

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 7-11 Zhao Xiaochun

7
Mathematical and Computer Modelling

Distributed systems software architecture modelling and
research methods

Xiaochun Zhao*

Heilongjiang University of Science and Technology

Received 12 June 2014, www.cmnt.lv

Abstract

With the development of computer network technology, the open, heterogeneous and distributed systems have become the

mainstream in current computer applications because of the sharing resources, high availability, parallel processing and so on.

However, due to the problems of development, which are constant expansion of systems size, evolution and continuous

improvement, maintenance that required, specific distribution, autonomy and heterogeneity, a lot of research and software

development practice shows, the introduction of software architecture which guide distributed system to develop and assume

component blueprint is a practical and effective way to solve the difficulties of the development of distributed systems and build

distributed systems successfully. Therefore, how to improve the quality and efficiency of distributed systems development by using

software architecture, and ensuring system maintenance and space evolution are the key to develop distributed systems, also the core

of this study. Software architecture, formal description of distributed systems interaction style, refinement and mapping architecture,

distributed architecture systems development methods under evolution and reconstruction driving were studied based on the current
distributed systems development methods as well as the problem of inadequate means.

Keywords: Software architecture, distributed systems, interaction style, software architecture refinement

* Corresponding author e-mail: 986889936@qq.com

1 Introduction

The main question in distributed system development is:

the complexity of design, construction, commissioning,

configuration and maintenance distributed applicant

system is high in a heterogeneous environment, and

causing high costs and low efficiency in developing,

large-scale distributed systems development seems a

risky challenge. With the component development ideas

become mainstream in software development, people

gradually realize that the software architecture is an

important mean to control software complexity, improve

the quality of software systems, support software

development and reuse.[1] Therefore, it has immediate

practical significance to in-depth research on the software

system architecture, explore effective large-scale

distributed systems development method, system design,

analysis, and tectonic environment of architecture system

driven, which help support its entire life cycle.

In this paper, a distributed system software

architecture modelling and developing methods have

been studied mainly from the following aspects: (1)

propose a system architecture abstract model DSAM

distributed which is suited system architecture , and give

its formal model, on this basis, design and implement an

attribute grammar-based software architecture description

language DISADL and description language Discid based

on CCS distributed component interaction style; (2)

propose architecture refinement guiding principles and

design a set of mapping rules from a software architecture

description DISADL to universal design model UML of

software implementation; (3) propose a software

architecture reconstruction based on fuzzy clustering

analysis; (4) present distribution systems development

method of the architecture driven, ADISC, establish its

life cycle model, and put into system architecture

supporting; (5) design and implement a visual supporting

modelling environment for distributed software

architecture structure, protocols, analysis, refinement,

remodelling design, ADisDTool.

2 A Distributed software architecture description core

model-DSAM

Model DSAM as a basis is designed a distributed

software system architecture description language with

component based by extending the traditional attribute

grammars.

2.1 DSAM

Model DSAM includes: Event; Port; Interface; Connector

Type; Component Type; Architecture Model. Figure 1 is

a graphical representation of DSAM.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 7-11 Zhao Xiaochun

8
Mathematical and Computer Modelling

Atomic
components

B1

Atomic
components

B2

Interface

Atomic
components

A1

Atomic
components

A2

Atomic
component

s A3

Connctor

Composite member B Composite member A

FIGURE 1 Architecture models DSAM

2.2 DESCRIPTION LANGUAGE DIS_ADL

2.2.1 Extending Attribute Grammar of Dis_ADL (EAG)

EAG is a seven-tuple: EAG = (T, N, P, Z, V, F, B), where

T is the terminator collection; N is non-terminal symbol

set; P is the production; Z is the starting character; V is

the attribute range; F is calculation rules for the property;

B is a finite set of conditions.

2.2.2 Semantic Description of Dis_ADL Based on EAG

Semantic description based on EAG includes: (a) logic

timing and dependencies terminator; (2) parallel

description terminator; (3) terminator @ (4) conditions

production; (5) time constraints; (6) specific terminator

2.3 DESCRIPTION LANGUAGE - DISCID

Discid was meant to describe component interaction

styles and verify formal nature. Discid begins with

"Discid”. Practical application shows, combination with

Dis_ADL and Discid use various forms of mechanisms,

describe the architecture from different viewpoints and

form an organic whole, which greatly reduce the

distributed system designer’s cognitive difficulty, and

also greatly improve the efficiency of the system design.

Meanwhile, DIS_ADL and Discid are uncertainty and

incompleteness in modelling, moreover, its adaptive

capacity needs to be improved, Discid description needs

further implementation language for mapping.

3 Models UML

UML is the most common object-oriented modelling

language, modelling the software system by graph mode

which from static structure and dynamic behaviour.

3.1 ARCHITECTURE MAPPING FOR

Distributed systems development with the guidance of

software architecture build software systems architecture

model by DIS_ADL, after the high-level completion of

verification, seek to design fine from the top layer

constantly, up to a certain size, take the UML as the

middle part the DIS_ADL architecture description is

mapped to the appropriate elements in UML, and then

developed into the design and implementation phase.

Therefore, DIS_ADL and UML are combined and

complement, DIS_ADL focus on high-level grasp and

semantics and depth of precise, UML is based on a viable

practice.

3.2 MAPPING RULES FROM DISADL TO UML

Conversion rules from Dis_ADL architecture description

elements to UML elements are shown in Table 1.

TABLE 1 Mapping table of Dis_ADL element to UML elements

Element--Dis_ADL Element--UML1.x Element--UML2.0

Component Name
Class Name,Package

Name

Class Name,Package

Name
Atomic

Components

Class

Diagrams,Packages

Component,Packages,C

lass Diagrams

Composite member

Aggregation,composit

ion, package,

subsystem layer

Composite structures、
Subsystem

State variables Class private property Class private property

Total Interface Interface
Component supply

Interface

Demand Interface Abstract class
Component

Requirements Interface

Port

Class method names,

parameters, return
type

Port

Message return type
Class method return

type

Class method return

type

Message parameters

Class method

parameter (variable +
type)

Class method

parameter (variable +
type)

Connector
Class diagrams,

association

Connectors, class

diagram, association
Architecture

configuration

Component diagram

or class diagram

Component diagram,

structured category

Binding
Object Linking

(associated instances)

Object Linking

(associated instances)

Comment Document

4 Analysis of distributed software architecture

reconstruction

4.1 DEFINITION OF SOFTWARE ARCHITECTURE

RECONSTRUCTION [3]

Software architecture reconstruction is the process that

reverses extract the architecture from being achieved or

already implemented systems, reflecting the "actual

construction" software architecture. The core problem is

extraction of the architecture and the assessment the

architecture evolution.

4.2 SOFTWARE ARCHITECTURE

RECONSTRUCTION MODEL

Software architecture reconstruction process can be

divided into four parts: (l) confirm stakeholders, defining

target point of view, and the view collections. (2) extract

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 7-11 Zhao Xiaochun

9
Mathematical and Computer Modelling

the underlying architecture element information from a

variety of data sources (such as source code,

documentation, etc.). (3) Define and process the extracted

information, coordinate and establish connections

between elements, generate a cohesive view of the

architecture. (4) Construct data abstraction to generate

architecture representation.

5 Distributed system design method -- ADISc and

distributed development tectonic environment –

AdisDTool

5.1 DISTRIBUTED SYSTEM DESIGN METHOD OF

ARCHITECTURE DRIVEN – ADISC [4]

The development process of distributed systems can be

divided with ADiSC into: requirements analysis; software

architecture design, modelling and refinement

conversion; system detailed design; system

implementation, component assembly deployment and

reconfiguration; system evolution and reuse.

5.2 DISTRIBUTED DEVELOPMENT TECTONIC

SETTING --ADISDTOOL

Modelling system of ADisDTool consists of interactive

graphics interpreter, DISADL language converter,

DISADL lexer / parser, verify the nature of the software

architecture, system builder, Discid language compiler

environment, refinement converter, UML mapping

generator, architecture reconstruction and other

components, the system model is shown in Figure 2.
ADisDTool

User Interface

Graphic interactive

interpreter

Graphically Architecture
Internal representation

Interactive ruleset
Discid language

editing environment

Disid language
 compiler envieronment

Dis-ADL compilerSystemic nature of
discrimination set

Architecture validator Morphology, syntax analyzer
System Configuration Dis -ADL

text

Interactive design environment

Refinement rule set

Refinement converter System Builder Field template set

Grammar rule set

UML Mapper

UML editor displays OO detailed design Architecture reconstructor

Member,
the

connecto
r library

Middleware
Interface IDL

Framework of the
Implementation

language

Source Code

Reconstruced
view

FeedbackEvent

Dis-ADL text editing

Warehousing
Modification

Extraction,
Assemble

FIGURE 2 ADisDTool system model

5.3.1 Functional design of ADisDTool architecture

modelling tool

The ADisDTool can be divided into eight modules:

Project Management module, component and connector

management module, visual modelling module

architecture view modules, code generation module,

system properties verification module, the system

refinement mapping module, reconfigurable architecture.

5.3.2 ADisDTool reusable component library design [5]

ADisDTool established member (connector) library,

which provided for the entire life-cycle management

member. Provides the following functions: components,

connectors, interfaces, warehousing; components,

connectors, interfaces, query; components, connectors,

export, evaluation, life cycle management, version

control and so on.

6 Example authentication

Through such typical case of large-scale distributed

systems development "digital content security platform

based on DRM (National Innovation Fund project,

project number 07c26226101995)", showing the core

areas of applying ADISC methods to analyse, design and

develop, providing convenient and effective design

environment through ADisDTool, which does help

convenient, fast and efficient analysis of large-scale

distributed systems, nature verification, design, evolution

and reuse, and prove effectiveness of DSAM models and

ADISC method the thesis mentioned .

6.1 AS FOR "ORM-BASED DIGITAL CONTENT

SECURITY PLATFORM."

The planform of Digital Content Protection Based on

DRM is a system, which is analysed, designed, developed

and achieved by distributed system, and the current one

has been put to use for network environment of digital

content security protection. PlatDRM ensured security of

digital content in creating, distributing, using, sharing that

throughout the life cycle. This paper briefly describes

PlatDRM to validate the model DSAM and ADiSC

method.

6.2 PLATDRM CORE FUNCTIONAL

REQUIREMENTS

PlatDRM core functional requirements are: (1) to ensure

digital content distribute secure, digital content is held

being only in the specified environment and key user

access, any duplicate is not available. (2) real-time

authorization control, and can be changed the digital

content access which have been distributed out at any

time. (3) real-time monitoring and recording digital

content action to take for the audit analysis, behaviour

tracking provides detailed historical data. (4) support the

parties authentication with domain authentication and

other authentication systems integration, users only need

to open an important document domain authentication.

6.3 TOP-LEVEL ARCHITECTURE DESIGN

According to ADiSC methods, requirement analysis

selected core use cases; the resulting model is

transformed to the software architecture to build a

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 7-11 Zhao Xiaochun

10
Mathematical and Computer Modelling

language-independent architecture model. Meanwhile, it

can be application-oriented modelling, describe domain

business needs to facilitate greater reuse. PlatDRM is a

typical distributed application, Figure 3 is its top-level

conceptual architecture diagram, architecture consists of a

client component, server component, WEB management

component, of which the client is called CC member, the

server is called SC members, managing client is called

MC member.
Web

management
component

Comp

Server
component

SC Comp
CC Client comp

Conn1 Conn2

 Strategy

ConCtrol-inf
Strategy

 ConCtrol-inf

FIGURE 3 PlatDRM top Software Architecture Design

6.4 ARCHITECTURE REFINEMENT

When architecture is in a design stage, we use

ADisDTool to analyse and refine PlatDRM architecture.

First, for the interface refinement, the interface

refinement between customer component and service

component are set to be strategy interfaces, authentication

interface, the operation log pick date, and digital content

object interface. Then the client component CC internal

structure refinement. After refining, Cc component

architecture is shown in Figure 4.

Conn:3

Conn:2
m:Monitro-c

Src:Encryption-c

Ob:dataFlaw

Cl:Case-C

//DEM

B:DRM-C1

Conn:1

Use-Client(file-name:string)

Ob:dataFlaw

opLOG:dataLOG

Ob:dataFlaw

Ob:dataFlaw

Strategy:Str-data

Strategy:Str-data

Strategy:Str-data

Strategy:Str-data

Certification:CerD

opLOG:dataLO

G

Ob:dataFlaw

Strategy:Str-data

Ob:dataFlaw

Oplog:dataLOG

FIGURE 4 PlatFORM client component architecture after refinement

6.5 INTERACTION EVENTS CLIENT DEFINITION

LOG_EVENT_CLIENT

After customers receiving log events, should be

temporarily stored in the queue used to prepare the client

component. LOG_EVENT_IO process defines the client

endpoint behaviour, describes the state changing method

after in response of API, also shows that when customers

in the state of receiving start LOG_RECEIVED log

events , the receiving message can only be placed in the

event queue. To enable the server can send message

directly at any time, avoiding the synchronization

aborting between the server and the client, the definition

of time endpoint contains two explicit intermediate state:

STOP_LOG_EVENT_OUT and

STOP_LOG_EVENT_ACK, instead of the direct state

transition from LOG_RECEIVED to LOG_NEGLECT.

6.6 MAPPING SYSTEM

In the system design phase, we designed classes,

interfaces, components which PlatDRM containing by

using UML. In addition, object state diagrams, sequence

diagrams, etc. to get the attributes and methods of classes.

Figure 5 is PlatDRM overall package design. Figure 6 is

a design package diagram after client finer.

Right-Hand

Button

Cpropertypage

Plug-In

Tray

File System

Filter Driver

Communicatio

n Agent
Business Layer

Web

Management

Data Layer

Client component parts

The connector section Service component

part

Management

component

part

FIGURE 5 PlatDR, I overall design package diagram

CL VS AU BR AS

CD TS WS

CM FE

FIGURE 6 PlatDRM client design

6.7 PLATDRM FUZZY CLUSTERING ANALYSIS

Fuzzy clustering analysis, the results are shown in Figure

7.

Client

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y Y

Y

Y

Y

Y Y

Y

Y

Y Y

Y Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

YY

Y

Y

Y

Y

Y

AS BR CD DPAU CC CM DM FE SU TU VSRM TS WS

AS

BR

CD

DP

FE

SU

WS

AU

CC

CM

DM

RM

TS

VS

TU

FIGURE 7 PlatDRM client component dependency matrix after

refactoring

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 7-11 Zhao Xiaochun

11
Mathematical and Computer Modelling

6.8 ANALYSIS AND RESULTS BY USING THE DSM

CORRELATION ALGORITHM

Using the DSM-correlation algorithm, we can get matrix,

shown in Figure 7, so we focused on {DP, DM, RM, SU,

TU, CC} can be polymerized to obtain Figure 8.

Relationship between the main clients’ components can

be clearly seen.

BR AU WS FE DP DM RM SU TU CC CM TS VS AS CD

BR

AU

WS

FE

DP

DM

RM

SU

TU

CC

CM

TS

VS

AS

CD

=R

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0 0

0 0

1 1

1 1

1 1

1

1

1

1

1

1

0 0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1
FIGURE 7 PlatDRM client component reachable matrix view after

refactoring

Client

BR AU WS FE CL CM TS VS AS CD

1

2

3

4

5

11

12

13

14

15

BR

AU

WS

FE

CL

CM

TS

VS

AS

CD

Y

Y

Y Y

Y

Y Y

Y

Y Y Y

Y Y Y Y Y

Y

Y

Y Y Y Y

Y

Y
FIGURE 8 Client DSM after the polymerization

Analyse the results of DSM after client code division.

After refreshing, we discovered that according to results

of the matrix analysis, Figure 9 shows a PlatDRMclient's

system architecture and Figure 8 is the corresponding

matrix. Compared the figure represented with the original

architectural design (Figure 6), it is easy to see the

dependencies between components changed, and

dependency occurred between CL and AU, contrary the

initial design expectations, therefore, it needs to be

adjusted and avoided.

CD

TS

VS CL

CM

FE

BR

WS

AU

AS

FIGURE 9 P1atDRM client view after polymerization system packing

"Digital content security platform based on DRM"

Such a typical distributed system has been put into the

core link in ADISC, Dis_ADL describes the software

architecture and is given top-level component description

of the system, then refined it, and give a formal and

intuitive description for the language Discid we

mentioned focus on the typical event interaction style and

conduct of the verification. Finally, the code that system

implementation has been found in the software

architecture, fuzzy clustering analysis and analyse it by

using the proposed design structure matrix theories.

Currently, the system by using ADISC methods for

designing and developing was put into use in Shan xi

military giant, which has been got a good evaluation of

the user.

7 Conclusion

In the analysis of the lacking and problems in current

large-scale distributed systems development methods and

means of supporting, this paper presents a method based

on component structure distributed systems under the

support of the software driver. Its core is a distributed

software architecture abstraction model--DSAM, a

description language supported such architecture

modelling, validation, refinement, evolution and reverse

extraction over the DSAM--DIS_ADL and a component

interaction analysis verification language based on CCS -

-Discid. On this basis, this paper presents a visual support

for distributed software architecture modelling,

refinement and reconstruction of distributed system

design environment--ADisDTool.

References

[1] Mei Hong, Jun-rong Shen 2006 Software Architecture Research

Journal of Software 17(06) 1257 - 75

[2] Shi-xian Zhang, Li-fu Wang, Fu-qing Yang 2000 Systems
development based on COTS component Computer Science 27(1) 6

- 8
[3] Lv-ai Sun, Mao-zhong Jin, etc 2002 Software Architecture

Research Journal of Software 13(07) 1225 - 37

[4] Ding-yi Fang 2001 Distributed software architecture research based

on component interaction mechanism Northwestern Polytechnical

human science, Xi'an
[5] Jian-jiang Zhu 2001 Software reuse research based software

component Nanjing University of Aeronautics and Astronautics

Authors

Xiaochun Zhao, born on February 6, 1976, Jilin Province of China

Current position, grades: lecturer
University studies: Bachelor degree was earned in major of computer science and technology, Heilongjiang University of Science and Technology
in 2007.
Scientific interest: computer application, web application, Web database technology, information processing

