
COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 24-27 Khassenova G I, Amanzholova S T, Khaimuldin N G

24
Mathematical and Computer Modelling

Models and algorithms of testing software on the basis of the
basic spesifications

G I Khassenova*, S T Amanzholova, N G Khaimuldin

International University of Information Technologies, Kazakhstan

*Corresponding author’s e-mail: khassenova@rambl.ru

Received 1 May 2015, www.cmnt.lv

Abstract

This article discusses the study of software reliability. Define the concept of software reliability. Examines existing software reliability
models and their classification. The main stages of the software life cycle.

Keywords: method of proving the correctness of programs, test method for diagnosis, methods of structured programming, reliability of software,

testing, verification, validations

1 Introduction

Software reliability issues typically involved only after the
completion of software development. This leads to a chronic
imbalance in the operation of applications. The survey revealed
that most of the errors made during the design phase. Research
in the field of software development have formed a set of
methods, processes, technologies, models, the use of which
allows to achieve specified performance reliability and quality
of software. Research on how to improve the reliability of
software, showed that the quality assurance and reliability
should be given consideration at all stages of the development
process. To improve the reliability of software research include
methods such as - a method of proving the correctness of
programs, methods of test for diagnosis, as well as methods of
structured programming [1].

2 Overview of the study area

The main component of the quality of the software is its
reliability. Software reliability is defined as the ability of the
program to operate smoothly certain period of time under
certain conditions. Model of software reliability - a detailed,
formalized definition of reliability. Nowadays developed
hundreds of models of software reliability, taking into
account the different types of programs and their appli-
cations, but there is no common, universal model, applicable
to any program. In general, software reliability models are
divided into the following groups: predicting, measuring
and evaluation. These differences are determined at what
stage of the life cycle of the program they are used and for
what purposes serve. In its turn predictive models include
the following: [2]

1. model of Halstead,
2. model of Motley-Brooks.

Measuring models include the following:
1. model without calculation errors,
2. model with calculation errors.

Estimated models are:
1. Moussa model (selection of the data area),
2. model of error’s seeding
Most of the developed models of software reliability are

based on various assumptions, which seriously limit the
scope of their application. In such a situation, model of
based on a probabilistic approach more broadly applicable,
but the practical value of their use is not great.

3 Adopting relevant technology

Based on the experience of technical diagnostics, deve-
loping a model of software reliability, consisting of the basic
model, which is the result of the study of a software system,
and the diagnostic model, which is constructed on the basis
of the base and focused on the the process of ensuring
software reliability.

The process of ensuring software reliability should be
applied at all stages of the life cycle of programs. Depending
on the stage of implementation such a process will vary.

Considering the stages of the software life cycle in terms
of features ensure reliable software product produced by
each of them.

FIGURE 1 The main stages of the software life cycle

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 24-27 Khassenova G I, Amanzholova S T, Khaimuldin N G

25
Mathematical and Computer Modelling

Software development process (Figure 1) consists of the
following stages:

- planning program development;
- determination of requirements for developing program;
- designing architecture and interfaces;
- construction of (coding) program;
- program testing;
- operation of the program.
Each stage corresponds to its own specific methods and

tools for monitoring and ensuring the reliability of the
software, as well as the strata of the program description.

Core business of reliability software on the determining
step is the validation requirements (certification) and veri-
fication requirements generated.

Core business of reliability software to the software
design phase is to analyze the quality and assessment of the
program design.

At the construction stage (coding) software to create a
working software product through a combination of coding,
verification, unit testing, integration testing, and debugging.

One of the methods of quantify the program code is a
code block count code. Block of code - is an indivisible
sequence of statements executed one after the other.

During the testing phase of software products is subject

to various checks compliance behavior of the functions of

the working copy of the program specifications as defined

in the previous stages of the software life cycle.

4 Testing, verification and validation - differences in
terms

Despite the apparent similarity of the terms "test", "verifi-

cation" and "validation" means different levels of validation

work of a software system. To avoid further confusion,

clearly define these concepts. (Figure 2)

Software Testing - view of the design associated with

the implementation of procedures aimed at the detection of

(evidence of) errors (inconsistencies, incompleteness, ambi-

guity, etc.) in the current definition of the developed

software system. The testing process is primarily to verify

the correctness of a software implementation of the system,

the implementation of compliance requirements, ie, testing

- it manages the execution of the program in order to detect

inconsistencies of her behavior and requirements.

Software verification - a more general concept than

testing. The purpose of verification is to achieve assurance

that a verification object (or code requirements) meets the

requirements implemented without unintended funktsy and

meets design specifications and standards. Verifikatsii

process includes inspection, testing, code analysis of test

results, the formation and analysis of reports about problems.

Thus, it is assumed that the testing process is an integral part

of the verification process.

Validation of a software system - a process whose goal

is to prove that as a result of the development of the system,

we have achieved the goals that were planning to reach

thanks to its use. In other words, validation - is to check

compliance of the customer's expectations.

FIGURE 2 Testing, verification and validation

5 Verification

Verification - is the process of determining whether a
software tools and components requirements imposed on
them in the successive stages of the life cycle of a software
system developed.

The main purpose of verification is to confirm that the
software meets the requirements. An additional objective is the
identification and registration of defects and errors that are
made during the development or modification of the program.

Verification is an integral part of the work under the
collective development of software systems. In this case, the
verification task includes monitoring the results of some
developers to transfer them as input to other developers.

To improve the utilization of human resources in the
development, verification should be closely integrated with the
design, development and maintenance of software systems.

In advance to distinguish between verification and
debugging. Both of these processes are aimed at reducing
errors in the final software product, but debugging - a process
aimed at finding and eliminating errors in the system, and
verification - a process aimed at demonstrating the presence
of errors and the conditions of their occurrence.

Furthermore, verification - controlled and controllable
process. Verification includes an analysis of the causes and
consequences of errors that will cause them to fix, planning
processes, find errors and their correction, evaluation of the
results. All this suggests the verification as a process to
ensure a predetermined level of quality in the delivery of a
software system.

First, consider the purpose of verification. The main objec-
tive of the process - proof that the result meets the design
requirements placed thereon. Typically, the verification process
is carried out from top to bottom, starting from the general
requirements specified in the terms of reference and / or
specifications for an information system to all the detailed
requirements on the software modules and their interactions.
The structure of the tasks of the process includes consistent
verification that a software:

 the general requirements for an information system
designed for software implementation, correctly
processed into high-level requirements specification
for complex applications that match the original
system requirements;

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 24-27 Khassenova G I, Amanzholova S T, Khaimuldin N G

26
Mathematical and Computer Modelling

 high-level requirements correctly processed in soft-
ware architecture and specification requirements to
the functional components of a low level that meet
the requirements of a high level;

 specification of requirements for software functional
components located between the components of high
and low level, meet the requirements of a higher level;

 Software architecture and requirements for low-level
components correctly processed in satisfying their
source software and information modules;

 source code and the corresponding executable code
does not contain errors.

In addition, verification of compliance requirements speci-
fication for a specific project software tools are subject to the
requirements for technological support lifecycle, as well as
requirements for operational and technical documentation.

Purpose software verification are achieved by a com-
bination of sequential execution of inspections of project
documentation and analysis of their results, the development of
test plans, test and test requirements, test cases and procedures,
and follow these procedures. Test scenarios are used to verify
internal consistency and completeness of the implementation of
the requirements. Run the test procedures shall ensure comp-
liance demonstration test program source requirements.

The choice of effective methods of verification and
consistency of their application to the greatest extent in-
fluenced by the basic characteristics of the test objects:

 Class set of programs determined by the depth of his
connection with the operation of real-time and
random effects from the external environment, as
well as requirements for the quality of information
processing and reliability;

 the complexity or scale (size, dimensions) complex
programs and its functional components, is the end
result of development;

 prevailing in the program: calculates complex ex-
pressions and conversion of measured values or
processing logic and character data for the prepa-
ration and display solutions.

Defining some concepts and definitions related to the
testing process, as part of the verification. Myers gives the
following definitions of key terms [3]:

 Testing - the process of implementation of the
program in order to detect errors.

 Test data - inputs that are used to test the system.
 Test situation (test case) - Inputs to test the system

and the expected outputs, depending on the inputs if
the system operates in accordance with its requi-
rements specification.

 A good test situation - a situation that has a high
probability of detection is still undetected error.

 A successful test - a test that detects undetected errors.
 Error - programmer action at the design stage, which

leads to the fact that the software contains internal
defects in the process that the program can lead to
incorrect results.

 Denial - the unpredictable behavior of the system,
leading to unexpected results, which could be caused
by defects contained in the system.

Thus, in the process of software testing, as a rule,
checking the following:

 To verify that the software meets the requirements for it;

 Verifying that in situations that are not reflected in
the requirements, the software behaves adequately,
that is not the case of system failure;

 Checking software for common mistakes that make
programmers.

6 The life cycle of software development

Collective development, unlike the individual requires
careful planning of works and their distribution during the
creation of a software system. One way to work is to break
the process of developing into separate successive stages,
after the passing of which the final product is obtained or a
portion thereof. These stages are called software develop-
ment life cycle of the system. As a rule, the life cycle begins
with the formation of a common understanding of the
system being developed, and their formalization in the form
of a top-level requirements. Completed development life-
cycle system start-up. However, it should be understood that
the development - just one of the processes associated with
the software system, which also has its own life cycle. In
contrast to the system development life cycle, life cycle of
the system itself ends with the conclusion of its operation
and termination of its use.

Software lifecycle - a set of iterative procedures asso-
ciated with consistent changes in the state of software from
the formation of reference to it before the end of its use by
the end user.

6.1 THE LIFE CYCLE MODELS

Any stage of the life cycle has a clearly defined start and end
criteria. The composition of the phases of the life cycle, as
well as the criteria ultimately determine the sequence of
stages of the life cycle is determined by a team of developers
and / or customer. Currently, there are a few basic life cycle
models that can be adapted to real development.

Systems development life cycle (sometimes called a
waterfall) is based on a gradual increase in the level of detail
describing the whole system being developed. Each increase
in the level of detail defines the transition to the next state of
development (Figure 3).

V-model of life cycle – as a kind of "work on the bugs"
classical cascade model has been applied life cycle model,
containing two types of processes - the basic processes of
development, similar to the cascade model and verification
processes, representing a feedback loop with respect to the
basic processes (Figure 4).

Spiral model development system is repeating steps -
spirals. Each turn of the spiral - a cascade or V-shaped life
cycle. At the end of each turn is obtained a complete version
of the system that implements a set of functions. Presented to
the user for the next round of transferred all documentation
developed at the turn of the previous, and the process repeats.

Thus, the system is developed gradually through constant
coordination with the customer. At each turn of the spiral
system functionality expands gradually grow to the full.

Life cycle of extreme approach - the maximum shor-
tening of the duration of one stage of the life cycle and close
interaction with the customer. In fact, at each stage, the
implementation and testing of a system function, which
upon completion, the system immediately delivered to the

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(3A) 24-27 Khassenova G I, Amanzholova S T, Khaimuldin N G

27
Mathematical and Computer Modelling

customer for checking or service.
The main problem with this approach - the interfaces

between the modules that implement this feature. If all
previous types of life cycle interface is clearly defined at the
beginning of development, as are known in advance all the
modules, then the extreme approach designed interfaces "on
the fly" with the developed modules.

7 Conclusions

Developing basic pattern and diagnostic software has wider

application as compared with existing models. This allows
their use in the production cycle of any software, regardless
of the model used by the software life cycle and software
engineering.

Achieving this goal work the following tasks:
- analysis of existing models of software reliability for

the possibility of their use in real production processes;
- development of stratified (base) model software;
- development of diagnostic model of software;
- creation of automated tests to verify the proper

functioning of its program specifications.

References

[1] Khassenova G I, Amanzholova S T, Khaimuldin N G 2014 Work books of

the Third Internatoinal scientific-practical conference “Status, problems and

challenges of information in Kazakhstan”, Testing of the information system

for software engineering quality. UDK 004-075.8, 256

[2] Volkov V 2009 Automated system for monitoring and ensuring

software reliability [Text] / VG Wolves // Mathematical modeling.

Optimal control: Bulletin of the Nizhny Novgorod University NI

Lobachevsky 5 173-5

[3] Sinitsyin S V, Nalyutin N Yu 2008 Verification of software - M:

BINOM 368

Authors

Gulbanu Khassenova, 1948, Almaty, Kazakhstan

Current position, grades: associate professor in International Information Technology University, Almaty
University studies: candidate of technical science at Kazakh National Technical University, Almaty in 1998.

Saule Amanzholova, 1969, Almaty Kazakhstan

Current position, grades: associate professor in Kazakh National Technical University, Almaty
University studies: candidate of technical science at Kazakh National Technical University, Almaty in 2009

Nursultan Khaimuldin, 1991, Almaty, Kazakhstan

Current position, grades: tutor in International Information Technology University, Almaty
University studies: bachelor, currently studying master degree at International Information Technology University, Almaty, 2015
Scientific interest: Bigdata, software engineering, cloud computing, information systems.
Publications: 1

