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Abstract 

The problem of solving unit-hypercubic infinite two-sided noncooperative games is considered. The ultimate goal is to approximate the 
infinite game with bimatrix game, ranking the approximation accurateness. This is fulfilled in three stages. Primarily the players’ payoff 
functions are sampled under stated conditions of dimension-dependent irregular samplings. Then the sampled payoff functions as 
multidimensional payoff matrices are mapped into ordinary flat matrices under a reversible matrix map. Finally, after obtaining the solution 
of the corresponding bimatrix game, equilibrium finite support strategies are checked out for their consistency, being used as the 
approximation accurateness rank. If consistent, then the bimatrix game can be regarded as the approximation of the initial noncooperative 
game. For particular cases, conditions of the weakened consistency are stipulated. Different types of consistency ensure the corresponding 
bimatrix game solution varying reasonably by changing the sampling steps minimally. If the solution is not even weakly consistent by the 
most primitive consistency in ranking the approximation accurateness, then the sampling intervals should be shortened. If any shortening 
is impossible then the sampling points must be set otherwise. The suggested approximation tool is fully applicable to games, which are 
isomorphic to the unit-hypercubic infinite two-sided noncooperative game. 
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1 Games in Euclidean finite-dimensional subspaces of 
non-single dimension 

Conflict events are result of everlasting natural disproport-
ion of resources and demands. To allocate resources 
properly and adequately, there are game models whose 
principal purpose is in ensuring equilibrium, equity, 
efficiency, and utility of the allocation [1, 2]. Two-sided 
noncooperative game (TSNCG) solutions are applied to 
economics [3, 4], politics [5], military science, juri-
sprudence [6, 7], social [7, 8] and ecologic processes [9, 10], 
technological and technical processes, reducing their risks 
or losses on average [1, 11, 12]. However, often there is a 
problem of uncertainty of the equilibrium type [13]. 
Nowadays, there are a lot of equilibrium types, whose 
origins are regarding mainly to Nash and Pareto equilibrium 
[1, 2, 4, 8, 13]. Another problem is infiniteness and 
dimensions. The matter is that for a great many of conflict 
events the player’s pure strategy is an action, featured with 
a sequence of parameters, belonging to some intervals of 
their acceptable values. Thus players get infinite multi-
dimensional sets of their pure strategies. These sets are 
equivalent to Euclidean finite-dimensional subspaces of 
non-single dimension [14, 15]. And even TSNCG on such 
subspaces’ product is very difficult to get solved analytically 
[1, 2, 16], unless the players’ payoff functions (PPF) are 
specific cases. 

2 Solutions of infinite TSNCG 

There is a few ways for obtaining the exact solution of 
infinite TSNCG. When the game is infinite, there is no any 
universal method of solving, but just narrowly specified 

technique, oriented on particular cases [1, 17]. One of those 
particularities works on compact games with continuous 
PPF, having solutions at least in mixed strategies [1, 2, 17, 
18]. In more general, bounded games can be solved in  -
equilibrium finite support strategies (FSS) [1, 19, 20]. And 
with unbounded or non-measurable or discontinuous PPF 
there are only approximations available. 

The approximation implies either of two directions: 
straightforward approximation over infiniteness or initial 
transition from infiniteness to finite game. Every direction has 
its own shortcomings. While approximating straight-
forwardly over infiniteness, one should be aware of hard 
analytical reasonings, including limit theorems not always 
giving the constructive decision even if proved. Moreover, the 
solution with a mixed infinite support strategy, whatever it is 
(exact or approximate), carries a problem of its implemen-
tation in practice. Impossibility of full practicability of the 
infinite support is from that the number of plays (rounds of 
game or its recurrence) is finite. This apparent lack of infinite 
approximation is beyond finite games [21, 22]. Transition 
from infiniteness to finite game will definitely give FSS, 
whose practical implementation is easier. But the transition 
must be fulfilled carefully, not losing important properties of 
PPF. Rank of this carefulness is to be ascertained later. When 
 - net-construction technique is applied, the rank is roughly 
equal to  . Well, 1 -equilibrium FSS are more accurate than 

2 -equilibrium FSS for 1 2   , although, firstly, it is 
unknown how to select 1 . Secondly, it is also unknown 
whether exists a limit 0 1    such that  -equilibrium FSS 
have similar accurateness as 0 -equilibrium FSS for 0   . 

Finite TSNCG is represented with two multidimensional 
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matrices (MDM), whose elements are values of the sampled 
PPF. If every player acts within single dimension, its MDM 
is ordinal flat two-dimensional array. Then finite TSNCG is 
bimatrix game (BMG), which is solved with well-known 
methods of linear programming by algorithm of Lemke — 
Howson [23] or related simplex-pivoting-operation modifi-
cations based on this algorithm [24, 25]. Nonetheless, if 
MDM is not a flat matrix, the corresponding finite TSNCG 
cannot be solved as BMG — the additional transformation 
of MDM into two-dimensional array is needed. 

3 Goal and tasks 

In suggesting an approximation method, a class of infinite 
TSNCG should be considered. Other game classes, if they 
are isomorphic to the considered class, will be treated simi-
larly. For instance, if players’ action spaces are compacts in 
Euclidean finite-dimensional spaces then they can be 
“normalized” to unit hypercubes in these spaces. Then, 
without loss of generality, the class of infinite TSNCG on 
unit hypercube is going to be considered. 

The ultimate goal is to approximate unit-hypercubic 
infinite TSNCG with BMG, exposing accurateness of the 
approximation and defining its eligibility. This goal is going 
to be attained via accomplishing four tasks. Primarily the 
conditions of acceptance of the sampled PPF must be 
declared. They are for transforming PPF into MDM and not 
losing important properties of PPF. Then, having represen-
ted the finite TSNCG with two MDM, there must be 
substantiated a mapping of MDM into ordinary flat matrices. 
This mapping will allow to solve the corresponding BMG 
and to map its solution to the initial finite TSNCG. The task 
at the third stage is to rank accurateness of the approxi-
mation for elementary case. Eventually, the conception of 
this rank has to be spread out to more general cases. If the 
solution of BMG is of the satisfactory accurateness rank 
then this solution is going to be called the approximation of 
the initial TSNCG solution. The rank ought to answer 
whether BMG solution varies vastly by changing the 
sampling steps. And these steps are to be selected regarding 
the dimension, where along the dimension the sampling 
interval can vary as needed. 

4 Conditions of sampling PPF 

Let there be a TSNCG 

   1 2 1 2, , , , ,H H K KX Y X Y  (1) 

with the players’ pure strategies sets 
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and PPF  1 ,K X Y  and  2 ,K X Y , defined on  M N
-dimensional unit hypercube 
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by 

  11m M
x H


 X , (5) 

  21n N
y H


 Y . (6) 

Primarily, TSNCG is assumed to be such that each of the 
functions  1 ,K X Y  and  2 ,K X Y  is differentiable with 
respect to any of variables 

    1 1
,

M N

m nm n
x y

 
. (7) 

Also let there exist mixed derivatives of each of those 
functions by any combination of variables (7) in any situation 

  1 2, H H X Y , 

where every variable is included no more than just once. 
Afterwards, these conditions can be broken. 

PPF   
 1, 2

,r r
K


X Y  are sampled along each of 

dimensions of hypercube (4) with a specific sampling rule. 

These are going to be dimension-dependent irregular 

samplings, where each dimension is the unit segment. Let 
1

mS  be the number of intervals between the selected points 

in m -th dimension of hypercube (2), and 
2

nS  be the 

number of intervals between the selected points in n -th 

dimension of hypercube (3). In the utmost case of sampling, 
1

mS   and 
2

nS  . Therefore, endpoints of the unit 

segment are included into the sampling necessarily, while 

there is no fixed sampling step. Thus, in m -th dimension 

the first player (FP) instead of the segment  0; 1  of values 

of m -th component of its pure strategy (5) now possesses 

the set of points 
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1
1 1

1
,
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m

m

S
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s
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
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
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1
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

  (8) 

1
,m md d

m mx x



1

1, ,m md S  1, .m M  

 
 

In n -th dimension the second player (SP) instead of the 
segment  0; 1  of values of n -th component of its pure 
strategy (6) now possesses the set of points 

 

   
2

1
2 2

1
,

n
n

n

S
s

n n n
s

D S y





1
0,ny 

2
1

1,
nS

ny


  
(9) 

1
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2
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Subsequently, the finite hypercubic irregular lattice 
(FHCIL) 

   
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substitutes the hypercube (2), and FHCIL 
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substitutes the hypercube (3). This transforms the infinite 
TSNCG (1) to finite TSNCG 

   1 2
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DX , 2

DY  (12) 

on FHCIL 
1 2

D D , where hypersurface  ,rK X Y  is 
transformed into  M N -dimensional array (matrix) 

   1 2
,r D D

K
 X Y

X Y ,  1, 2r . (13) 

The sampling numbers 
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shall clearly not be assigned arbitrarily, because the 

sampling mustn’t erase specificities of PPF. These 

specificities are information about local extremums and 

gradient over hypersurfaces   
 1, 2
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K
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1 2 1 2

( , )
0,

... ...

M N

r

M N

K X Y

x x x y y y




     

1 2 1 2

( , )
0,

... ...

M N

r

M N

K X Y

x x x y y y




     
 

(15) 

1
; ,m ms s

m m mx x x
  

 
1

; .n ns s

n n ny y y
  

   
 
and 
 

1 2 1 2

( , )
,

... ...

M N

r

M N

K X Y

x x x y y y


 

     
 

(16) 
1

; ,m ms s

m m mx x x
  

 
1

; .n ns s

n n ny y y
  

 
 

 
for some 0  , implying tolerable fluctuations of the 
hypersurface  ,rK X Y  on every one of segments 
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The following assertion directs for choosing the 
numbers (14) and points 
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in order to sample PPF under conditions (15) and (16) from 
the hypercube (4) down to FHCIL 

1 2
D D . 

Theorem 1. If local extremums of hypersurfaces 

 1 ,K X Y  and  2 ,K X Y  are reached at points having only 

components (17) then, if inequalities (16) hold 
1
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2
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Proof. Since having local extremums only with 

components (17), neither the hypersurface  1 ,K X Y  nor 

the hypersurface  2 ,K X Y  have local extremums on 

every one of intervals 
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Hence, for the differentiable PPF   
 1, 2

,r r
K
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conditions (15) hold as well. The theorem has been proved. 
For conditions (16), parameter   is pre-assigned on 

reasoning about the value 
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by, say, 

 0.001, 0.005, 0.01, 0.02  

or other practically appropriate values for the scale factor  . 
Nevertheless, some conditions below may cause need to 
resample PPF with the lowered parameter  . These 
conditions, telling whether the approximate solution of 
TSNCG (1) is stable enough, are going to be applied to the 
finite TSNCG (12) solution. Before stating them, MDM (13) 
should be represented as ordinary flat matrices, letting solve 
the finite TSNCG (12) as BMG. 

5 Mapping PPF as MDM into ordinary flat matrices 

The quadruple (12) is a finite TSNCG but it is not BMG 

unless 1M N  . Therefore, mapping PPF as MDM (13) 

into ordinary flat matrices will allow to find the finite game 

solution with any acceptable methods for solving BMG, 

including linear programming methods on the basis of 

algorithm of Lemke — Howson [23] and its modifications 

[24, 25]. Denote MDM (13) as  M N -dimensional 
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 
1

M N

k k
J j




 ,  1

1, 1m mj S  ,  2
1, 1M n nj S    (20) 

determine the matrix element 
 

 , ,
r

J rp K X Y ,mj

m mx x
 (21) 

,M nj

n ny y  1, ,m M  1, .n N 
 

 
Then with the following assertion the finite TSNCG (12) 

is going to be mapped into BMG. 
Theorem 2. Retrieved from the finite TSNCG (12), 
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  is restored by the index 2u  after (24) similarly: 

      2 2 2

2 2, 1 1 1 sign , 1M N N N Nj u S S u S
        
 

, (29) 
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   

 

1

12

1 2

1

1

1

2

2 1

1 1 2

2

1

1

1 1

1 , 1

1

nn

M N M N nN n

n n

M N n N nn

N n

n

u j S j

j S

S



   

 

  

 



  
      

  
    

 
 

 
 

 


, 1, 1n N   . (30) 

Consequently, the matrix map    0 0r rP G  is 
accomplished via (23) and (24), and the matrix map 

   0 0r rG P  is accomplished via (27) — (30). The 
theorem has been proved. 

When 1M N  , the finite TSNCG (12) is BMG, and 
Theorem 2 is useless. When 1M   or 1N  , Theorem 2 
allows mapping the finite TSNCG (12) on FHCIL 

1 2
D D  into BMG. 

  
 

  
 

   
1 2

1 2
1 2

0 0

1 2
1 1

0 , 0 , 0 , 0
Q Q

u u
u u

z z
 

X Y
G G  (31) 

with the pure strategy of FP  
1

0uz
X

 corresponding to its 

strategy 
1

1

mj

m
M

x D


  
 

X  in the initial TSNCG (1) 

after having sampled under numbers  1

1

M

m
m

S


, and the pure 

strategy of SP  
2

0uz
Y

 corresponding to its strategy 

2

1

M nj

n
N

y D



  
 

Y  in the initial TSNCG (1) after 

having sampled under numbers  2

1

N

n
n

S


. But before calling 

BMG (31) the approximation of TSNCG (1), accurateness 

of the approximation must be ranked. 

6 Consistency of the players’ equilibrium FSS in BMG  

Denote by 

  
 

  
  1 2

1 2

0 0

* 1 * 21 1
, 0 , , 0

Q Q

u u
p u q u

 
 (32) 

a Nash equilibrium solution or Pareto efficiency solution or 

other type equilibrium solution in BMG (31), in which 

 * 1, 0p u  is the optimal probability of applying the pure 

strategy  
1

0uz
X

, and  * 2 , 0q u  is the optimal probability of 

applying the pure strategy  
2

0uz
Y

. In ranking the 

approximation accurateness, the solution (32) should be 

compared to solutions of other BMG, approximating the 

initial TSNCG (1). Their formats differ from the format (22) 

because these BMG are built under the sampling numbers 

    1 2

1 1
,

M N

m n
m n

S S
 

  ,  \ 0   (33) 

instead of (14). This is the only way to get comparisons 
because the genuine solution of the initial TSNCG (1) is 
often cannot be known. A new BMG is 

  
 

  
 

   
1 2

1 2
1 2

1 2
1 1

, , ,
Q Q

u u
u u

z z
 

 
   

X Y
G G  (34) 

by 

   1

1

1

1

M

m

m

Q S



     ,    2

2

1

1

N

n

n

Q S



     , 

and  -BMG (34) is built under the sampling numbers (33) 
and re-finding (8), (9), and re-mapping    r r  P G  
with identifications 

 1 1

1

M

m m
m

S S


   ,  2 2

1

N

n n
n

S S


   , (35) 

whereupon the pure strategy of FP  
1uz 
X

 corresponds to 

its strategy 
1

mj

m
M

x


 
 

X  in the initial TSNCG (1) after 

having sampled under numbers  1

1

M

m
m

S


  , and the pure 

strategy of SP  
2uz 
Y

 corresponds to its strategy 

1

M nj

n
N

y 



 
 

Y  in the initial TSNCG (1) after having 

sampled under numbers  2

1

N

n
n

S


  . And may there be a 

convention that the sampling numbers (33) are chosen 

against the numbers (14) so that density of the sampling 

points along each dimension by 0   doesn’t decrease, 

and density of the sampling points along each dimension by 

0   doesn’t increase. That is, for points 

     
1 2

1 1

1 1
1 1

,
m n

m n

m n

M N
S S

s s

m n
s s

m n

x y
 

 
 

     
     

     

 (36) 

chosen after the sampling numbers (33) with   , the 
inequalities 

 

(37) 

1,m M
 

and 

 

(38) 

1,n N  

hold. 
Formally, BMG (31) is a particular case of BMG (34), 

taken by 0  . Denote the solution of BMG (34) by 

  
 

  
  1 2

1 2
* 1 * 21 1

, , ,
Q Q

u u
p u q u

 

 
   (39) 
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similarly to denotation (32), in which  * 1,p u   is the 
optimal probability of applying the pure strategy  

1uz 
X

 
and  * 2 ,q u   is the optimal probability of applying the 
pure strategy  

2uz 
Y

. Thus by denoting supports 

  
 

  
    

1

*
*11
1 1 1

* 1 1 1,

supp ,
Q

uu u U Q

p u z


    

  
X

 (40) 

and 

  
 

  
    

2

*
*22
2 2 2

* 2 1 1,

supp ,
Q

uu u U Q

q u z


    

  
Y

 (41) 

the r -th player gets payoff 

     
  

   
  

1 2

1 2

1 2

* *
1 2

* *
1 1 2 2

*

* 1 * 2

1 1

* *

* 1 * 2

, ,

, ,

Q Q

r

r u u

u u

r

u u

u U u U

v g p u q u

g p u q u

 

 

   

      

    



 
 (42) 

in situation (39),  1, 2r . Henceforward, BMG (31) can 

be compared to BMG (34) by  \ 0   in two ways: 

through comparing payoffs   
 

*

1, 2
0r

r
v


 and 

  
  

 

*

1, 2
\ 0

r
r

v







, and through comparisons among 

supports (40) and among supports (41). The second 

comparison way relates to the support cardinality compa-

risons, and to the support configuration comparisons 

regarding the hypercube of the player’s pure strategies. 
The narrowest comparison takes  1, 1  . Namely, 

within minimal neighborhood of the sampling numbers (14), 
the solution of BMG mustn’t vary much. And it is clear that 
the solution (32) can be put for consideration as the 
approximate solution of the initial TSNCG (1) if 

(1) (0)r rU U ,  1, 2r  (43) 

and 

       * * * *0 1 1 0r r r rv v v v    ,  1, 2r . (44) 

The inequalities (43) and (44) reflect both the payoff 
comparison side and the support cardinality comparison side. 
And the last is strengthened involving  1 -BMG: 

(1) (0) ( 1)r r rU U U   ,  1, 2r . (45) 

However, there are no comparisons among the support 
configurations. These comparisons are really needed 
because configuration of FSS may differ significantly from 
the genuine equilibrium strategy support in TSNCG (1) 
genuine solution. Also it may differ from the configuration 
of the support, obtained after different sampling. Hence, 
configuration of the player’s FSS mustn’t vary much as the 
sampling numbers change consentaneously. 

For seeing the configuration of the players’ equilibrium 

FSS in BMG (31) solution (32), they are going to be 

represented as piecewise linear hypersurfaces 

  
 1, 2

, 0r r r
h u


, whose nonzero vertices are those 

equilibrium FSS probabilities linearly linked to points on 

FHCIL not included into the support. The hypersurfaces in 

 -BMG (34) are denoted   
 1, 2

,r r r
h u


 . Vertices of FP 

hypersurface  1 1, 0h u  are in points 

    
 1

1

0

* 1
1

1

, , 0m

Q
M

j

m
m

u

x p u




 (46) 

in the space 1M  , and vertices of SP hypersurface 

 2 2 , 0h u  are in points 

    
 2

2

0

* 2
1

1

, , 0M n

Q
N

j

n
n

u

y q u




 (47) 

in the space 1N . 
FP matches the index  *

1 1 0u U  to the point 

     

 

, 0

1
1 1

*

1

0 0 ,

1, 0

mj qq

q m m
M M

x x H

q Q

 

    
   



X
 (48) 

at    *

1 10 0Q U  through expanding the index *

1u  via (27) 

and (28) into subset   
1

, 0
M

m m
j q J


 . SP matches the 

index  *

2 2 0u U  to the point 

     

 

, 0

2
1 1

*

2

0 0 ,

1, 0

M nj ww

w n n
N N

y y H

w Q



 

    
   



Y
 (49) 

at    *

2 20 0Q U  through expanding the index *

2u  via (29) 

and (30) into subset   
1

, 0
N

M n n
j w J 

 . Then let the set 

  
 *

1 0

1
0

Q

q q
X  of the points (48) be sorted into the set 

  
    

 

  
 

  
 

*
* *1
1 1

*
1

0
0 0, 0

1 11 1

0

11

0 0

0

m

Q
Q Qj q

q m qq qM q

Q

q q

x

H

  



  
 

 

X X

X

 (50) 

so that the value 

  
    

  
   

  

    

1*
1 1

1*
1 1

1

*
1 1

1, 0

1, 0

2
, 0 , 0

1, 0
1

min 0 0

min 0 0

min

M

m m

q q
q q Q

q q
q q Q

M
j q j q

m m
q q Q

m

x x

 

 

 


  

  

 

X X

X X   (51) 

with the re-sorted subset 

        
1 1 1

, 0 , 0 , 0
M M M

m m mm m m
j q j q j q J

  
   is 

reached at 1 1q q   for each  *

11, 0 1q Q   by 

   *

1 10 0Q Q . Similarly, the set   
 *

2 0

1
0

Q

w w
Y  of the 
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points (49) is sorted into the set 

  
    

 

  
 

  
 

*
* *2
2 2

*
2

0
0 0, 0

11 1 1

0

21

0 0

0

M n

Q
Q Qj w

w n w ww N w

Q

w w

y

H



  



  
 

 

Y Y

Y

, (52) 

so that the value 

  
    

  
   

  

    

1*
1 2

1*
1 2

1

*
1 2

1, 0

1, 0

2
, 0 , 0

1, 0
1

min 0 0

min 0 0

min

N

M n M n

w w
w w Q

w w
w w Q

N
j w j w

n n
w w Q

n

y y 

 

 

 


  

  

 

Y Y

Y Y , (53) 

with the re-sorted subset 

     

  

1 1

1

, 0 , 0

, 0

N N

M n M nn n

N

M n n

j w j w

j w J

  

 



 
  (54) 

is reached at 1 1w w   for each  *

21, 0 1w Q   by 

   *

2 20 0Q Q . Importantly, one ought to be aware of that 

the result of sorting in (50) and (52) depends on selection of 

the initial points     
 *

1 0

1 1
0 0

Q

q q
X X  and 

    
 *

2 0

1 1
0 0

Q

w w
Y Y . In the case of completely mixed 

strategies, let them be 

   0 0q qX X ,  *

11, 0q Q  ,    *

1 10 0Q Q  (55) 

and 

   0 0w wY Y ,  *

21, 0w Q  ,    *

2 20 0Q Q  (56) 

for the sake of convenience. 

Considering  -BMG (34), let the hypersurfaces 

  
 1, 2

,r r r
h u


  and sets   

 
  

 * *
1 2

11
,

Q Q

q w wq

 


 X Y  

regard built and found with identifications (35) and turning 

to these sets’ description for (46) — (56). Thus, the second 

comparison way opens for the support configuration 

comparisons. And then there is a way to learn the rank of 

accurateness in approximating the initial TSNCG (1) with 

BMG (31). 
Definition 1. The solution (32) of BMG (31) is called 

weakly consistent for being the approximate solution of 
TSNCG (1) if the inequalities 

 

  
    

  
    

*
1

*
1

1
1, 1 1

1
1, 0 1

max 1 , 1

max 0 , 0

M

M

q q
q Q

q q
q Q


 


 

 

 

X X

X X
, (57) 

  
    

  
    

*
2

*
2

1

1, 1 1

1

1, 0 1

max 1 , 1

max 0 , 0

N

N

w w

w Q

w w

w Q



 



 

 

 

Y Y

Y Y
, (58) 

   

   

max ,0 ,1

max , 1 ,0

r

r

r r r r
H

r r r r
H

h u h u

h u h u

 

  
, (59) 

and 

       

   2

,0 ,1 , 1 ,0 ,

, 1,2

r r r r r r r r

r

h u h u h u h u

L H r

   


 60) 

are true along with (43) and (44). Then solution (32) of 
BMG (31) is called weakly 1-consistent. Every strategy and 
its support in the weakly 1-consistent solution are called 
weakly consistent or weakly 1-consistent. 

Weak 1-consistency of the players’ equilibrium FSS in 
BMG (31) invokes minimal number of  -BMG, app-
roximating the initial TSNCG (1). This is the most primitive 
consistency in ranking the approximation accurateness. The 
primitiveness of Definition 1 is obviated with adding 
conditions of the sampling minimal loosing. 

Definition 2. The weakly consistent solution (32) of 

BMG (31) is called consistent for being the approximate 

solution of TSNCG (1) if the inequalities (45) and 

  
    

  
    

*
1

*
1

1
1, 0 1

1
1, 1 1

max 0 , 0

max 1 , 1

M

M

q q
q Q

q q
q Q


 


  

 

   

X X

X X
, (61) 

and 

  
    

  
    

*
2

*
2

1

1, 0 1

1

1, 0 1

max 0 , 0

max 1 , 1

N

N

w w

w Q

w w

w Q



 



 

 

   

Y Y

Y Y
 (62) 

are true. Then solution (32) of BMG (31) is called 1-cons-
istent. Every strategy and its support in the 1-consistent 
solution are called consistent or 1-consistent. 

Inequalities (45), (61), (62), canceling the “weakness” in 
consistency, mean that the properties of the solution of  1
-BMG relate to the properties of the solution (32) of BMG 
(31) as similarly as the properties of the solution (32) of 
BMG (31) relate to the properties of the solution of 1 -BMG. 
Note that in controlling the players’ equilibrium FSS for 
their weak 1-consistency, there are 10 inequalities (43), (44), 
and (57) — (60) to be checked. And there are 14 inequalities 
(44), (45), and (57) — (62) to be checked for controlling the 
players’ equilibrium FSS for their 1-consistency. Below is 
an opportunity to avoid superfluous computations in 
checking weak 1-consistency. 

Theorem 3. If the solution 

  
 

  
  1 2

1 2

1 1

* 1 * 21 1
, 1 , , 1

Q Q

u u
p u q u

 
 (63) 

of 1 -BMG is completely mixed, then for checking weak 1-
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consistency of the solution (32) it is sufficient to check six 
inequalities (44) and (59), (60). 

Proof. Inasmuch as the situation (63) is completely 
mixed then 

     1 1* *

1 1 1

1 1

1 (1) 2 1 (0)

M M

m m

m m

Q Q S S Q

 

       ,

     2 2* *

2 2 2

1 1

1 (1) 2 1 (0)

N N

n n

n n

Q Q S S Q

 

       , 

giving us both the inequalities (43), even strictly. Further, as 
the solution (63) is completely mixed then through the 
convention (55) and (56) there are the sets  

  
 

  
 *

1 11 1

1 1
1 1

Q Q

q qq q 
X X  

and  

  
 

  
 *

2 21 1

11
1 1

Q Q

w w ww 
Y Y  

such that 

  
    

    

*
1

1

1
1, 1 1

1

1, 1, 1

max 1 , 1

max max 1 1

M

m m

m m

q q
q Q

d d

m m
m M d S

x x


 



  

 

 

X X

 (64) 

and 

  
    

    

*
2

2

1

1, 1 1

1

1, 1, 1

max 1 , 1

max max 1 1

N

n n

n n

w w

w Q

d d

n n
n N d S

y y



 



  

 

 

Y Y

 (65) 

Then, due to (37) and (38), have 

  
    

 

  

    

  
    

*
1

1

*
1

*
1

1

1, 1 1

1

1, 1,

2
1, 0 q, 0

1, 0 1
1

1

1, 0 1

max 1 , 1

max max

max

max 0 , 0

M

m m

m m

m m

M

q q

q Q

d d

m m
m M d S

M
j q j

m m
q Q

m

q q

q Q

x x

x x



 



 



 




 

 

  

  

 



X X

X X

 , 

  
    

 

  

    

  
    

*
2

2

*
2

*
2

1

1, 1 1

1

1, 1,

2
1, 0 w, 0

1, 0 1
1

1

1, 0 1

max 1 , 1

max max

max

max 0 , 0

N

n n

n n

M n M n

N

w w

w Q

d d

n n
n N d S

N
j w j

n n
w Q

n

w w

w Q

y y

y y 



 



 



 




 

 

  

  

 



Y Y

Y Y

, 

giving us both the inequalities (57) and (58). The theorem 
has been proved. 

Consistency by either Definition 1 or Definition 2 of the 
player’s equilibrium FSS in BMG (31), approximating the 
player’s genuine equilibrium strategy in TSNCG (1), ranks 
accurateness of the approximation for elementary case. 
Naturally, the rank conception in the form of (weak) 1-
consistency is easily widened to the form of (weak)  -
consistency by  . 

7 Approximation of TSNCG (1) in  -consistency 

Definition 3. The solution (32) of BMG (31) is called 
weakly  -consistent for being the approximate solution of 
TSNCG (1) if the inequalities 

       * * * *1 1r r r rv v v v        ,  1, 2r , (66) 

   1r rU U   ,  1, 2r , (67) 

  
    

  
    

*
1

*
1

1

1, 1 1

1

1, 1

max 1 , 1

max ,

M

M

q q

q Q

q q

q Q



  



  

     

   

X X

X X
, (68) 

  
    

  
    

*
2

*
2

1

1, 1 1

1

1, 1

max 1 , 1

max ,

N

N

w w

w Q

w w

w Q



  



  

    

   

Y Y

Y Y
, (69) 

   

   

max , , 1

max , 1 ,

r

r

r r r r
H

r r r r
H

h u h u

h u h u

 

 

  

  
, (70) 

and 

       

   2

, , 1 , 1 , ,

, 1,2

r r r r r r r r

r

h u h u h u h u

L H r

       


 (71) 

 

are true 1 , 1      by  . Every strategy and its 
support in the weakly  -consistent solution are called 
weakly  -consistent. 

Definition 4. The weakly  -consistent solution (32) of 
BMG (31) is called  -consistent for being the approximate 
solution of TSNCG (1) if the inequalities 

( ) ( 1)r rU U   ,  1, 2r  (72) 

and 

  
    

  
    

*
1

*
1

1

1, 1

1

1, 1 1

max ,

max 1 , 1

M

M

q q

q Q

q q

q Q



  



  

   

     

X X

X X
 (73) 

and 

  
    

  
    

*
2

*
2

1

1, 1

1

1, 1 1

max ,

max 1 , 1

N

N

w w

w Q

w w

w Q



  



  

   

    

Y Y

Y Y
 (74) 
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are true 1 , 1      by  . Every strategy and its 
support in the  -consistent solution are called  -consistent. 

For checking  -consistency of the weakly  -consistent 
solution, it is not of necessity to check all 8 4  in-
equalities (72) — (74). It is sufficient to check four in-
equalities ever. 

Theorem 4. If the inequalities 

(1 ) ( )r rU U    ,  1, 2r  (75) 

and 

  
    

  
    

*
1

*
1

1

1, 1 1

1

1, 1

max 1 , 1

max ,

M

M

q q

q Q

q q

q Q



  



  

   

   

X X

X X
 (76) 

and 

  
    

  
    

*
2

*
2

1

1, 1 1

1

1, 1

max 1 , 1

max ,

N

N

w w

w Q

w w

w Q



  



  

   

   

Y Y

Y Y
 (77) 

are true for some   then the weakly  -consistent 

solution (32) of BMG (31) is  -consistent. 

Proof. Inasmuch as the inequalities (67) — (69) are true 

1 , 1      then, having added the four inequalities 

(75) — (77) to them, there are true the inequalities (72) — 

(74) 1 , 1      by  . The theorem has been 

proved. 

Apparently, weak  1  -consistency follows weak  -

consistency, and  1  -consistency follows  -cons-

istency. Approximation of TSNCG (1) in  -consistency 

under the generalizing Definitions 3 and 4 prescribes the 

monotonic-like properties for 2 1  of BMG (34) by 

,    . The greater   the wider neighborhood of the 

sampling is, and the more suitable BMG (31) for being 

called the approximation of TSNCG (1). In ranking the 

approximation accurateness,  -consistency invokes 2 1  

 -BMG, approximating the initial TSNCG (1). The greater 

  the higher rank of accurateness of the approximation is. 

8 Conclusions and possibilities for further work 

It is noteworthy to say that neither weakly  -consistent 

solution (32) of BMG (31), nor  -consistent solution (32) 

of BMG (31) guarantee the faultlessness of the initial 

TSNCG (1) approximation as BMG (31), whatever   

is. Nonetheless weakly  -consistent solution being a 

particular case of  -consistency forces the equilibrium FSS 

cardinality nondecreasing as the sampling numbers increase 

minimally. This is stated with (67), and it is reinforced with 

(72) for  -consistency. Secondly, as the sampling numbers 

increase minimally, both the players’ equilibrium payoffs 

and the players’ FSS differentiate no more than at the lesser 

sampling numbers. This is stated with (66), (70), (71). And 

thirdly, density of points on FHCIL constituting FSS is 

forced nondecreasing as the sampling numbers increase 

minimally, what is stated with (68) and (69) for weak  -

consistency and is reinforced with (73) and (74) for  -

consistency. 

Of course, we could call an equilibrium FSS  -cons-

istent if it satisfied either the conditions (66) — (71) or (66) 

— (74), but is its consistency ever followed with the other 

player’s equilibrium FSS? Surely, there is no proof of that. 

Also there is no proof of that limits 

 *lim rv


 ,  1, 2r  (78) 

exist and they coincide with the players’ genuine 

equilibrium payoffs in the initial TSNCG (1). Besides, many 

other equilibrium situations may be in BMG (31) or TSNCG 

(1), giving diverse payoffs for players [26, 27]. The 

deficiency of hypersurfaces   
 1, 2

,r r r
h u


  is that there 

is no proof of that limits 

 lim ,r rh u


 ,  1, 2r  (79) 

exist and they coincide with the players’ genuine equi-

librium strategies in the initial TSNCG (1). These demerits 

are nonetheless disregarded due to that the suggested 

dimension-dependent irregular samplings and MDM resha-

ping allow to solve TSNCG approximately [21, 22, 28] as 

BMG, controlling the approximation accurateness rank with 

 -consistency. Clearly, checking consistency must be 

started from weak 1-consistency. 

The proved items do have their merits. In order to 

sample PPF under conditions (15) and (16) from the 

hypercube (4) down to FHCIL 
1 2

D D , Theorem 1 

determines the choice of the sampling numbers (14) and 

points (17). When 1M   or 1N  , Theorem 2 allows 

mapping the finite TSNCG (12) on FHCIL 
1 2

D D  into 

BMG (31). Superfluous computations in checking weak 1-

consistency are avoided with Theorem 3, allowing to check 

six inequalities instead of 10 inequalities. And Theorem 4 

allows to complete checking  -consistency of the weakly 

 -consistent solution on four inequalities (75) — (77). 

The suggested approximation of TSNCG (1) is fulfilled 

in three stages: PPF are sampled, the sampled PPF as MDM 

are mapped into ordinary flat matrices, and the solution of 

the corresponding BMG is checked out for its consistency. 

If the solution (32) is not even weakly 1-consistent, then the 

sampling numbers (14) should be increased. Partial 

increment (along some dimensions of the hypercube, but not 

all of them) is not excluded. If any increment is impossible 

then FHCIL (10) and (11) must be formed otherwise, 

accumulating the sets (8) and (9) with some new points (17). 

Generally, the suggested approximation tool is applicable to 

both unit-hypercubic infinite TSNCG and games which are 

isomorphic to unit-hypercubic infinite TSNCG [1, 29]. 

Further work will be focused on building an efficient 

sorter for solving the problems (50) — (53). The case with 

strict consistency, when every sign “greater than or equal” 

and every sign “less than or equal” appear “greater than” and 

“less than”, ought to be thought over for possible 



COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 7-16 Romanuke V 

16 
Mathematical and Computer Modelling 

convergences in (78) and (79). And there are questions 

waiting for their answers: 

1. Shall one player use its equilibrium FSS satisfying 

conditions of (weakly)  -consistency if the other player’s 

equilibrium FSS isn’t (weakly)  -consistent? Or if the 

other player’s equilibrium FSS has lower rank of consis-

tency, say, when it is (weakly)  1  -consistent? 

2. Is it possible to determine (weak)  -consistency of 

the solution (32) if one player’s equilibrium FSS satisfies 

conditions of (weakly)  -consistency? 

3. Are necessarily two different equilibrium situations in 

BMG  -consistent if one of them is  -consistent already? 

These questions are motives for continuation of research 

of approximating infinite TSNCG. For noncooperative 

games, the suggested approximation approach of consis-

tency is going to fit anywise. 
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