the Shiryaev-Roberts type procedures corresponding to different 

change point problems. Although we consider the relatively simple statement of the problem (3), with 

independent observations, in a similar manner to constructions of Shiryaev-Roberts procedures mentioned 

in this article, complex regression models (see, e.g., Vexler and Gurevich [24]) can be evaluated.  

The Shiryaev-Roberts based procedures are appropriate to replace the classical CUSUM policies in many 

practical applications, because the Shiryaev-Roberts based procedures are shown to demonstrate optimal 

properties. We also proposed the Shiryaev-Roberts procedure for detecting two changes in the sequence 

of independent observations, representing a way of developing Shiryaev-Roberts-type procedures for 

multiple change point detection. In this article, the real data example presents the applicability of  

the proposed technique for detecting two possible changes in the biomarker measurements’ distributions.  

In this example, we pointed out three different methods for estimating the p-values of the Shiryaev-

Roberts-type test. These methods are general and can be applied to estimate the p-values of other 

Shiryaev-Roberts-type tests.  

 
Acknowledgements 
 

This research was partially supported by the NIH grant 1R03DE020851 - 01A1 (the National 

Institute of Dental and Craniofacial Research). 

 
References 
 

1. Chernoff, H., Zacks, S. (1964), Estimating the current mean of a normal distribution which is 

subjected to changes in time. Annals of Mathematical Statistics, 35(3), 999–1018. 

2. Gombay, E., Horvath, L. (1994). An application of the maximum likelihood test to the change-

point problem. Stochastic Processes and their Applications, 50(1), 161–171. 

3. Gombay, E. (2001). U-statistics for Change under Alternatives. Journal of Multivariate Analysis, 

78(1), 139–158. 

4. Good, P. (2005). Permutation, Parametric, and Bootstrap Tests of Hypotheses. New York: Springer. 

5. Gurevich, G. (2006).  Nonparametric AMOC change point tests for stochastically ordered 

alternatives. Communications in Statistics-Theory and Methods, 35(5), 887–903. 

6. Gurevich, G. (2007), Retrospective parametric tests for homogeneity of data. Communications in 

Statistics-Theory and Methods, 36(16), 2841–2862. 

7. Gurevich, G., Vexler, A. (2005). Change point problems in the model of logistic regression. 

Journal of Statistical Planning and Inference, 131(2), 313–331. 

8. Gurevich, G., Vexler, A. (2010), Retrospective change point detection: from parametric to 

distribution free policies. Communications in Statistics-Simulation and Computation, 39(5),  

899–920.  



 

 

Operation Research 
 

50 

 

9. Gurevich, G., Vexler, A. (2011). Non-asymptotic optimal properties of Shiryaev-Roberts 

statistical control procedures. In Proceedings of the 1
st
 International Symposium & 10

th
 Balkan 

Conference on Operational Research (BALCOR 2011) (pp. 242–246). Vol. 1. 

10. James, B., James, K.L., Siegmund, D. (1987). Tests for a change-point. Biometrika, 74(1), 71–83. 

11. Kander, Z., Zacks, S. (1966). Test procedures for possible changes in parameters of statistical 

distributions occurring at unknown time points. Annals of Mathematical Statistics, 37(5),  

1196–1210. 

12. Krieger, A.M., Pollak, M., Yakir, B. (2003). Surveillance of a simple linear regression. Journal 

of the American Statistical Association, 98(462), 456–469. 

13. Lai, T.L. (1995). Sequential change point detection in quality control and dynamical systems. 

Journal of the Royal Statistical Society B, 57(4), 613–658. 

14. Mei, Y. (1997). Comments on “A note on optimal detection of a change in distribution” by 

Benjamin Yakir. The Annals of Statistics, 25, 2117–2126; Mei, Y. (2006). The Annals of 

Statistics, 34(3), 1570–1576. 

15. Moustakides, G.V. (1986).  Optimal stopping times for detecting changes in distributions.  

The Annals of Statistics, 14(4), 1379–1387. 

16. Obuchowski, N. (2006). An ROC-type measure of diagnostic accuracy when the gold standard is 

continuous-scale. Statistics in Medicine, 25(3), 481–493. 

17. Owen, A.B. (2001). Empirical Likelihood. New York: Chapman and Hall/CRC.  

18. Page, E.S. (1954). Continuous inspection schemes. Biometrika, 41(½), 100–114. 

19. Page, E.S. (1955). A test for a change in a parameter occurring at an unknown point. 

Biometrika, 42(¾), 523–526. 

20. Pollak, M. (1985). Optimal detection of a change in distribution. The Annals of Statistics, 13(1), 

206–227. 

21. Sen, A., Srivastava, M.S. (1975).  On tests for detecting change in mean. The Annals of Statistics, 

3(1), 98–108. 

22. Tian, L., Xiong, C., Lai, C.-Y., Vexler, A. (2011). Exact confidence interval estimation for the 

difference in diagnostic accuracy with three ordinal diagnostic groups. Journal of Statistical 

Planning and Inference, 141(1), 549–558. 

23. Vexler, A. (2006). Guaranteed testing for epidemic changes of a linear regression model. Journal 

of Statistical Planning and Inference, 136(9), 3101–3120. 

24. Vexler, A., Gurevich, G. (2009). Average most powerful tests for a segmented regression. 

Communications in Statistics-Theory and Methods, 38(13), 2214–2231. 

25. Vexler, A. & Gurevich, G. (2010). Density-based empirical likelihood ratio change point 

detection policies. Communications in Statistics-Simulation and Computation, 39(9),  

1709–1725. 

26. Vexler, A., Gurevich, G. (2011). A note on optimality of hypothesis testing. Mathematics in 

Engineering, Science and Aerospace, 2(3), 243–250. 

27. Wians, F.H., Urban, J.E., Keffer, J.H., Kroft, S.H. (2001). Discriminating between iron 

deficiency anemia and anemia of chronic disease using traditional indices of iron status vs. 

transfer in receptor concentration. American Journal of Clinical Pathology, 115(1), 112–118. 

28. Wolfe, D.A., Schechtman, E. (1984). Nonparametric statistical procedures for the change point 

problem. Journal of Statistical Planning and Inference, 9(3), 389–396. 

 
Received on 21st of December 2012 



 

 

Computer Simulation 

 

51 

 

Computer Modelling and New Technologies, 2013, vol. 17, no. 1, 51–63 

Transport and Telecommunication Institute, Lomonosova 1, LV-1019, Riga, Latvia 

 

CORRELATION BETWEEN COEFFICIENT OF FRICTION  

AND SURFACE ROUGHNESS IN DRY SLIDING WEAR OF AISI 

316 L (N) STAINLESS STEEL AT ELEVATED TEMPERATURES 

 
N. L. Parthasarathi, U. Borah, Sh .K. Albert 

 
Materials Technology Division, IGCAR Kalpakkam 

E-mail: nlpartha@igcar.gov.in 

 
In this paper, coefficient of friction in dry sliding wear at different temperatures has been correlated with surface roughness 

(Ra) of the wear tracks. Unlubricated pin-on-disc sliding wear tests were carried out on AISI Type 316 L (N) austenitic stainless 

steel up to 550oC at constant load (20 N) and sliding speed (0.8 m/s) as per the ASTM standard G99-05. Line profiling along radial 

directions across the wear track was carried out and the line profiles were analysed to calculate surface roughness of the wear tracks. 

AISI Type 316 L (N) austenitic stainless steel is a major structural material in the prototype fast breeder reactor (PFBR), Kalpakkam 

because of its good high temperature properties and compatibility with liquid sodium. This experimental work revealed a one to one 

correlation between coefficient of friction and surface roughness of wear tracks. Coefficient of friction as well as surface roughness 

during dry sliding wear increased with increase in temperature.  

 

Keywords: Coefficient of friction; AISI 316 L (N) stainless steel; high temperature, roughness 

 
1. Introduction 
 

AISI Type 316 L (N) austenitic stainless steel is a major structural material in the prototype fast 

breeder reactor (PFBR), Kalpakkam because of its good high temperature properties and compatibility 

with liquid sodium. The frictional coefficient of unlubricated type 316 austenitic stainless steel tested in 

room temperature was in the range 0.4–0.6. The pattern of variation had sudden amplitude fluctuations 

and no systematic trend could be detected [1]. The sliding wear of 304 and 310 stainless steels against M2 

tool steel rings showed that the strain-induced martensite transformation. The formation of α׳-martensite 

in 304 steel gives a lower average value of friction coefficient with large fluctuations [2] (Yang et al., 

1985). The sum of the wear rates on a pin and a mated disk, the wear rate on a pin and the mean 

coefficient of friction increased with the mean acoustic emission event counting rates under various 

lubricated conditions [3] (Hisakado and Warashina, 1998). The load and sliding speed dependencies of 

the coefficient of friction and temperature were obtained on specimens from austenitic and martensitic 

steels and severe adhesive wear (seizure) conditions were resulted [4] (Tarassov and Kolubaev, 1999). 

Measurements of friction coefficients made in dry sliding pin-on-disc tests with steel specimens revealed 

that coefficient of friction increased as debris increased [5] (Sherrington and Hayhurst, 2001). 

Impact/sliding methodological wear tests were performed at room temperature on stainless steel claddings 

(304 L). Worn samples were examined by 2D profilometry [6] (Van Herpen et al., 2001). Friction tests 

results of AISI 1006 low-carbon steel and AISI 52100 bearing steel using a spiral pin-on-disk apparatus 

concluded that metals with high hardness resulted in low friction coefficient values [7] (Pintaude et al., 

2003). The study of tribological properties of AISI 304 austenitic stainless showed that the decrease of 

relative humidity in wear tests promoted increase in weight loss and friction coefficient[8] (Bregliozzi et 

al., 2003). The coefficient of friction, formation of transfer layer, and the presence of stick–slip motion 

depend on the surface texture of hard surfaces in 080 M40 (EN8) steel plates [9] (Pradeep, 2006). Friction 

behaviour study of SUS 304 austenitic stainless steel (ASS) disc against GCr15 bearing steel ball showed 

that there was an initial gestation period and later friction coefficient increased rapidly with the normal 

load [10] (Hua et al., 2008). The wear behaviour at high sliding speeds of metal injection moulded 316 L 

stainless steel under dry sliding conditions resulted with adhesive-induced delamination [11] 

(Kanchanomai et al., 2009). The microstructure evolution of the worn surface layer of SUS 304 austenitic 

stainless steel (ASS) disk against Al2O3 ceramic ball revealed the martensitic transformation [12] 

(Xicheng et al., 2009). Comparative friction wear tests to assess the wear resistance and wear mechanism 
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of Fe–14Mn–5.5Si–12Cr–5Ni–0.10C and AISI 321 stainless steel were carried out [13](Jianjian et al., 

2009). The sliding friction and wear behaviour of D9 alloy showed that damage is more in specimens 

tested at 823K due to the softening of surfaces. Friction coefficient was lower at 473K than at 823 K [14] 

(Hemant Kumar et al., 2010). Six common types of metallic wear particles, i.e., cutting, spherical, 

rubbing, laminar, fatigue chunk and severe sliding particles, have been studied and reported on the 

features of their boundary morphology and surface topography [15] (Peng and Kirk, 1998). Surface 

roughness parameters were categorised into three groups according to its functionality namely amplitude, 

spacing and hybrid parameters [16] (Gadelmawla, 2002). In the knowledge of 3D microtopography, 

asperities were statistically processed. Asperities were replaced by paraboloid and pyramidal surfaces, in 

order to determine the distribution of the direction angle of asperities and other related parameters [17] 

(Palásti-Kovács et al., 2004). Operational characteristics of technical surfaces are greatly influenced by 

microtopographical features [18] (Váradi et al., 2004). Numerical parameters, Ra, Rq and Rsk were used 

to measure the evolutions of the surface alternations from the running-in to steady state wear stage [19] 

(Yuan et al., 2004). The evolution of the surface morphology of wear debris in relation to change in the 

surface morphology of wear components in sliding wear process showed a good correlation [20] (Yuan et 

al., 2008). Surface microtopography plays a dual role in the course of friction and wear processes. Fractal 

dimension (Df), root mean square gradient (Sdq), surface area ratio (Sdr) and surface kurtosis (Sku) 

parameters of microtopographies helps in correlating wear processes with amplitude of the roughness [21] 

(Barányi et al., 2010). In this paper, dry sliding wear experiments were carried in various temperatures 

with constant load and sliding velocity.  The variation of Coefficient of friction with respect to  

different operating temperatures was recorded. The worn track surfaces were correspondingly analysed by 

a profilometer. The measured roughness parameters were correlated with coefficient of friction during dry 

sliding at various test temperatures. The experimental details are given in Section 2. Results of wear 

experiments and surface profiling are discussed in Section 3 followed by conclusions in Section 4. 

 
2. Experimental Procedure 

 
2.1. Materials 

 

AISI 316 L (N) stainless steel has faced centred cubic (FCC) crystalline structure. Type 316 L (N) 

is a low carbon, nitrogen-enhanced version of Type 316 austenitic stainless steel. Lower carbon content 

brings in enhanced resistance to sensitization and addition of nitrogen provides some solid solution 

hardening, raising its minimum specified yield strength compared to Type 316 L stainless steel.  

The chemical composition of the tested material is given in Table 1. 

 
Table 1. Chemical composition of AISI type 316 L (N) stainless steel 

 

Elements C Cr Ni Mo Mn Si N S P Cu 

Weight, % 0.024 17.8 13 2.38 1.84 0.25 0.05 0.005 0.03 0.519 

 
2.2. Wear Testing Procedure 

 

Pin-on-Disc (POD) sliding wear experiments as per ASTM G99-05 standard were carried out in 

DUCOM make TR- 20-M12EV high temperature pin on disk Tribometer. AISI 316 L (N) Hemispherical 

pins of 5 mm radius of curvature were mated against 130 mm diameter and 10 mm thick discs of the same 

material. The pin was held stationary and the disc was rotated. All the tests were carried out at a constant 

load of 20 N for 800 seconds each at constant sliding velocity of 0.8 m/s resulting in total sliding distance 

of 640 m in each test. The test temperatures were room temperature (25°C), 100°C, 150°C, 250°C, 

350°C, 450°C and 550°C. The experimental parameters are summarized in Figure 1. Dead weights were 

applied on the pin and the frictional force between the pin and the disc was measured using a load cell 

positioned perpendicular to the pin loading path. Coefficient of friction was calculated as the ratio of  

the measured frictional force to the applied pin load. Pin and disc temperatures were measured using  

K-Type thermocouples.  
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Figure 1. Experimental parameters 

2.3. Surface Profilometry  

 
Roughness is typically calculated on the high frequency, short wavelength component of a measured 

profile. The roughness parameter Ra represents the arithmetic mean of the profile calculated from absolute 

values of profile amplitudes and arithmetic mean of the measured profile. Increase in Ra represents 

increase in roughness of the surface. Coefficient of friction increases with increase in surface roughness 

and hence correlation between Ra and Coefficient of friction would be a good predictor of the 

performance of a mechanical component, since irregularities in the surface may form nucleation sites for 

cracks or corrosion. A representative radial line of 5mm length across the wear track of each tested AISI 

316 L (N) disc was scanned using Talysurf CLI 1000 surface profilometer. Line profiling was done using 

non contact high resolution confocal point gauge. The gauge had a range of 3000 µm with 0.25 nm 

resolution. The gauge focussed a beam on the surface through a lens with chromatic length aberration and 

due to the aberration, the focus points were at different Z-positions for different wavelengths.  

A built-in spectrometer received the reflected light through a pin hole and provided an intensity 

curve depending on wavelength. The focused wavelength was the one corresponding to the maximum 

intensity (Chris Phillips, 2005). The surface profiles were analysed using Talymap Platinum software 

version 4.1. 

 
3. Results and Discussions 

 
3.1. Characterisation of Coefficient of Friction 

 
Figures 2 to 8 show the Coefficient of friction recorded during dry sliding wear of AISI 316 L (N) 

disc and pin from room temperature to 550
o
C. Oscillations on friction force tracings recorded during pin-

on-disc experiments were found to be a result of non-uniform surface features and lubrication conditions 

along the circular wear track. At room temperature Coefficient of friction peaked to a higher value during 

initial part of the sliding and then it stabilized to a steady state with average Coefficient of friction value 

of 0.37. At higher temperatures the Coefficient of friction values showed oscillating pattern unlike that at 

room temperature. Average Coefficient of friction varied from 0.39 at 100
o
C to 0.7 at 550

o
C. In dry 

sliding wear of AISI 316 L (N) stainless steel, the primary wear mechanism is adhesive wear in which the 

worn surface layers adhere to the wear track. As wear increased at elevated temperatures, adhesion also 

increased. This resulted in increase in roughness of the wear tracks, which, in turn, led to increase in 

Coefficient of friction. Figure 9 presents a consolidated view of the variation of coefficient of friction 

during dry sliding wear with respect to the operating temperatures. With increase in temperature  

the contact area of disc and pin increases. The wear debris generated during wear act as abrasive material 

which gradually transform the two body abrasive mechanism into three body abrasive mechanism leading 

to more material loss at elevated temperatures. 

Load = 20 N 

Sliding Velocity = 0.8 

m/s 

Sliding Distance = 640 m 

100°C 
o
C 

25°C 150°C 
o
C 

250°C 350°C 450°C 550°C 
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Figure 2. Variation of Coefficient of friction with respect to time at Room temperature 

 

 

Figure 3. Variation of Coefficient of friction with respect to time at 100°C 
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Figure 4. Variation of Coefficient of friction with respect to time at 150°C 

 

 

 
Figure 5. Variation of Coefficient of friction with respect to time at 250°C 
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Figure 6. Variation of Coefficient of friction with respect to time at 350°C 

 

 
 

Figure 7. Variation of Coefficient of friction with respect to time at 450°C 
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Figure 8. Variation of Coefficient of friction with respect to time at 550°C 

 

 
 

Figure 9. Variation of Coefficient of friction at different temperatures  
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3.2. Characterization of Measured Profiles 

 
3.2.1.  Line Profile Analysis  

 
Figures 10 to 16 show representative line profiles of worn tracks at room temperature (25°C) and 

100°C, 150°C, 250°C, 350°C, 450°C and 550°C, respectively. Constant line length of 5 mm was used for 

scanning the wear tracks at different temperatures. Arithmetic mean deviation of the roughness profile 

(Ra) was calculated for all the line profiles. The Ra values varied from 17.8 µm at room temperature to 

79.3 µm at 550
o
C. The line profiles show higher crests and deeper troughs with increasing temperature 

depicting elevated wear. The crests depict adhesion and valleys characterize the amount of material 

removed from the wear tracks. The worn tracks also widened considerably as temperature increased.  

The peaks appear steeper and the pits appear deeper concluding relatively more amount of material 

removal. Figure 17 elaborates the variation of arithmetic mean deviation of the roughness profile (Ra) 

with respect to the operating temperature during dry sliding wear. The plot shows a positive slope with 

increasing uphill trend. The line profile measurements on the wear tracks corroborated the Coefficient of 

friction data calculated during the sliding wear tests on AISI 316 L (N) stainless steel at various 

temperatures. The profilometric feature analysis of wear tracks established the correlation between 

Coefficient of friction and surface roughness.  

 

 

 

 
Figure 10. Surface roughness Ra for test conducted at 25°C 
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Figure 11. Surface roughness Ra for test conducted at 100°C 

 

 
Figure 12. Surface roughness Ra for test conducted at 150°C 
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Figure 13. Surface roughness Ra for test conducted at 250°C 

 

 

 
Figure 14. Surface roughness Ra for test conducted at 350°C 
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Figure 15. Surface roughness Ra for test conducted at 450°C 
 

 

 
Figure 16.  Surface roughness Ra for test conducted at 550°C 
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Figure 17. Variation of Surface roughness value (Ra) with respect to temperature 

 

4. Conclusions 
 

This study was conducted to correlate the Coefficient of friction of AISI 316 L (N) austenitic 

stainless steel under high temperature environment with surface roughness of the wear tracks at room 

temperatures (25°C) and 100°C, 150°C, 250°C, 350°C, 450°C and 550°C for a constant load of 20 N and 

at constant sliding velocity of 0.8 m/sec. The following conclusion can be drawn from this study: 

 Coefficient of friction increased with increase in temperature. 

 For room temperature the Coefficient of friction was 0.36 and at 550°C the Coefficient of 

friction recorded was 0.7. The Profilometric analysis of the surface revealed that the arithmetic 

mean deviation of the profile (Ra) increased with the increase in operating temperature during 

dry sliding wear. 

 The measured profiles clearly indicated increase in the depth of the valleys and widening of 

the wear track with the increase in operating temperatures. 

 There exists a strong correlation between surface roughness and Coefficient of friction in dry 

sliding wear of AISI 316 L (N) austenitic stainless steel with positive temperature dependence. 
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Differentiation of system of the differential equations by a task becomes much easier, if system to simplify, i.e. to lead it to 

such look when it breaks up to blocks, in each of which – the independent system of unknown functions. In this case use special 

matrixes – projectors. Such projectors generate a network of surfaces in Euclidean space: surfaces of projections and projecting 

networks. For each set system of the equations there are networks, and not the unique. Properties of such networks are considered in 

work. 

 

Keywords: systems of the differential equations, a projecting network of surfaces, Jordan's cell 

 
1. Introduction 

 
Both in the theory, and in many practical questions, the all–important role is played by problems 

of the solution of systems of the ordinary differential equations. One of such problems consists in 

splitting of this system on blocks, i.e. in such subsystems, each of which contains smaller number of the 

functions entering at the same time and under a sign of a derivative, and in the right parts. Abundantly 

clearly that integration of such subsystems is a task simpler, than integration of initial system. Splitting of 

this system on blocks appeared equivalent to reduction of a square matrix to a normal Jordan form.  

To Jordan's each cell there corresponds a certain block of the split system. In certain cases such splitting 

can be carried out by means of special degenerative matrixes – projectors. 

 
2. Geometry of Splitting of Systems 

 

Set of the degenerative matrixes
P , satisfying to conditions 

 

EPPPPP
i

i  




 
1

2 ),(,0,  E( – unity matrix )  

 

is called as system of linear (nonlinear) projectors. 

However, thus there is open a question of the geometrical processes occurring at such splitting. 

The independent system of the differential equations is considered  

 

)( ji
i

yf
dt

dy
 , nji ,...,1,  . (1) 

 

Variables 
iy  are considered as rectangular coordinates of a point in n – measured Euclidean 

space. 

Possibility to break system (1) on blocks, each of which contains smaller number of the functions 

entering at the same time and under a sign of derivatives in the left parts, and in the right parts of each 

block, conducts to simplification of initial system, and thereby – to simplification of its integration. Let 

 

)()( ijjjii yFzzFy   (2) 
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 the no degenerative transformation bringing system (1) to the split look 
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 where ....1 nss p   Each group of the equations of the system (3), containing 

independent system of variables call the block. No degenerative transformation (2), 

reformative system (1) to a look (3), generates p  degenerative transformations, each of 

which transfers all space to some surface of dimension s  ),...,1( p  and system (1) – to 

the corresponding block of system (3). Really, having substituted values from (2) in (1), we 

will come to system of the equations )).(( kji
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On a condition the last system looks like (3), i.e. equalities take place 
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Let's break nondegenerate transformation (2) into p  of blocks 
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With each line of transformation (6) we will connect degenerative transformation which we will 

determine by equalities 
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where 112 ,...,,...,,..., 11
hp j

p

j

p

jj
   – some functions of the corresponding number of variables. Each 

transformation defined by the corresponding column of system (7), we will designate the transformation, 

associated to the corresponding block of system (3). The associated transformations (7) we will designate 

).,...,1( pp 
 Each of transformations 

P transfers all space 
nE to the corresponding surface which 

dimension is equal respectively
pss ,...,1

. Let's designate these surfaces symbols  . The equations of 

surfaces   have respectively a look 
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Surfaces  we will call surfaces of projections (at 1s we have the line of projections, at 

1 ns – a hyper surface of projections. Generally we speak – s  – surfaces of projections). Let's 

assume that all surfaces pass through the beginning of coordinates. Let )( iyM – any point of space nE . 

Let's take any of surfaces of projections, for example, 1 . Let's include  surfaces in a network of 

the   surfaces having the same dimensions, as   surfaces. Let's call such network a projecting 

network. Let's designate it a symbol S . Through a point )( iyM  of space pass p  surfaces   (through 

the beginning of coordinates pass the   surfaces which are also belonging to a network). Let's take the 

p ,...,2  surfaces passing through a point M . They lie on some 
12sn

H   surface. Surface
1sn

H   we will 

call a projecting surface. It crosses a 1  surface in some point 1N . In a 1N  point all points of nE  space 

belonging to the projecting 
1sn

H   surface are projected. A point 
1N we will call a projection 

1sn
H   of a 

1sn
H   surface to a surface 1  of projections. Projections pNN ,...,2  on other surfaces of projections can 

be similarly defined. 

How the projecting network is connected with the set system of the differential equations (1) split 

by system (3) and system of   surfaces? 

Theorem. At the set system of the equations (1) and beforehand set its split look (3) (functions if  

and 


i

f  – are any) exists (and thus not unique) the projecting network S  containing   surfaces as 

that it’s forming, which pass through the beginning of coordinates. 

Really, let the transformation bringing system (1) to the split look (3) is presented by equalities 
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or, the equalities resolved jz  relatively 
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In that case the first line of system (5) takes a form 
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It is system of the equations in partial derivatives of the first order concerning 1s  functions 1iz . Let's 

carry out through surfaces p ,...,2  any hyper surface 
1H . Let its equation ).,...,( 11

1
 nn yyHy  We 

will assume that 0)0( nf . The equations (11) we will write down in a look 
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It is Cauchy type system. Let's integrate it so that equalities took place 
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According to the theorem Cauchy–Kovalevsky such solution )(11 jii
yzz   is unique. 

As the hyper surface 1H  contains p ,...,2  surfaces that 
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In particular, equalities (12) will be executed and at the following private values 
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Solutions of the equations entering into other lines of system (5) can be similarly found. Thus it is 

necessary to take other hyper surfaces pHH ,...,2 . 

Collecting all found solutions, we will receive transformation (10) (or that the same, (9)), bringing 

system (1) to the split look (3). 

The special place occupies a case 2n . In this case we have splitting on two equations. 1 , 2  

are curves on the planes passing through the beginning of coordinates. Hyper surfaces 21,HH  coincide 

according to curves 2  and 1 . The system’s (5) solution – is unique. 
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CUMULATIVE INDEX 
 

COMPUTER MODELLING and NEW TECHNOLOGIES, volume 17, no. 1, 2013 

(Abstracts) 

 
S. V. Anfilets, V. N. Shuts. Optimizing the Management of Traffic Light Object Based on 

Natural Algorithms, Computer Modelling and New Technologies, vol. 17, no. 1, 2013, pp. 7–13. 
The article proposes an adaptive control method for traffic lights, which operates at the strategic 

level of management. The algorithm uses data on changes in the intensity during the day, which 

provides forecasting module (for the experiments used neural network prediction). An adaptive 

algorithm is based on finding the minimum of delay at the crossroad, based on genetic algorithm and 

the method of “swarm of bees”. 

Keywords: traffic light, adaptive control, genetic algorithm, artificial bee colony algorithm 

 

J. Sugier. Computational Methods for Adaptation of Markov Models to Requested Maintenance 

Policies, Computer Modelling and New Technologies, vol. 17, no. 1, 2013, pp. 14–24 
State-transition models are often used in reliability analysis and one specific approach of this 

kind is the subject of this paper. By incorporating elements of both the deterioration process and the 

maintenance activities (inspections and repairs) in a semi-Markov model, a common computational 

platform has been created which serves as a foundation for various dependability studies that can 

investigate different maintenance scenarios. Having available some basic model it is possible to 

adjust its parameters so that it represents some hypothetical new maintenance policy and then to 

examine an impact which changing to the new policy has on various reliability characteristics of the 

system. Particularly, this paper discusses an extension of the generic adjustment algorithm to specific 

situations of the so-called model saturation when, as a result of tweaking the model towards higher 

repair frequencies, sum of repairs probabilities in the states reach the maximum value and there is no 

room for further increase. The general idea is to modify the model in such cases by forcing 

some non-zero value of a repair probability in those states where it is zero initially but in a manner 

that will not destroy the overall model behaviour.  

After theoretical presentation of the modified method its effectiveness is illustrated on practical 

examples. It is shown that the proposed extension allows to successfully evaluating a class of cases 

that has not been properly handled by the generic method and thus broadens the range of 

dependability studies that can be effectively evaluated. 

Keywords: state-transition deterioration model, semi-Markov process, model adaptation, 

maintenance analysis, model adjustment 

 

K. N. Nechval, N. A. Nechval,
 
M. Purgailis, U. Rozevskis, V. F. Strelchonok, M. Moldovan. 

Predictive Inferences for Future Order Statistics under Parametric Uncertainty, Computer 

Modelling and New Technologies, vol. 17, no. 1, 2013, pp. 25–36. 
Prediction intervals for order statistics are widely used for reliability problems and other related 

problems. The determination of these intervals has been extensively investigated. But the optimality 

property of these intervals has not been fully explored. In this paper, in order to discuss this problem, 

a risk function is introduced to compare prediction intervals. In particular, new-sample prediction 

based on a previous sample (i.e., when for predicting the future observation in a new sample there 

are available the data only from a previous sample), and within-sample prediction based on the early 

observed data from a current experiment (i.e., when for predicting the future observation in a sample 

there are available the early observed data only from that sample). We restrict attention to families of 

distributions invariant under location and/or scale changes. The technique used here for optimization 

of prediction intervals based on censored data emphasizes pivotal quantities relevant for obtaining 

ancillary statistics. It allows one to solve the optimization problems in a simple way. An illustrative 

example is given. 

Keywords: order statistic, prediction interval, risk function, optimisation 

 



 

 

Computer Modelling & New Technologies, 2013, volume 17, no. 1 *** CUMULATIVE INDEX 

73 

 

W-M. Tsai, G. Gurevich, A. Vexler. Optimal Properties of Parametric Shiryaev-Roberts 

Statistical Control Procedures, Computer Modelling and New Technologies, vol. 17, no. 1, 2013, 

pp. 37–50.  
Parametric change point detection schemes based on the Shiryaev-Roberts approach have been 

well addressed in the statistics and engineering literature that consider sequential techniques. High 

efficiency of such procedures can be partially explained by their known asymptotic optimal 

properties. Recently, Shiryaev-Roberts based procedures were proposed and examined in 

applications to the standard AMOC (at most one change) retrospective change point detection 

problems. The main aim of this article is to review and extend parametric retrospective and 

sequential Shiryaev-Roberts based policies, carrying out different contexts of the procedures’ non-

asymptotic optimal properties. We utilize the general principle of the Neyman-Pearson fundamental 

lemma to show that the Shiryaev-Roberts approach implies the average most powerful procedures. 

We also propose techniques to construct novel and efficient retrospective tests for multiple change 

points detection. A real data example based on biomarker measurements is provided to demonstrate 

implementation and effectiveness of new tests in practice.  

Keywords: Shiryaev-Roberts sequential procedure; non-asymptotic optimality; retrospective 

change point detection; average most powerful 

 

N. L. Parthasarathi, U. Borah, Sh. K. Albert. Correlation Between Coefficient of Friction and 

Surface Roughness in Dry Sliding Wear of AISI 316 L (N) Stainless Steel at Elevated 

Temperatures, Computer Modelling and New Technologies, vol. 17, no. 1, 2013, pp. 51–63. 
In this paper, coefficient of friction in dry sliding wear at different temperatures has been 

correlated with surface roughness (Ra) of the wear tracks. Unlubricated pin-on-disc sliding wear tests 

were carried out on AISI Type 316 L (N) austenitic stainless steel up to 550
o
C at constant load 

(20 N) and sliding speed (0.8 m/s) as per the ASTM standard G99-05. Line profiling along radial 

directions across the wear track was carried out and the line profiles were analysed to calculate 

surface roughness of the wear tracks. AISI Type 316 L (N) austenitic stainless steel is a major 

structural material in the prototype fast breeder reactor (PFBR), Kalpakkam because of its good high 

temperature properties and compatibility with liquid sodium. This experimental work revealed a one 

to one correlation between coefficient of friction and surface roughness of wear tracks. Coefficient of 

friction as well as surface roughness during dry sliding wear increased with increase in temperature.  

Keywords: Coefficient of friction; AISI 316 L (N) stainless steel; high temperature, roughness 

 

A. Kovantsov. Networks of Nonlinear Projectors, Computer Modelling and New Technologies, 

vol. 17, no. 1, 2013, pp. 64–67. 
Differentiation of system of the differential equations by a task becomes much easier, if system 

to simplify, i.e. to lead it to such look when it breaks up to blocks, in each of which – the 

independent system of unknown functions. In this case use special matrixes – projectors. Such 

projectors generate a network of surfaces in Euclidean space: surfaces of projections and projecting 

networks. For each set system of the equations there are networks, and not the unique. Properties of 

such networks are considered in work. 

Keywords: systems of the differential equations, a projecting network of surfaces, Jordan's cell 
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COMPUTER MODELLING and NEW TECHNOLOGIES, 17. sējums, Nr. 1, 2013 

(Anotācijas)  

 
S. Anfilets, V. Šuts. Luksofora vadības optimizēšana, pamatojoties uz īstu algoritmu, Computer 
Modelling and New Technologies, 17. sēj., Nr. 1, 2013, 7.–13. lpp. 

Raksts ierosina adaptīvo kontroles metodi luksoforiem, kas darbojas ar vadības stratēģisko 
līmeni. Algoritms izmanto datus par izmaiņām intensitātē dienas laikā, kas nodrošina prognozēšanas 
moduli (eksperimentiem, kas izmanto neironu tīkla prognozes). Adaptīvais algoritms balstās, lai 
atrastu kavējuma minimumu krustojumos, pamatojoties uz ģenētisko algoritmu un metodi „bišu 
spiets”. 

Atslēgvārdi: satiksmes gaismas, adaptīvās vadības, ģenētiskais algoritms, mākslīgo bišu kolonijas 
algoritms 

 

J. Sugiers. Skaitļošanas metodes Markova modeļu adaptācijai pieprasītai uzturēšanas politikai, 
Computer Modelling and New Technologies, 17. sēj., Nr. 1, 2013, 14.–24. lpp. 

Stāvokļa pārejas modeļus bieži izmanto drošuma analīzē, un viena īpaša šāda veida pieeja ir šī 
raksta tēma. Iekļaujot abus elementus gan pasliktināšanās procesu, gan uzturēšanas darbības 
(inspekcijas un remonti), daļējā-Markova modelī, ir radīta kopīga skaitļošanas platforma, kas kalpo 
par pamatu dažādiem uzticamības pētījumiem, kas var izpētīt dažādus uzturēšanas scenārijus. 

Konkrēti šajā rakstā tiek aplūkots vispārēja korekcijas algoritma pagarinājums, konkrētām 
situācijām t.s. modeļa piesātinājumam, kad piedares rezultātā modelis uz augstākām remonta 
frekvencēm, remonta varbūtības summa stāvokļos sasniedz maksimālo vērtību, un nav vietas tālākam 
palielinājumam. Vispārējā ideja ir mainīt modeli šādos gadījumos, spēcinot kādu remonta varbūtības 
ne-nulles vērtību šajos stāvokļos, kur tas sākumā bija nulle, bet tādā veidā, lai neiznīcinātu kopējo 
modeļa uzvedību. 

Pēc modificētās metodes teorētiskās prezentācijas tās efektivitāte ir ilustrēta ar praktiskiem 
piemēriem. 

Atslēgvārdi: stāvokļa pārejas pasliktināšanās modelis, daļējs-Markova process, modeļa pielāgošana, 
uzturēšanas analīze, modeļa korekcijas 

 

K. Nečvals, N. Nečvals, M. Purgailis, U. Rozevskis, V. Strelčonoks, M. Moldovans. 
Prognostiski slēdzieni turpmākajai pasūtījuma statistikai saskaņā ar parametrisko nenoteiktību, 
Computer Modelling and New Technologies, 17. sēj., Nr. 1, 2013, 25.–36. lpp. 

Prognozēšanas intervāli pasūtījuma statistikai tiek plaši izmantoti uzticamības problēmu 
risināšanā, kā arī citās saistītās problēmās. Šo intervālu noteikšana ir plaši pētīta. Bet šo intervālu 
optimalitātes raksturs nav pilnībā izpētīts. Šajā rakstā, lai apspriestu šo problēmu, ir ieviesta riska 
funkcija, lai salīdzinātu prognozes intervālus; jo īpaši, jauna parauga prognozes, pamatojoties uz 
iepriekšējo paraugu, un iekš-parauga prognozes, pamatojoties uz agrīni novērotiem datiem pēc 
pašreizējā eksperimenta. 

Paņēmiens, ko šeit izmanto prognozēšanas intervālu optimizācijai, pamatojoties uz necenzētiem 
datiem, uzsver noteicošos daudzumus, attiecīgus papildu statistikas saņemšanai. Tas ļauj atrisināt 
optimizācijas problēmas vienkāršā veidā; ir dots ilustratīvs piemērs. 

Atslēgvārdi: pasūtījuma statistika, prognozēšanas intervāls, riska funkcija, optimizācija 

 

V.-M. Tsai, G. Gurevičs, A. Vekslers. Parametriskās Širjajeva-Robertsa statistiskās kontroles 
procedūru optimālās īpašības, Computer Modelling and New Technologies, 17. sēj., Nr. 1, 2013, 
37.–50. lpp. 

Parametru maiņas punktu atklāšanas shēmas, kas balstītas uz Shirjaeva-Robertsa pieeju ir labi 
risinātas statistikā un inženierzinātnes literatūrā, kas izskata secīgas metodes. Šādu procedūru augsto 
efektivitāti var daļēji izskaidrot ar to zināmām asimptotiskām optimālām īpašībām. Nesen, uz 
Shirjaeva-Robertsa teoriju balstītās procedūras, tika ierosinātas un izskatītas pieteikumos uz 
standarta AMOC (ne vairāk kā viena izmaiņa) retrospektīvo izmaiņas punktu noteikšanas problēmas.  

Galvenais šī raksta mērķis ir pārskatīt un paplašināt parametrisko retrospektīvu un secīgas, uz 
Shirjaeva-Robertsa teoriju balstītas, politikas, kas veic dažādus kontekstus no procedūru ne-
asimptotiskām optimālām īpašībām.  

Atslēgvārdi: Shirjaeva-Robertsa secīgā procedūra, ne-asimptotiskā optimalitāte, retrospektīvā 
maiņas punkta atklāšana, vidējais jaudīgākais 
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N. L. Parthasarathi, U. Borahs, Sh. K. Alberts. Korelācija starp berzes koeficientu un 

virsmas raupjumu AISI 316 L (N) nerūsējošā tērauda paaugstinātā temperatūrā sausās slīdes 

nodilumā, Computer Modelling and New Technologies, 17. sēj., Nr. 1, 2013, 51.–63. lpp. 
Šajā rakstā berzes koeficients sausās slīdes nodilumā pie dažādām temperatūrām ir saistīts ar 

nodiluma sliežu virsmas raupjumu (Ra). Neieeļļoti uz diska piesprausti slīdoši nodiluma testi tika 

veikti uz AISI tipa 316 L (N) austenīta nerūsējošā tērauda līdz 550
o
C pie konstantas slodzes (20 N) 

pie slīdoša ātruma (0,8 m/s), saskaņā ar ASTM standartu G99-05. Tika veikta līnijas profilēšana gar 

radiālo virzienu visā nodiluma ceļā, un līnijas profili tika analizēti, lai aprēķinātu nodiluma ceļa 

virsmas raupjumu. AISI tipa 316 L (N) austenīta nerūsējošais tērauds ir būtisks strukturāls materiāls 

reaktora uz straujiem neitroniem prototipā, Kalpakkam, dēļ tā labām augstas temperatūras īpašībām 

un ar šķidrā nātrija savietojamību. Šis eksperimentālais darbs atklāja viens pret vienu korelāciju starp 

berzes koeficientu un nodiluma ceļa virsmas raupjumu. Berzes koeficients, kā arī virsmas 

nelīdzenums sausās slīdes nodiluma laikā pieauga, palielinoties temperatūrai. 

Atslēgvārdi: berzes koeficients, AISI tipa 316 L (N) austenīta nerūsējošais tērauds, augsta 

temperatūra, raupjums  

 
A. Kovantsovs. Nelineāru projektoru tīkli, Computer Modelling and New Technologies, 17. sēj., 

Nr. 1, 2013, 64.–67. lpp. 
Diferenciālvienādojumu sistēmas diferencēšana ar uzdevumu kļūst daudz vieglāka, ja sistēma, 

kura jāvienkāršo, t.i., jāieved tā tādā izskatā, kad tā salūst blokos, katrā no tiem – nezināmu funkciju 

neatkarīga sistēma. Šajā gadījumā jāizmanto īpašas matricas – projektori. Šādi projektori rada virsmu 

tīklu Eiklīda telpā: projekciju virsmas un projicētus tīklus. Katrai vienādojumu sistēmas rindai ir 

tīkli, un ne unikāli. Šādu tīklu īpašības tiek izskatītas dotajā rakstā. 

Atslēgvārdi: diferenciālvienādojumu sistēmas, virsmu projicēšanas tīkls, Džordana šūna 
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