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Abstract 

In view of that the clustering result of the traditional k-medoids clustering algorithm being sensitive to initial cluster centers. A new k-
medoids clustering algorithm based on density was proposed in this paper. It conducted a rough clustering to generate several particles at 
first. Then select the centers of the k densest particles as the initial clustering centers. Tested by using UCI data sets, the validity of the 
proposed algorithm is demonstrated. 
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1 Introduction 

Clustering is the process of dividing a set of objects into 
several clusters. And then the objects are similar to each 
other in the same cluster. But the objects in different clusters 
are dissimilar. The traditional k-medoids clustering algo-
rithm is not sensitive to noise, and it is simple and it has a 
fast convergence rate and strong local search ability, so it is 
widely used [1-8]. But the k-medoids clustering algorithm 
has the drawback that it is sensitive to the initial clustering 
centers. In order to solve this problem, many domestic and 
foreign researchers have done some efforts to improve the 
k-medoids clustering algorithm [5]. 

In article [6], a simple and fast k-medoids clustering al-
gorithm was proposed. It solved the problem that the clus-
tering result is sensitive to the initial clustering centers. In 
addition, it improves the convergence rate, but the initial 
clustering centers, which selected in this way may be in the 
same cluster. However, if there are some initial centers in 
the same cluster, then it will have a bad impact on the clus-
tering accuracy. In article [7], a new algorithm was also pro-
posed that the local search process is embedded in the 
iterative local search process, but it does not improve the 
clustering accuracy. Ma Qing (2012) developed a new k-
meoids clustering algorithm based on granular computing. 
And it is necessary to improve its clustering accuracy [8]. 

Therefore, a new k-medoids clustering algorithm that 
can effectively improve the accuracy is proposed in this 
paper. It first conducted a density-based clustering to gene-
rate several particles. And then select the centers of the k 
densest particles as the initial centers. Experiment results 
show that the proposed algorithm has better performance 
than the k-mdoids algorithm based on granular computing. 

2 Traditional k-medoids clustering 

K-medoids clustering algorithm is a classical partitioning-
based clustering algorithm. It is less sensitive to outliers than 
k-means clustering because it is based on the most centrally 
located object in a cluster. The basic idea of k-medoids clus-
tering [9] can be described as follows: It randomly selects k 

objects in data set as the initial clustering centers, then it 
assigns each object to the nearest cluster. After each object 
is assigned to a cluster or marked as noise, the new cluste-
ring centers is decided.  

Though other measures can be adopted in k-medoids, 
the Euclidean distance will be used as a dissimilarity 
measure in the algorithm. The Euclidean distance between 
object  1 2, ,..., xnx x x  and ),...,,( 21 nyyyy  is given by: 
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The objective function that evaluates the clustering 
effect can be given by: 
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k  is the number of clusters that is given by user, ic  is the 
clustering center, is  is a cluster that its clustering center is 

ic  , jx  is the object that is assigned to is . 

3 K-medoids algorithm based on density 

3.1 BASIC CONCEPTS 

Definition 1 (Particle Density) Given n  objects, 

1 2, ,..., no o o  and it is divided into 
1 2{ , ,..., }mX X X , 

(1 ;1 )i jo X i n j m      
(1 )jX j m   is the cluster. m  is the subset number of 

objects. Then the particle density can be defined as follows: 

nXXpd jj /||)(  . (3) 

jX  is the cardinality of the set jX  

Definition 2 (Eps-neighborhood). Given a data set D  
and radius (Eps). The eps-neighborhood of a point p  can 
be defined as follows [10-11]: 
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Definition 3 (Core object) Given an object p , a 

minimum number of other objects (MinPts) [9]. Then p  is 

a core object if EpsN MinPts  

Definition 4 (The clustering Center). Given n  objects, 

nooo ,...,, 21  and it is divided into 

1 2{ , ,..., }mX X X , suppose that 

1 2{ , ,... }j j j jtX x x x , jX  is called a cluster, then the 

clustering center of jX  is defined as: 
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3.2 IMPROVED K-MEDOIDS ALGORITHM 

In order to overcome the shortcomings of the traditional k-
medoids algorithm and select the effective initial centers 
objects, an improved algorithm which is based on the 
density is proposed. The main idea of the algorithm is to 
divide the data set into several particles based on density and 
then select k  densest particles. Here we calculate the 
distance between two objects based on formula(4). Finally, 
select the initial centers from these k particles according to 
Equation (3). The proposed k-medoids algorithm can be 
described as follows: 

Algorithm 1: The selection of the initial centers.  

Input: dataset D , MinPts , Eps  

Output: k initial centers 

Step1.1:For p D  do 

  { if p is already included in a cluster  

then  continue 

   else  

{if p is core object 

  then find the  EpsN p  

        else mark the object p is treated 

       } 

  } 

end for 

Step1.2: merge all clusters that have a common core 

object 

Step 1.3: select k densest clusters and calculate their 

centers according to definition 4. 

Algorithm 2: Assign object to centers 

    Input: k initial centers, data set D 

Output: k clusters 

Repeat 

{Step2.1: for p D   

     {calculate the distance between p and the centers 

according to formula( 1), then the object P is assigned to the 

nearest cluster.} 

    end for 

step2.2: calculate the current cost of each cluster 

 , c
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i j i
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Step 2.3: compute the new center (oi) of every cluster 

according to definition 4, and calculate its cost 

 ,
j i

temp j i

x w

E d x o

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Step 2.4: if temp iE E , then replace the old centers with 

the new centers 

Step 2.5: calculate the total cost 
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   } 

Until newsumsum EE _  

4 Experimental results analysis 

4.1 TESTING ENVIRONMENT 

Software environment: Windows xp, eclipse3.7.0, 
Jdk1.7.0_21. 

Hardware environment: CPU: AMD A10-5800K (Quad 
core), Memory: 2G. 

Programming language: Java. 

4.2 TESTING DATA  

In order to test the validity of the proposed algorithm, the 
method is applied to five UCI data sets. Their true classes 
are known. Then the data in the five data sets are reclassified 
with the improved k-medoids algorithm. The accuracy is the 
proportion of objects that are correctly grouped. The five 
data sets are shown in the table 1. 
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TABLE 1 Data sets 

Data set 
Number of 

distance 

Number of 

attribute 

Number of 

class 

Iris 150 4 3 

Wine 178 14 3 
Soybean 47 35 4 

Haberman 306 4 2 

Ionosphere 351 33 2 

4.3 TESTING RESULTS 

In the step 1 of the proposed algorithm, it requires users to 
enter Eps  and MinPts . However it is difficult to 
determine the precise values of MinPts and Eps . So we 
used a probable range for their values [13-15]. The test 
results are shown in the table2-table 6. 

TABLE 2 Iris accuracy 

Eps 

MinPts 
3 5 7 9 11 

0.5 92.67% 92.67% 66.67% 66.67% 33.33% 

0.7 89.33% 89.33% 66.67% 59.33% 59.33% 

0.9 92.67% 66.67% 66.67% 66.67% 66.67% 

TABLE 3 Wine accuracy 

Eps 

MinPts 
3 6 9 12 

40 70.79% 70.79% 70.79% 70.79% 

45 61.8% 69.1% 70.79% 59.33% 

50 61.8% 61.8% 70.79% 66.67% 

TABLE 4 Soybean accuracy 

Eps 

MinPts 
2 3 4 5 

3 74.47% 46.81% 38.30% 36.17% 

4 80.85% 80.85% 72.34% 38.30% 

5 59.57% 59.57% 59.57% 59.57% 

TABLE 5 Haberman accuracy 

Eps 

MinPts 
2 4 6 8 

2 51.63% 53.26% 51.96% 51.63% 

4 75.16% 75.49% 75.49% 75.49% 

6 73.86% 77.56% 75.49% 75.49% 

8 77.12% 75.49% 75.49% 75.49% 

TABLE 6 Ionosphere accuracy 

Eps 

MinPts 
2 5 8 11 

5 69.94% 69.94% 69.94% 69.94% 

7 69.94% 63.20% 63.20% 63.20% 

9 69.94% 63.20% 63.20% 63.20% 

11 63.76% 63.20% 63.20% 63.20% 

 
The changes of accuracy are shown in Figure 1, Figure 

2, Figure 3, Figure 4 and Figure 5. 

 

FIGURE 1 Iris 

 

FIGURE 2 Wine  

 

FIGURE 3 Soybean 

 
FIGURE 4 Haberman   
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FIGURE 5 Ionosphere 

From table 2 to table 6, it can be seen that the best 
accuracy are 92.67%, 70.79%, 80.85%, 77.56% and 69.94%. 
As figure 1, figure 2, figure 3, figure 4 and figure 5, we can 
find that accuracy decreases along with MinPts increasing. 
On these data sets clustering experiments, various clustering 
algorithms were compared with this algorithm. The results 
of the comparison are shown in table 7. Where SFK denotes 
simple and fast K-medoids clustering algorithm in article [6] 
and GCK denotes new k-medoids clustering algorithm 
based on granular computing in article [8] and PK denotes 
the improved K-medoids clustering algorithm in this article. 

TABLE 7 Comparison of clustering algorithms 

Data sets SFK GCK IK 

Iris 89.33% 90.00% 92.67% 

Wine 70.79% 70.79% 70.79% 

Soybean 72.34% 80.85% 80.85% 
Haberman 73.20% 74.51% 77.56% 

Ionosphere 60.11% 60.11% 69.94% 

From table 7, it can be seen that the improved k-medoids 
clustering algorithm in this article has the highest clustering 
accuracy. It indicates that the initial cluster centers have a 
greater impact on the clustering accuracy.  

5 Conclusion 

In this paper, a new improved k-medoids clustering algo-
rithm based on density is proposed. It first conducted a 
density-based clustering to generate several particles. And 
then select the centers of the k densest particles as the initial 
centers. The proposed algorithm is applied in several UCI 
data sets, and the experimental result shows that the 
proposed algorithm has better performance than the fast k-
medoids clustering algorithm and the k-medoids clustering 
algorithm based on granular computing. However, although 
the proposed algorithm is capable of accurately grouping the 
data set, it is difficult to determine the value of Eps and

MinPts . So, in future this can be the major area of research. 
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