

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

7
Mathematical and Computer Modelling

Accuracy evaluation of deep belief networks with fixed-point
arithmetic

Jingfei Jiang1*, Rongdong Hu1, Lujάn Mikel2, Yong Dou1
1Science and Technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, ChangSha, Hunan 410073,

China

2University of Manchester, Manchester, M13 9PL, UK

Received 12 June 2014, www.tsi.lv

Abstract

Deep Belief Networks (DBNs) are state-of-art Machine Learning techniques and one of the most important unsupervised learning

algorithms. Training DBNs is computationally intensive which naturally leads to investigate FPGA acceleration. Fixed-point

arithmetic can be used when implementing DBNs in FPGAs to reduce execution time, but it is not clear the implications for

accuracy. Previous studies have focused only on accelerators using some fixed bit-widths. A contribution of this paper is to

demonstrate the bit-width effect on various configurations of DBNs in a comprehensive way by experimental evaluation. Explicit

performance changing points are found using various bit-widths. The impact of sigmoid function approximation, required part of

DBNs, is evaluated. A solution of mixed bit-widths DBN is proposed, fitting the bit-widths of FPGA primitives and gaining similar

performance to the software implementation. Our results provide a guide to inform the design choices on bit-widths when
implementing DBNs in FPGAs documenting clearly the trade-off in accuracy.

Keywords: deep belief network, fixed-point arithmetic, bit-width, FPGA

* Corresponding author e-mail: jingfeijiang@nudt.edu.cn

1 Introduction

Deep neural networks have become a “hot topic” in the

Machine Learning community with successful results

demonstrated with Deep Belief Networks (DBNs) [1],

denoising autoencoder [2], sparse coding [3] and etc.

DBNs have been shown to be among the best neural

networks even for challenging recognition, mining and

synthesis tasks. A DBN is built on a subset of neural

networks known as Restricted Boltzmann Machine

(RBM). Running a DBN is a time-consuming task due to

its large scale and processing characteristics. Many

experiments have often reported taking weeks, to search

the large parameter space (numbers of layers and

neurons, learning rate, momentum and all kinds of

regulation terms) and calculate millions of parameters

(weights and biases). One good example is Quoc et al. [4]

who used a cluster in Google of 1,000 machines (16,000

cores) for a week to demonstrate the success of larger

scale unsupervised learning from internet images

recognition.

Reducing the execution time of the training phase and

prediction of a DBN is one critical barrier which has

restricted the mass adoption of DBNs. Interest in the

acceleration of DBNs has built up in recent years. FPGAs

are attractive platforms for accelerating DBNs. For

example, a RBM of 256x256 nodes was tested on a

platform of four Xilinx Virtex II FPGAs and gained a

speedup of 145-fold over an optimized C program

running on a 2.8-GHz Intel processor [5]. Using Altera

Stratix III FPGA, Kim et al. [6] also gained significant

speedup for a 256x1024 RBM. Multi-FPGA solutions

were discussed to determine the extensibility of RBM in

[7, 8].

Existing works on FPGA implementations of neural

networks often have vast and regular processing units to

map neurons partially or wholly at a time. Weights and

neuron values are stored in on-chip RAM during

processing and are swapped out to off-chip memory after

processing. It is too expensive to support a large number

of floating-point units on chip and store values using the

standard double precision floating-point representations

in on-chip RAMs. Many of the previous attempts with

FPGAs for neural networks implemented fixed bit-widths

(8 bits, 16 bits or 32 bits). Bit-widths with integral

multiple of bytes are convenient to align with other

components (such as IP cores and user interfaces) and

easier to design. Previous works have mainly analysed

the impact of bit-widths on accuracy and execution time

of old-style neural networks [9-11]. All reported RBM (a

building component of DBN) designs on FPGA selected

fixed-point arithmetic with a fixed bit-width as well, e.g.

16 bits in [6, 8] or 32 bits in [5] without analyzing in

depth the implications for accuracy. Thus, it is not clear

whether this kind of fixed bit-width is really the most

suitable and area efficient for DBNs.

Using bit-width unequal to the machine word-length

on a standard processor or GPU may rarely deliver any

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

8
Mathematical and Computer Modelling

speedup. Programs need more instructions to do

alignment and splicing which is not a negligible cost. On

the other hand, speed and resource usage in FPGAs are

more sensitive to the bit-width as many logics are

mapped to fine-grain LUTs. As DBNs have grown in

size, compared with old-style neural networks, to satisfy

the learning demands of contemporary applications,

resource saving due to narrower bit-widths has become

more attractive to implement larger processing array in

FPGAs. However, shrinking the bit-width may harm the

convergence and accuracy of DBNs. Antony et al. [12]

provided an initial study of the arithmetic effects on

RBM for a specific network configuration. This paper

reports a comprehensive study where in particular it

improves the coverage of the variation of DBN and

investigates how mixed bit-widths DBNs can offer a

better accuracy and area efficiency. As it is expensive to

implement exponential function and division operations

directly on FPGA, it is important to understand the

implications of approximation on the required sigmoid

functions part of DBNs.

2 DBNs in a Nutshell

Our work is inspired by the original DBN of [1] and the

idea of Stacked Denoising Auto-Encoder (SDAE) [2].

Hinton et al. [1] proposed an algorithm for learning deep

networks based on a hierarchical probabilistic graphical

model. A DBN is built on a structure of multi-layers

RBMs. Each layer of RBM defines an energy function as

a goal of minimization, which is represented as the

negative log probability of a state between inputs (visible

units) and outputs (hidden units):

2

2

2
,

1
(,) log (,)

2

1

i

i v

i i j j i j ij

i v j h i j

E v h P v h v

a v b h v h w

, (1)

where, wij is the connection weight between visible unit vi

and hidden unit hj, ai and bj are biases of vi and hj

respectively. σ is a parameter. In the case of using binary-

valued visible units, the first term of Equation (1) will

disappear [13]. Training the parameters wij, ai and bj so as

to minimize the energy can take the way of Gibbs

Sampling by alternatively sampling each layer's units

given the other layer, which uses conditional distributions

to approximate the joint distribution. Hinton cut down the

process into two steps, which crudely approximate the

gradient of the log probability of the training data v0:

0

0 0log() rec rec

ij i j i j

ij

v
w v h v h

w

. (2)

The “rec” means the second step of Gibbs Sampling.

ε is the learning rate. The gradient obtained from this

simplification is like the gradient of another objective

function called Contrastive Divergence (CD). Though it

is a kind of approximation, it works well enough to

achieve satisfactory performance in many significant

applications. Based on the network model and CD, the

overall process of RBM is:

0 0

0 '

0 0

rec

rec rec

rec rec

h logistic v W a

v logistic h W b

h logistic v W a

W v h v h

, (3)

where logistic is the logistic function which is labeled as

a sigmoid function 1

1 xe
y
 .

SDAE is another type of deep neural network, which

is based on a different learning theory but has similar

computations to DBN. SDAE denoises its inputs in a

corruption level and then gets a distinctive property that

even with a high capacity model it can avoid learning the

identity mapping. Empirical results showed that SDAE

can perform better than non-denoised ones with a suitable

corruption level. We try to use the denoising idea on

DBN to improve performance. This is done by first

corrupting the initial input v to get a partially transformed

version v~ by means of a stochastic mapping

 vvqv D |~~~ . The corrupted input v~ is then used to train

the RBM using Equation (3). qD can use additive

Gaussian Noise, random zeroing noise, and salt-pepper

noise as well [2]. Random zeroing noise which is most

commonly used was selected in our experiments. A fixed

percentage of randomly chosen units set their values to 0,

while the others are left untouched.

From an information theoretic perspective, converting

double precision floating-point arithmetic to fixed-point

arithmetic will lose some information of inputs as well as

intermediate data. Denoising DBN seems also lose

information of inputs, just in a stochastic way. The

training process becomes more “coarse” than before in

both cases. The advantage of such approximation is that

high-dimensional input loose the redundant and useless

information during processing and then can learn features

easier. The disadvantage is that some critical information

may be lost and make the feature more indistinct to be

learned. In SDAE, a suitable corruption level can make

the advantages of inputs denoising outweigh its

disadvantages. For the similar reason, a suitable bit-width

may trade-off both-side effects well.

3 Experimental Methodology

For our experiments, we modified the floating-point

versions of the original DBN (oDN) and the denoising

DBN (dDN) into fixed-point versions and we compared

them. The dDN version adds a corruption process before

the pre-training of each RBM layer. The fixed-point

versions take bit-widths as parameters, including bit-

widths of neural units, weights, logistic function and

random number generator, so it can run in any bit-width

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

9
Mathematical and Computer Modelling

configuration. Fixed-point versions of oDN and dDN

were implemented by amplifying each data in RBM by a

factor of 2fractional-width and truncating each operation result

by a factor of 2bit-width, thus simulating the calculation

process as a limited fixed-point one. Only pre-training

was translated into a fixed-point version. Testing and

fine-tuning were still computed using double precision

floating-point. All experiments were done in

Matlab2010a.

MNIST classification was selected as the objective

application because of its popularity in machine learning

studies and we use the most common configurations of

DBNs in these studies. The dataset is 60,000 training and

10,000 testing samples of 28x28 pixel images of the

digits. Three layers DBN with size of 784-400-400-400-

10 and one layer DBN with size of 784-400-10 were

built, with lower layers of unsupervised pre-training and

the top layer of output logistic regression using softmax

(multinomial logistic regression). The whole network was

then fine-tuned as usual for multi-layers perceptrons, to

minimize the output prediction error. The minibatch size

for pre-training was 100 and the one for fine-tuning was

1000. Every minibatch in every epoch used different

random numbers generated by the same random seed.

50 epochs of pre-training were used in order to find

out the whole effect of fixed-point versions. 30 epochs of

fine-tuning were used because the network in our

configuration can get a rather good result after 30 epochs

of fine-tuning and our aim was not to achieve best

performance but to compare performance change among

different options. We did not use Mean Squared Error

(MSE) criterion in our experiments because MSE is

sometimes incomparable among different configurations

of DBN. Classification error on testing set was directly

used as the criterion. For some fixed-point versions with

narrower bit-widths, the more of pre-training epochs is

not better to gain performance. Our experiments showed

that sometimes the MSE between input data and

reconstruction data became divergent as the pre-training

progressed. Therefore, we used an early-stop strategy

when MSE was not convergent during pre-training and

recovered the previous update point, which had the

smallest MSE as the final pre-training result.

The starting point where the pre-training procedure is

initialized has some impact on DBN performance. We ran

each version of DBN 40 times under 40 random seeds,

which were decided by the “clock” value. Up to 120

random seeds were tried on some bit-width

configurations. The result distributions are very similar

with the results running from 40 random seeds.

Therefore, we thought 40 random seeds were objective

enough to evaluate effect of the initialization point. We

used several nodes of the TianHe-1A supercomputer [14]

and all the experiments were completed in less than a

month. We explored in detail bit-width configurations

from 14 bits to 32 bits and found noticeable changing

points.

4 Effect of bit-width

When considering a fixed-point representation for real

numbers, the integer part of a number mainly influences

the representation scope while the fractional part mainly

decides the precision. Overflow may affect the DBN

performance heavily.

We ordered the results by the bit-width of the integer

part. Figure 1 shows the test classification error

distributions of three layers DBNs, obtained with 5 bits, 6

bits and 7 bits integers, as the fractional part increase

(The X axis shows as “integer-decimal” pair denoting

integer width and fractional part). In Figure 1(left), the

noticeable thing is that 5 bits integer is not wide enough

for scope representation. Therefore, the errors are very

large and unstable. When the integer width increases one

or two bits, the representation scope is mostly satisfied

and the representation precision effects dominated.

Configurations with 6 bits or 7 bits integer seem much

more robust with respect to the random initialization seed

and achieve better performance. The wider the fractional

width is the better performance they can achieve. For

different configurations with the same bit-widths (7-8 and

6-9, 7-10 and 6-11, 7-12 and 6-13), 6 bits integer perform

almost the same as (or just a little better than) 7 bits

integer (It can be explained that precision limitation

harms the performance more severely when integer width

is enough). We also evaluated 8 bits integer and got the

same trend. It indicates that the changing points where

most reasonable performance (below 1.5%, the best is

about 1.2%) can be achieved for our three layers oDN is

6~7 bits integer and 10~13 bits fractional part. A bit-

width of 19 bits is wide enough to achieve the best

performance. In a FPGA implementation of such DBN,

there is really a precision lost if 16 bits are used and there

is a big waste if 32 bits are used, as some previous

implementations do. We also evaluated wider bit-widths

from 21 bits to 32 bits and the distributions are

indistinguishable from the floating-point version, which

confirms the conclusion.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

10
Mathematical and Computer Modelling

FIGURE 1 Performance of three layers oDN (left, Y axis is in log scale to show clearly) and dDN (right). fl: Floating-point version

FIGURE 2 Epochs taken by configurations of Figure 1 in oDN (left) and dDN (right)

Figure 2 (left) shows the number of epochs (average

of three layers) each configuration in Figure 1 (left) takes.

It indicates the direct reason why narrower bit-widths get

worse performance. DBNs with narrower bit-widths take

less epochs up to converge during pre-training (under the

control of early stop). There is a large difference among

configurations: only the configurations achieving best

performance (6-13 and 7-12) take as many epochs as the

floating-point version (up to 50), others take rather a few

epochs (below 20). It seems more difficult for narrow bit-

width to converge efficiently. All comparisons were

based on the same DBN parameters except the bit-width.

If other parameters are adjusted distinctively,

performance for narrow bit-width may be better. But we

only wanted to compare the effects in the same situation.

We also tried to adjust weight costs but got no better

results. The good news is that using narrow bit-width not

only reduces the executing time of DBN kernel assuming

that narrower multiplication and addition in Equation (3)

are calculated faster), but also reduces the number of

epochs, thus reduces the whole executing time greatly.

Figure 1 (right) and Figure 2 (right) show the similar

situations on dDN. The corruption level of 5% was used

for dDN, which is the suitable corruption level to gain

better performance. dDN performs better than oDN,

especially on stability. 18 bits width (6-12) can achieve

best performance requiring epochs below 44. Better

performance and stability of fixed-point dDN is attributed

to input corruptions, which not only highlight the discard

of redundant information but also neutralize some effects

of bit-width shrink.

Figure 3 shows the performance comparisons between

DBNs with three layers and DBNs with one layer. The

overall performance of one layer DBN is off cause worse

than three layers DBN. The performance variations of

three layers DBNs are a little larger than one layer DBNs

because of the better sensitivity of deeper DBN. For

example, variations of one layer oDN and dDN from

1L6-9 to 1L6-13 are about 0.2%. Variations of three

layers are about 0.3%. Comparing Figure 1 (left) with

Figure 3 (left) and Figure 1 (right) with Figure 3 (right),

the trend of variations are almost the same. 19 bits oDN

and 18 bits dDN of one layer can gain best performances

just as their three layers contrasts. These results indicate

that bit-width influences on DBNs with different numbers

of layers are relatively consistent.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

11
Mathematical and Computer Modelling

FIGURE 3 Bit-width impact on different layers of oDN (left) and dDN (right). 3L: three layers DBNs, 1L: one layer DBNs

5 Effect of sigmoid function approximation

In our experiments aforementioned, a software version of

exponential function and division was used to calculate

the logistic function. Only input and output were

constrained by bit-width. As it is very expensive to

implement exponential function and division directly on a

FPGA, approximations applicable to FPGA

implementation can be considered. Therefore, the results

above may have been more optimistic than real

implementation. The sigmoid function approximation

impact should be evaluated.

The methods of sigmoid function approximation can

be divided into two groups from the perspective of

implementation complexity. One group includes

algorithms based on higher order Taylor Series

Expansion [15], Least Square Approximation [16] and

Lookup Table combined with interpolation [7]. These

algorithms need nonlinear functions implementation or

large volume of memory. The latency and resources

usage are relatively high. They are more suitable for the

design choices of small number of units and high

precision. The other group includes many Piecewise

Linear Approximation of nonlinearity algorithms (PLAs)

[10, 17, 18], which use linear functions and can be

implemented on FPGA easily, but may be not so

accurate. They are suitable for the design choices of

vastly replicated units. FPGA implementations of DBNs

need as many units as possible to execute in parallel.

Accordingly, the same number of sigmoid function

modules is needed. PLA is preferred in this situation.

Whether the precision of PLAs will harm the DBN

performance needs to be considered. Two PLAs with

different precisions were used in our next experiment.

One (PLA1) is from [18], which is a typical algorithm

and used in an implementation of RBM [6]. The other

(PLA2) was used in MLP-BP neural networks by Antony

et al. [10]. Two algorithms are shown in Table 1.

PLAs have uniform structures like Table 1. PLA1 has

4 pieces and PLA2 has 3 pieces. The linear functions in

each piece, the numbers of pieces and the bit-width

determine the actual precision of PLA implementation. A

PLA module was built in Verilog according to Table 1,

parameterizing bit-width, number of piece, input scope in

each piece, bias number (such as the addends of 2, 5, 27

in PLA1 and 2, 56 in PLA2) and shift number (such as

the divisors of 4, 8, 32 in PLA1 and 4, 64 in PLA2).

PLA1 and PLA2 configured with 6 bits integer and

different fractional parts were simulated in Modelsim.

Software versions of sigmoid function with

corresponding bit-widths were also run in Matlab.

TABLE 1 Piecewise Linear Approximation algorithms

PLA1 PLA2

x y x y

0 ≤ |x|<1 y =(|x|+2)/4 0 ≤ |x|<8/5 y =(|x|+2)/4
1 ≤ |x|<19/8 y =(|x|+5)/8 8/5 ≤ |x|<8 y =(|x|+56)/64

19/8 ≤ |x|<5 y =(|x|+27)/32

|x|≥5 y=1 |x|≥8 y =1
x<0 y =1- y x<0 y =1- y

Figure 4 shows function curves and absolute errors

(compared with its corresponding software versions) of

PLA1 and PLA2, with 6 bits integer and 13 bits fractional

part. The maximum precision difference between PLA1

and PLA2 is about 5% (6.8% of PLA2 vs 1.9% of PLA1).

Figure 5 shows the maximum and mean absolute errors

of PLAs in different fractional parts. It shows that the

precisions are stable when fractional width is up to 9~10

bits for both PLAs. We selected these two PLAs as

representatives to show how PLAs do with different

precision lost affect DBN performance.

The sigmoid functions in oDN and dDN of one layer

were replaced by PLA1 and PLA2 respectively. Figure 6

shows the results using PLA1. The software version and

PLA1 configured with same bit-width get almost the

same distributions on both oDN and dDN, which means

PLA1 configured with the same bit-width as other

operations has enough precision to benefit the overall

performance.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

12
Mathematical and Computer Modelling

FIGURE 4 left: Sigmoid function curve of software version, PLA1 and PLA2. right: Absolute errors of PLA1 and PLA2 with 6 bits integer and 13

bits fractional part

FIGURE 5 Maximum (left) and Mean (right) absolute errors of PLA1 and PLA2

FIGURE 6 Performance of oDN (left) and dDN (right) using software version sigmoid function (s) and PLA1 (p)

Figure 7 shows the performance comparison between

PLA1 and PLA2. The performance difference becomes a

little larger as the bit-width increases. It means that PLA2

with lower precision may not satisfy the precision

requirement of the whole DBN. Harm appears more

clearly when more epochs are taken (when wider bit-

width as 6-13 is used).

FIGURE 7 Performance of oDN using PLA1 (p1) and PLA2 (p2)

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

13
Mathematical and Computer Modelling

6 Mixed Bit-widths

Matrix operations for DBN include multiplications,

accumulations and additions. Modern FPGAs supply

built-in primitives to support such operations. For

example, the primitive of DSP48E slice from Xilinx Inc.

supports many functions such as multiply, multiply

accumulate (MACC) and multiply add. The primitives

have their favourite bit-widths. For example, One

DSP48E contains one 25x18 two's complement

multiplier, an adder, and an accumulator. The output of

DSP48E is commonly wider than sum of inputs bit-

widths for accumulation (up to 48 bits). Block RAM is

built by primitives, which also have fixed bit-width

(RAMB18 and RAMB36).

It is somehow unfortunate that our result of 19 bits is

the narrowest bit-width to achieve best performance on

oDN. Table 2 show the resource usage of a MACC unit

generated from Xilinx Core Generator. It shows that

resource cost (mainly the DSP48s) will double or triple if

the bit-width DBN required exceeds the basic bit-width

of primitive. Meanwhile, multiple primitives will cascade

to form a processing unit, which will increase the pipeline

stages of the unit. The latency and control complexity

will increase finally. Multiplier resources like DSP48 are

relatively precious in a FPGA (several tens or hundreds).

Therefore, using one suitable bit-width for DBN may not

be area efficient.

TABLE 2 Resources usage of a MACC

Description Values

multiplier width 18 18 19 19 19 25

multiplicand width 18 25 19 25 30 25

DSP48s 1 1 3 3 2 2
LUTs 0 0 0 0 50 27

Flip-Flops 0 0 0 0 99 53

A mixed bit-widths solution is proposed to

accommodate the requirement of hardware primitives. In

DBNs, multiply operations are multiplication of a neural

unit value and a weight or multiplication of two neural

unit values. Weights record the feature values, which

need higher precision, while neural units can be corrupted

to some extent according to our experiments. Therefore, a

narrower bit-width can be used for neural units and a

wider one can be used for weights. A mixed bit-widths

version of one layer DBN was modified and evaluated. 8

bits integer and 17 bits fractional part were used for

weights (fitting in one DSP48). 6 bits and several narrow

decimals were used for neural units. PLA1 was used for

sigmoid function with the same bit-width of neural units.

Figure 8 shows the results. It is clear that the mixed bit-

width configurations can gain best performances like 6-

13. It further indicates that weight precision dominates

the overall accuracy.

FIGURE 8 Performance of oDN using mixed bit-widths

7 Conclusions

Our work gives a comprehensive evaluation for

implementing DBNs on FPGAs by studying a wide range

of bit-width achieving best performance and area

efficiency. Bit-width impacts show similar trend on

different layers of DBNs, but are a little different between

oDN and dDN. The PLA with higher precision can

satisfy the overall DBN, but the other with lower

precision does become the precision bottleneck of DBN.

From these results, a mixed bit-widths solution is

proposed. Assigning different bit-widths to neural units

and weights can fit hardware primitives better and gain

better performance. The control complexity

implementing irregular bit-width (not integral multiple of

bytes) seems a little high. But our design experience on a

memory sub-system of DBN accelerators supporting

various bit-widths has shown that it is not as difficult as it

may sound. The cost is only little in hardware and does

not affect the critical path.

Acknowledgments

This work is funded by National Science Foundation of

China (number 61303070) in cooperation with Dr. Lujan

who is supported by a Royal Society University Research

Fellowship. Dr. Jingfei Jiang is an academic visitor at

University of Manchester. We acknowledge Antony W.

Savich for his feedback and TianHe-1A supercomputing

system service.

References

[1] Hinton G, Osindero S, Teh Y 2006 A fast learning algorithm for

deep belief nets Neural computation 18(7) 1527-54

[2] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P 2010

Stacked denoising autoencoders: Learning useful representations in
a deep network with a local de-noising criterion Journal of Machine

Learning Research 11 3371-408

[3] Lee H, Ekanadham C, Ng A 2008 Sparse deep belief net model for

visual area v2 Advances in neural information processing systems

20 873-80
[4] Le Q, Monga R, Devin M, Corrado G, Chen K, Ranzato M, Dean J,

Ng A 2011 Building high-level features using large scale
unsupervised learning. preprint arXiv:1112.6209

[5] Ly D, Chow P 2009 A multi-fpga architecture for stochastic

restricted Boltzmann machines: International Conference on Field

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong

14
Mathematical and Computer Modelling

Programmable Logic and Applications, (Czech Republic, August
31-September 2,2009) pp 168-73

[6] Kim S, McMahon P, Olukotun K 2010 A large-scale architecture
for restricted boltzmann machines Proc. of the 18th IEEE Annual

International Symposium on Field-Programmable Custom

Computing Machines (Charlotte, North Carolina, May 2-4, 2010)
pp201-208

[7] Le Ly D, Chow P 2010 IEEE Transactions on Neural Networks
21(11) 1780-92

[8] Lo C, Chow P 2011 Building a multi-fpga virtualized restricted

boltzmann machine architecture using embedded mpi Proc. of the
19th ACM/SIGDA international symposium on Field programmable

gate arrays (Monterey, California, February 27-1 March 1, 2011)
pp 189-98

[9] Gomperts A, Ukil A, Zuruh F 2011 IEEE Transactions on

Industrial Informatics 7(1) 78-89
[10] Savich A, Moussa M, Areibi S 2007 IEEE Transactions on Neural

Networks 18(1) 240-52
[11] Draghici S 2002 On the capabilities of neural networks using

limited precision weights Neural Networks 15(3) 395-414

[12] Savich A, Moussa M 2011 Resource efficient arithmetic effects on

rbm neural network solution quality using mnist International

Conference on Reconfigurable Computing and FPGAs (Cancun,
Mexico, Nov 30- Dec 2, 2011) pp 35-40

[13] Hinton G, Salakhutdinov R 2006 Reducing the dimensionality of
data with neural networks Science 313(5786) 504-7

[14] National supercomputer centre in tianjin http://www.nscc-tj.gov.cn/

16 Aug 2013.
[15] Arroyo Leon M, Ruiz Castro A, Leal Ascencio R 1999 An artificial

neural network n a field programmable gate array as a virtual
sensor Proc. of the third International Workshop on Design of

Mixed-Mode Integrated Circuits and Applications (Cat.

No.99EX303) pp 114-7
[16] Al-Nsour M, Abdel Aty Zohdy H 1998 Implementation of

programmable digital sigmoid function circuit for neuro-computing
Proc. of the Midwest Symposium on Circuits and Systems pp 571-4

[17] Alippi C, Storti Gajani G 1991 Simple approximation of sigmoidal

functions: realistic design of digital neural networks capable of
learning Proc. of the IEEE International Sympoisum on Circuits

and Systems pp 1505-8
[18] Amin H, Curtis K, Hayes Gill B 1997 Piecewise linear

approximation applied to nonlinear function of a neural network

IEE Proc. of Circuits, Devices and Systems 144 pp 313-7

Authors

Jingfei Jiang, born in 1974, Inner Mongolia, China

Current positions, grades: She was a lecturer in School of Computer from 2004 to 2006 and is an associate professor at the same school from
2007 until now, founded by Science and Technology on Parallel and Distributed Processing Laboratory.
University studies: She was awarded BS. (1997), MS. (2000) and Ph.D. (2004) degrees in Computer Science by the University of School of
Computer, National University of Defense Technology.
Scientific interests: She works in high-performance embedded system design and reconfigurable computing. More recently she has been
involved in acceleration methods of machine learning algorithms such as Deep Belief Network and Stacked Auto-encoders.

Rongdong Hu, born in 1986, Chongqing, China

Current positions, grades: He is a PhD student under the supervision of Prof. Guangming Liu, who is the vice chief designer of the well-known
TH-1A supercomputer.
University studies: Master Degree at the same school in 2010 for work in Hierarchical Parallel Mass Storage System.
Scientific interests: cloud computing and statistical learning. He aim to use the intelligent techniques to improve the efficiency of cloud
resource management - maximizing resource utilization, reducing energy consumption and cost of services, while ensuring the quality of
cloud services.

Mikel Luján, born in 1975, San Sebastian, Spain

Current positions, grades: After graduation he worked as a postdoctoral researcher in the Centre for Novel Computing at the University of
Manchester. In 2005 Mikel started working for Sun Microsystem Research Laboratiories in California. In late 2006 Mikel returned back to
Manchester as a Career Development Fellow (cf. Research Assistant Professor), but now as a member of the Advanced Processor
Technologies Group. In October 2009 he started his Royal Society University Research Fellowship on how to co-design future many-core
architectures and managed virtual execution environments.
University studies: M.Phil. (1999) and Ph.D. (2002) degrees in Computer Science by the University of Manchester.

Yong Dou, born in 1966, Jilin, China

Current positions, grades: He is the director of Science and Technology on Parallel and Distributed Processing Laboratory.
Scientific interests: design and implementation of the high performance accelerators. Now he is the project leader building large-scale
parallel computers for deep learning applications in National University of Defense Technology.

http://www.sansebastianturismo.com/

