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Abstract 

Deep Belief Networks (DBNs) are state-of-art Machine Learning techniques and one of the most important unsupervised learning 

algorithms. Training DBNs is computationally intensive which naturally leads to investigate FPGA acceleration. Fixed-point 

arithmetic can be used when implementing DBNs in FPGAs to reduce execution time, but it is not clear the implications for 

accuracy. Previous studies have focused only on accelerators using some fixed bit-widths. A contribution of this paper is to 

demonstrate the bit-width effect on various configurations of DBNs in a comprehensive way by experimental evaluation. Explicit 

performance changing points are found using various bit-widths. The impact of sigmoid function approximation, required part of 

DBNs, is evaluated. A solution of mixed bit-widths DBN is proposed, fitting the bit-widths of FPGA primitives and gaining similar 

performance to the software implementation. Our results provide a guide to inform the design choices on bit-widths when 
implementing DBNs in FPGAs documenting clearly the trade-off in accuracy. 
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1 Introduction 

 
Deep neural networks have become a “hot topic” in the 

Machine Learning community with successful results 

demonstrated with Deep Belief Networks (DBNs) [1], 

denoising autoencoder [2], sparse coding [3] and etc. 

DBNs have been shown to be among the best neural 

networks even for challenging recognition, mining and 

synthesis tasks. A DBN is built on a subset of neural 

networks known as Restricted Boltzmann Machine 

(RBM). Running a DBN is a time-consuming task due to 

its large scale and processing characteristics. Many 

experiments have often reported taking weeks, to search 

the large parameter space (numbers of layers and 

neurons, learning rate, momentum and all kinds of 

regulation terms) and calculate millions of parameters 

(weights and biases). One good example is Quoc et al. [4] 

who used a cluster in Google of 1,000 machines (16,000 

cores) for a week to demonstrate the success of larger 

scale unsupervised learning from internet images 

recognition. 

Reducing the execution time of the training phase and 

prediction of a DBN is one critical barrier which has 

restricted the mass adoption of DBNs. Interest in the 

acceleration of DBNs has built up in recent years. FPGAs 

are attractive platforms for accelerating DBNs. For 

example, a RBM of 256x256 nodes was tested on a 

platform of four Xilinx Virtex II FPGAs and gained a 

speedup of 145-fold over an optimized C program 

running on a 2.8-GHz Intel processor [5]. Using Altera 

Stratix III FPGA, Kim et al. [6] also gained significant 

speedup for a 256x1024 RBM. Multi-FPGA solutions 

were discussed to determine the extensibility of RBM in 

[7, 8]. 

Existing works on FPGA implementations of neural 

networks often have vast and regular processing units to 

map neurons partially or wholly at a time. Weights and 

neuron values are stored in on-chip RAM during 

processing and are swapped out to off-chip memory after 

processing. It is too expensive to support a large number 

of floating-point units on chip and store values using the 

standard double precision floating-point representations 

in on-chip RAMs. Many of the previous attempts with 

FPGAs for neural networks implemented fixed bit-widths 

(8 bits, 16 bits or 32 bits). Bit-widths with integral 

multiple of bytes are convenient to align with other 

components (such as IP cores and user interfaces) and 

easier to design. Previous works have mainly analysed 

the impact of bit-widths on accuracy and execution time 

of old-style neural networks [9-11]. All reported RBM (a 

building component of DBN) designs on FPGA selected 

fixed-point arithmetic with a fixed bit-width as well, e.g. 

16 bits in [6, 8] or 32 bits in [5] without analyzing in 

depth the implications for accuracy. Thus, it is not clear 

whether this kind of fixed bit-width is really the most 

suitable and area efficient for DBNs. 

Using bit-width unequal to the machine word-length 

on a standard processor or GPU may rarely deliver any 
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speedup. Programs need more instructions to do 

alignment and splicing which is not a negligible cost. On 

the other hand, speed and resource usage in FPGAs are 

more sensitive to the bit-width as many logics are 

mapped to fine-grain LUTs. As DBNs have grown in 

size, compared with old-style neural networks, to satisfy 

the learning demands of contemporary applications, 

resource saving due to narrower bit-widths has become 

more attractive to implement larger processing array in 

FPGAs. However, shrinking the bit-width may harm the 

convergence and accuracy of DBNs. Antony et al. [12] 

provided an initial study of the arithmetic effects on 

RBM for a specific network configuration. This paper 

reports a comprehensive study where in particular it 

improves the coverage of the variation of DBN and 

investigates how mixed bit-widths DBNs can offer a 

better accuracy and area efficiency. As it is expensive to 

implement exponential function and division operations 

directly on FPGA, it is important to understand the 

implications of approximation on the required sigmoid 

functions part of DBNs. 

 

2 DBNs in a Nutshell 

 

Our work is inspired by the original DBN of [1] and the 

idea of Stacked Denoising Auto-Encoder (SDAE) [2]. 

Hinton et al. [1] proposed an algorithm for learning deep 

networks based on a hierarchical probabilistic graphical 

model. A DBN is built on a structure of multi-layers 

RBMs. Each layer of RBM defines an energy function as 

a goal of minimization, which is represented as the 

negative log probability of a state between inputs (visible 

units) and outputs (hidden units):  
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where, wij is the connection weight between visible unit vi 

and hidden unit hj, ai and bj are biases of vi and hj 

respectively. σ is a parameter. In the case of using binary-

valued visible units, the first term of Equation (1) will 

disappear [13]. Training the parameters wij, ai and bj so as 

to minimize the energy can take the way of Gibbs 

Sampling by alternatively sampling each layer's units 

given the other layer, which uses conditional distributions 

to approximate the joint distribution. Hinton cut down the 

process into two steps, which crudely approximate the 

gradient of the log probability of the training data v0: 
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The “rec” means the second step of Gibbs Sampling. 

ε is the learning rate. The gradient obtained from this 

simplification is like the gradient of another objective 

function called Contrastive Divergence (CD). Though it 

is a kind of approximation, it works well enough to 

achieve satisfactory performance in many significant 

applications. Based on the network model and CD, the 

overall process of RBM is: 
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where logistic is the logistic function which is labeled as 

a sigmoid function 1

1 xe
y 
 . 

SDAE is another type of deep neural network, which 

is based on a different learning theory but has similar 

computations to DBN. SDAE denoises its inputs in a 

corruption level and then gets a distinctive property that 

even with a high capacity model it can avoid learning the 

identity mapping. Empirical results showed that SDAE 

can perform better than non-denoised ones with a suitable 

corruption level. We try to use the denoising idea on 

DBN to improve performance. This is done by first 

corrupting the initial input v to get a partially transformed 

version v~  by means of a stochastic mapping 

 vvqv D |~~~ . The corrupted input v~ is then used to train 

the RBM using Equation (3). qD can use additive 

Gaussian Noise, random zeroing noise, and salt-pepper 

noise as well [2]. Random zeroing noise which is most 

commonly used was selected in our experiments. A fixed 

percentage of randomly chosen units set their values to 0, 

while the others are left untouched. 

From an information theoretic perspective, converting 

double precision floating-point arithmetic to fixed-point 

arithmetic will lose some information of inputs as well as 

intermediate data. Denoising DBN seems also lose 

information of inputs, just in a stochastic way. The 

training process becomes more “coarse” than before in 

both cases. The advantage of such approximation is that 

high-dimensional input loose the redundant and useless 

information during processing and then can learn features 

easier. The disadvantage is that some critical information 

may be lost and make the feature more indistinct to be 

learned. In SDAE, a suitable corruption level can make 

the advantages of inputs denoising outweigh its 

disadvantages. For the similar reason, a suitable bit-width 

may trade-off both-side effects well. 

 

3 Experimental Methodology 

 

For our experiments, we modified the floating-point 

versions of the original DBN (oDN) and the denoising 

DBN (dDN) into fixed-point versions and we compared 

them. The dDN version adds a corruption process before 

the pre-training of each RBM layer. The fixed-point 

versions take bit-widths as parameters, including bit-

widths of neural units, weights, logistic function and 

random number generator, so it can run in any bit-width 
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configuration. Fixed-point versions of oDN and dDN 

were implemented by amplifying each data in RBM by a 

factor of 2fractional-width and truncating each operation result 

by a factor of 2bit-width, thus simulating the calculation 

process as a limited fixed-point one. Only pre-training 

was translated into a fixed-point version. Testing and 

fine-tuning were still computed using double precision 

floating-point. All experiments were done in 

Matlab2010a. 

MNIST classification was selected as the objective 

application because of its popularity in machine learning 

studies and we use the most common configurations of 

DBNs in these studies. The dataset is 60,000 training and 

10,000 testing samples of 28x28 pixel images of the 

digits. Three layers DBN with size of 784-400-400-400-

10 and one layer DBN with size of 784-400-10 were 

built, with lower layers of unsupervised pre-training and 

the top layer of output logistic regression using softmax 

(multinomial logistic regression). The whole network was 

then fine-tuned as usual for multi-layers perceptrons, to 

minimize the output prediction error. The minibatch size 

for pre-training was 100 and the one for fine-tuning was 

1000. Every minibatch in every epoch used different 

random numbers generated by the same random seed. 

50 epochs of pre-training were used in order to find 

out the whole effect of fixed-point versions. 30 epochs of 

fine-tuning were used because the network in our 

configuration can get a rather good result after 30 epochs 

of fine-tuning and our aim was not to achieve best 

performance but to compare performance change among 

different options. We did not use Mean Squared Error 

(MSE) criterion in our experiments because MSE is 

sometimes incomparable among different configurations 

of DBN. Classification error on testing set was directly 

used as the criterion. For some fixed-point versions with 

narrower bit-widths, the more of pre-training epochs is 

not better to gain performance. Our experiments showed 

that sometimes the MSE between input data and 

reconstruction data became divergent as the pre-training 

progressed. Therefore, we used an early-stop strategy 

when MSE was not convergent during pre-training and 

recovered the previous update point, which had the 

smallest MSE as the final pre-training result. 

The starting point where the pre-training procedure is 

initialized has some impact on DBN performance. We ran 

each version of DBN 40 times under 40 random seeds, 

which were decided by the “clock” value. Up to 120 

random seeds were tried on some bit-width 

configurations. The result distributions are very similar 

with the results running from 40 random seeds. 

Therefore, we thought 40 random seeds were objective 

enough to evaluate effect of the initialization point. We 

used several nodes of the TianHe-1A supercomputer [14] 

and all the experiments were completed in less than a 

month. We explored in detail bit-width configurations 

from 14 bits to 32 bits and found noticeable changing 

points. 

 

4 Effect of bit-width 

 

When considering a fixed-point representation for real 

numbers, the integer part of a number mainly influences 

the representation scope while the fractional part mainly 

decides the precision. Overflow may affect the DBN 

performance heavily.  

We ordered the results by the bit-width of the integer 

part. Figure 1 shows the test classification error 

distributions of three layers DBNs, obtained with 5 bits, 6 

bits and 7 bits integers, as the fractional part increase 

(The X axis shows as “integer-decimal” pair denoting 

integer width and fractional part). In Figure 1(left), the 

noticeable thing is that 5 bits integer is not wide enough 

for scope representation. Therefore, the errors are very 

large and unstable. When the integer width increases one 

or two bits, the representation scope is mostly satisfied 

and the representation precision effects dominated. 

Configurations with 6 bits or 7 bits integer seem much 

more robust with respect to the random initialization seed 

and achieve better performance. The wider the fractional 

width is the better performance they can achieve. For 

different configurations with the same bit-widths (7-8 and 

6-9, 7-10 and 6-11, 7-12 and 6-13), 6 bits integer perform 

almost the same as (or just a little better than) 7 bits 

integer (It can be explained that precision limitation 

harms the performance more severely when integer width 

is enough). We also evaluated 8 bits integer and got the 

same trend. It indicates that the changing points where 

most reasonable performance (below 1.5%, the best is 

about 1.2%) can be achieved for our three layers oDN is 

6~7 bits integer and 10~13 bits fractional part. A bit-

width of 19 bits is wide enough to achieve the best 

performance. In a FPGA implementation of such DBN, 

there is really a precision lost if 16 bits are used and there 

is a big waste if 32 bits are used, as some previous 

implementations do. We also evaluated wider bit-widths 

from 21 bits to 32 bits and the distributions are 

indistinguishable from the floating-point version, which 

confirms the conclusion. 
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FIGURE 1 Performance of three layers oDN (left, Y axis is in log scale to show clearly) and dDN (right). fl: Floating-point version 

 

     
FIGURE 2 Epochs taken by configurations of Figure 1 in oDN (left) and dDN (right) 

 

Figure 2 (left) shows the number of epochs (average 

of three layers) each configuration in Figure 1 (left) takes. 

It indicates the direct reason why narrower bit-widths get 

worse performance. DBNs with narrower bit-widths take 

less epochs up to converge during pre-training (under the 

control of early stop). There is a large difference among 

configurations: only the configurations achieving best 

performance (6-13 and 7-12) take as many epochs as the 

floating-point version (up to 50), others take rather a few 

epochs (below 20). It seems more difficult for narrow bit-

width to converge efficiently. All comparisons were 

based on the same DBN parameters except the bit-width. 

If other parameters are adjusted distinctively, 

performance for narrow bit-width may be better. But we 

only wanted to compare the effects in the same situation. 

We also tried to adjust weight costs but got no better 

results. The good news is that using narrow bit-width not 

only reduces the executing time of DBN kernel assuming 

that narrower multiplication and addition in Equation (3) 

are calculated faster), but also reduces the number of 

epochs, thus reduces the whole executing time greatly. 

Figure 1 (right) and Figure 2 (right) show the similar 

situations on dDN. The corruption level of 5% was used 

for dDN, which is the suitable corruption level to gain 

better performance. dDN performs better than oDN, 

especially on stability. 18 bits width (6-12) can achieve 

best performance requiring epochs below 44. Better 

performance and stability of fixed-point dDN is attributed 

to input corruptions, which not only highlight the discard 

of redundant information but also neutralize some effects 

of bit-width shrink.  

Figure 3 shows the performance comparisons between 

DBNs with three layers and DBNs with one layer. The 

overall performance of one layer DBN is off cause worse 

than three layers DBN. The performance variations of 

three layers DBNs are a little larger than one layer DBNs 

because of the better sensitivity of deeper DBN. For 

example, variations of one layer oDN and dDN from 

1L6-9 to 1L6-13 are about 0.2%. Variations of three 

layers are about 0.3%. Comparing Figure 1 (left) with 

Figure 3 (left) and Figure 1 (right) with Figure 3 (right), 

the trend of variations are almost the same. 19 bits oDN 

and 18 bits dDN of one layer can gain best performances 

just as their three layers contrasts. These results indicate 

that bit-width influences on DBNs with different numbers 

of layers are relatively consistent. 
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FIGURE 3 Bit-width impact on different layers of oDN (left) and dDN (right). 3L: three layers DBNs, 1L: one layer DBNs 

 

5 Effect of sigmoid function approximation 

 

In our experiments aforementioned, a software version of 

exponential function and division was used to calculate 

the logistic function. Only input and output were 

constrained by bit-width. As it is very expensive to 

implement exponential function and division directly on a 

FPGA, approximations applicable to FPGA 

implementation can be considered. Therefore, the results 

above may have been more optimistic than real 

implementation. The sigmoid function approximation 

impact should be evaluated. 

The methods of sigmoid function approximation can 

be divided into two groups from the perspective of 

implementation complexity. One group includes 

algorithms based on higher order Taylor Series 

Expansion [15], Least Square Approximation [16] and 

Lookup Table combined with interpolation [7]. These 

algorithms need nonlinear functions implementation or 

large volume of memory. The latency and resources 

usage are relatively high. They are more suitable for the 

design choices of small number of units and high 

precision. The other group includes many Piecewise 

Linear Approximation of nonlinearity algorithms (PLAs) 

[10, 17, 18], which use linear functions and can be 

implemented on FPGA easily, but may be not so 

accurate. They are suitable for the design choices of 

vastly replicated units. FPGA implementations of DBNs 

need as many units as possible to execute in parallel. 

Accordingly, the same number of sigmoid function 

modules is needed. PLA is preferred in this situation. 

Whether the precision of PLAs will harm the DBN 

performance needs to be considered. Two PLAs with 

different precisions were used in our next experiment. 

One (PLA1) is from [18], which is a typical algorithm 

and used in an implementation of RBM [6]. The other 

(PLA2) was used in MLP-BP neural networks by Antony 

et al. [10]. Two algorithms are shown in Table 1.  

PLAs have uniform structures like Table 1. PLA1 has 

4 pieces and PLA2 has 3 pieces. The linear functions in 

each piece, the numbers of pieces and the bit-width 

determine the actual precision of PLA implementation. A 

PLA module was built in Verilog according to Table 1, 

parameterizing bit-width, number of piece, input scope in 

each piece, bias number (such as the addends of 2, 5, 27 

in PLA1 and 2, 56 in PLA2) and shift number (such as 

the divisors of 4, 8, 32 in PLA1 and 4, 64 in PLA2). 

PLA1 and PLA2 configured with 6 bits integer and 

different fractional parts were simulated in Modelsim. 

Software versions of sigmoid function with 

corresponding bit-widths were also run in Matlab.  

 
TABLE 1 Piecewise Linear Approximation algorithms 

PLA1 PLA2 

x y x y 

0 ≤ |x|<1 y =(|x|+2)/4 0 ≤ |x|<8/5 y =(|x|+2)/4 
1 ≤ |x|<19/8 y =(|x|+5)/8 8/5 ≤ |x|<8 y =(|x|+56)/64 

19/8 ≤ |x|<5 y =(|x|+27)/32   

|x|≥5 y=1 |x|≥8 y =1 
x<0 y =1- y x<0 y =1- y 

 

Figure 4 shows function curves and absolute errors 

(compared with its corresponding software versions) of 

PLA1 and PLA2, with 6 bits integer and 13 bits fractional 

part. The maximum precision difference between PLA1 

and PLA2 is about 5% (6.8% of PLA2 vs 1.9% of PLA1). 

Figure 5 shows the maximum and mean absolute errors 

of PLAs in different fractional parts. It shows that the 

precisions are stable when fractional width is up to 9~10 

bits for both PLAs. We selected these two PLAs as 

representatives to show how PLAs do with different 

precision lost affect DBN performance. 

The sigmoid functions in oDN and dDN of one layer 

were replaced by PLA1 and PLA2 respectively. Figure 6 

shows the results using PLA1. The software version and 

PLA1 configured with same bit-width get almost the 

same distributions on both oDN and dDN, which means 

PLA1 configured with the same bit-width as other 

operations has enough precision to benefit the overall 

performance.  



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 7-14 Jiang Jingfei, Hu Rongdong, Mikel Lujan, Dou Yong 

12 
Mathematical and Computer Modelling 

 

       
FIGURE 4 left: Sigmoid function curve of software version, PLA1 and PLA2. right: Absolute errors of PLA1 and PLA2 with 6 bits integer and 13 

bits fractional part 

      
FIGURE 5 Maximum (left) and Mean (right) absolute errors of PLA1 and PLA2 

     
FIGURE 6 Performance of oDN (left) and dDN (right) using software version sigmoid function (s) and PLA1 (p) 

 

Figure 7 shows the performance comparison between 

PLA1 and PLA2. The performance difference becomes a 

little larger as the bit-width increases. It means that PLA2 

with lower precision may not satisfy the precision 

requirement of the whole DBN. Harm appears more 

clearly when more epochs are taken (when wider bit-

width as 6-13 is used). 

 

 
FIGURE 7 Performance of oDN using PLA1 (p1) and PLA2 (p2) 
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6 Mixed Bit-widths 

 

Matrix operations for DBN include multiplications, 

accumulations and additions. Modern FPGAs supply 

built-in primitives to support such operations. For 

example, the primitive of DSP48E slice from Xilinx Inc. 

supports many functions such as multiply, multiply 

accumulate (MACC) and multiply add. The primitives 

have their favourite bit-widths. For example, One 

DSP48E contains one 25x18 two's complement 

multiplier, an adder, and an accumulator. The output of 

DSP48E is commonly wider than sum of inputs bit-

widths for accumulation (up to 48 bits). Block RAM is 

built by primitives, which also have fixed bit-width 

(RAMB18 and RAMB36).  

It is somehow unfortunate that our result of 19 bits is 

the narrowest bit-width to achieve best performance on 

oDN. Table 2 show the resource usage of a MACC unit 

generated from Xilinx Core Generator. It shows that 

resource cost (mainly the DSP48s) will double or triple if 

the bit-width DBN required exceeds the basic bit-width 

of primitive. Meanwhile, multiple primitives will cascade 

to form a processing unit, which will increase the pipeline 

stages of the unit. The latency and control complexity 

will increase finally. Multiplier resources like DSP48 are 

relatively precious in a FPGA (several tens or hundreds). 

Therefore, using one suitable bit-width for DBN may not 

be area efficient. 

 
TABLE 2 Resources usage of a MACC 

Description Values 

multiplier width 18 18 19 19 19 25 

multiplicand width 18 25 19 25 30 25 

DSP48s 1 1 3 3 2 2 
LUTs 0 0 0 0 50 27 

Flip-Flops 0 0 0 0 99 53 

 

A mixed bit-widths solution is proposed to 

accommodate the requirement of hardware primitives. In 

DBNs, multiply operations are multiplication of a neural 

unit value and a weight or multiplication of two neural 

unit values. Weights record the feature values, which 

need higher precision, while neural units can be corrupted 

to some extent according to our experiments. Therefore, a 

narrower bit-width can be used for neural units and a 

wider one can be used for weights. A mixed bit-widths 

version of one layer DBN was modified and evaluated. 8 

bits integer and 17 bits fractional part were used for 

weights (fitting in one DSP48). 6 bits and several narrow 

decimals were used for neural units. PLA1 was used for 

sigmoid function with the same bit-width of neural units. 

Figure 8 shows the results. It is clear that the mixed bit-

width configurations can gain best performances like 6-

13. It further indicates that weight precision dominates 

the overall accuracy. 

 

 
FIGURE 8 Performance of oDN using mixed bit-widths 

 

7 Conclusions 

 

Our work gives a comprehensive evaluation for 

implementing DBNs on FPGAs by studying a wide range 

of bit-width achieving best performance and area 

efficiency. Bit-width impacts show similar trend on 

different layers of DBNs, but are a little different between 

oDN and dDN. The PLA with higher precision can 

satisfy the overall DBN, but the other with lower 

precision does become the precision bottleneck of DBN. 

From these results, a mixed bit-widths solution is 

proposed. Assigning different bit-widths to neural units 

and weights can fit hardware primitives better and gain 

better performance. The control complexity 

implementing irregular bit-width (not integral multiple of 

bytes) seems a little high. But our design experience on a 

memory sub-system of DBN accelerators supporting 

various bit-widths has shown that it is not as difficult as it 

may sound. The cost is only little in hardware and does 

not affect the critical path. 
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