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Abstract 

In order to reduce the computational complexity and promote the classification performance of Modular Weighted Global Sparse 

Representation (MWGSR), Tensor Modular Sparsity Preserving Projections (TMSPP) for dimensionality reduction is proposed. The 

algorithm firstly partitions an image into several equal-sized modules and constructs these modules into a third-order tensor image; 

then, the algorithm makes module sparse reconstructions and some modules with less reconstruction errors are selected. These 

selected modules are recombined into a dataset with fewer dimensions and a new sparse reconstruction weight is gotten on the new 

dataset, which is denoted as the sparse reconstruction weight of original samples; finally, projection matrices are gotten with steps of 

tensor sparsity preserving projections on the reconstructed tensor images. The algorithm promotes the computational efficiency and 

the robust performance of sparse preserving projections on high-dimensional datasets. Experimental results on YaleB and AR face 
datasets demonstrate effectiveness of proposed algorithm. 
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1 Introduction 

 

The destination of dimensionality reduction is to preserve 

certain property as far as possible in the process of 

projecting data from high-dimensional data space into 

low-dimensional data space, reducing the complexity of 

disposing high-dimensional data in data. Therefore 

dimensionality reduction is an important step in 

applications of data mining. In recent years sparse 

representation has been widely used in classification and 

reduces dimensionality of machine learning [1-8] thanks 

to its strong representation performance. Wrightet al. [12] 

employed the sparse representation based classification 

(SRC) for robust face recognition. Based on the sparse 

representation, Qiao et al. [3] proposed Sparsity 

Preserving Projections (SPP) dimensionality reduction 

algorithms. The main purpose of SPP is to preserve the 

relationship of the sparse reconstruction in high-

dimensional data into low-dimensional data in the process 

of dimensionality reduction. However, when the number 

of training high-dimensional data is large, sparse 

reconstruction calculation of them is very large, and even 

harder to complete [1]. Therefore, how to improve sparse 

reconstruction computational efficiency of large high-

dimensional data is an important issue. Some solution 

way is to achieve sparse reconstruction based on 

Principal component analysis (PCA), gabor feature and 

so on. However, these methods are easy to lose the 

realness of the original data. So Lai et al [9] proposed a 

Modular Weighted Global Sparse Representation 

(MWGSR) method. The method firstly modularize face 

image and achieve sparse reconstruction of every module, 

and then recalculated sparse reconstruction combining 

modular sparse reconstruction weight with the linear 

weighted way. Experimental results show that the 

improved modular sparse learning of sparse 

representation improves the computational efficiency and 

robust performance. 

In order to preserve space relationship of high-

dimensional data in the process of dimensionality 

reduction, tensor dimensionality reduction algorithms 

have been introduced [10-12]. These algorithms regarded 

a two-dimensional face image as a second-order tensor 

image without transforming them into vectors. Recently, 

Lai et al. [13] proposed a novel modular discriminant 

analysis algorithm. The algorithm first modularizes 

uniformly face image and combined these image blocks 

into a three-order tensor image, and then applies 

Multilinear Discriminant Analysis (MDA) in built third-

order tensor images. 

Inspired by above analyses, a dimensionality 

reduction algorithm called Tensor Modular Sparsity 

Preserving Projections (TMSPP) is proposed in this 

paper. The algorithm first modularizes uniformly the two-

dimensional image into several module and uses these 

modules to construct the corresponding three-order face 

tensor data; then calculate sparse reconstruction weight of 

each module and obtains the corresponding reconstructed 

image based on sparse representation; selects some 

module with little sparse reconstruction error and 
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combine them into new training feature vectors; Finally, 

calculates sparse reconstruction weights of new training 

feature vectors and the projection matrix on third-order 

tensor data. Experimental results on real AR and YaleB 

face datasets show that the proposed algorithm not only 

improves the performance of dimensionality reduction 

but also promotes the efficiency of sparse learning. 

The characteristics of the proposed algorithm are 

listed as follows: 

1)Because an image is divided into a number of modular, 

the number of feature dimensions is greatly reduced, 

which improves the computing efficiency of sparse 

reconstruction for image modules. Therefore, the 

algorithm can adapt to the large-scale high-dimensional 

datasets. 

2) Part of modules are selected to reconstruct into training 

feature vectors for sparse reconstruction on image with 

occlusion and disguise, which is more efficient in 

avoiding the external disturbance, so the algorithm has 

better robustness performance. 

3) Apart from preserving sparsity reconstruction of 

samples, the algorithm not only preserve pixels relation in 

very module but also preserve modular spatial relation. 

The paper is organized as follows: In Section 2 we 

will introduce SPP. A theoretical analysis of TMSPP is 

given in Section 3. The experimental results and analysis 

will be presented in Section 4 and conclusions are given 

in Section 5. 

 

2 Sparsity preserving projections (SPP) 

 

Sparsity reconstruction weight of Sparse representation 

reveals category relationships of signal. Given training 

sample 1 2 3{ , , ,..., } R d n

nX x x x x   , the destination of 

sparse representation is to represent 
ix X  with as few 

other samples of x to as possible. For facilitate 

calculation, 
0l –norm is replaced by 

1l –norm in sparse 

learning as follows: 
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.t .
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where 
1is  denotes the 

1l  norm of ,is  

1 1 1

T0[ ],..., , , ,..., n

i i ii ii ins s s s s R    denotes sparsity 

reconstruction weight of xi and 1
nR  denotes a vector 

full of 1’s. sij denotes reconstruction coefficients of 

sample xj  reconstructing xi, ix , namely: 

1 1 1 1 1 1...i i ii i ii i in nx s x s x s x s x         (2) 

For each 
ix X , the sparsity reconstruction matrix 

 
T

1 2, ,... nS S S S  of the training samples can be obtained 

by calculating the corresponding is  of 
ix X . 

Sparse preserving projection aims at preserving 

sparsity reconstruction relations of input data in the 

process of dimensionality reduction. Given the sparse 

preserving projection matrix T, 
T

iT Xs  denote projected 

points of sparsity reconstruction in high-dimensional data 

space, the objective function of SPP is described as 

follows [3]: 

T T T T

T T

( )
max

T

T X S S S S X T

T XX T

 
. (3) 

 

3 Tensor modular sparsity preserving projections 

(TMSPP) 

 

3.1 BASIC IDEA  

 

In practical applications of image data mining, 

dimensions of image data are usually high and the size of 

them is large, which affect greatly the efficiency of sparse 

reconstruction and even fail to achieve sparse 

reconstruction. Furthermore, modular sparse learning is 

helpful for improvements on the performance because 

that deformity and disguise happen in part of images.  

When images are divided into some modules, there are 

two important spatial relations, namely, spatial relations 

of pixels in every module and partial relations of 

modules. Therefore, an efficient way is to construct third-

tensor data with images modules and achieve third-tensor 

sparsity preserving projections. Figure 1 shows eight 

modules of a face image and a constructed third-order 

tensor image. 

 

…

…

 
FIGURE 1 A face modules and a constructed third-order tensor image 

 

3.2 OBJECTIVE FUNCTION  
 

Given training samples 1 2 3{ , , ,..., } R d n

nX x x x x   , each 

image will be evenly divided into m module. Modules set 
T T T T

1 2 3, , ,..., mX X X X X     with 
( / ) (1 )d m n

kX R k m    

are gotten. 

1) Firstly, sparse learning is achieved separately in each 

module set (1 )kX k m   and sparsity reconstruction 

weight Sk of Xk is obtained. So sparsity reconstruction set 

of each module set, namely (1 )k k kY X S k m    is 

obtained. Third-order images data is obtained by 

combining these module sets in Figure 1. 

2) Then, sparsity reconstruction error 

2

1 2

=
n

i i

k k k

i




 Y X- , 

 1 k m   of each sample module  1kX k m   set is 

calculated and module sets in the first z minimal 

reconstruction error are chosen, which is denoted by 
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T T T T

1 2 3, , ,..., mX X X X X     with 
(z / ) ,d m n

kX R    

(1 )k m   are obtained. The next step is to obtain 

sparsity reconstruction weights S  for X  as follows: 

1
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min
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s
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s x Xs
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 (4) 

3) Finally, the projection matrix of third-order sparsity 

preserving projections on third-order images is calculated 

and 
1 2 3Y X U U U     is obtained. Combined with 

Equation (3), the objective optimization function is 

obtained:

   

  1 2 3 1 2 3

TTT T
1 2 3 1 2 3

T T, , , ,
1 2 3 1 2 3

( )( )
max max

TT

U U U U U U

X U U U S S S S X U U UY S S S S Y

YY X U U U X U U U

        


     
. (5) 

 

3.3 ALGORITHM STEPS 

 

Input: training sample 
1 2 3{ , , ,..., }nX x x x x , errors ε. 

Output: Projection matrix U1, U2 and U3. 

Steps: 

1) Initialize respectively the projection matrix U1, U2 and 

U3 as one diagonal unit matrix. 

2) Build sparse reconstruction matrix S of the modular 

remodeling image using Equation (4). 

3) Loop t = 1…7 

3.1) Loop f = 1…3 

3.1.1) 
1 1 3... ...f

i i f f iY X U U U        

3.1.2) transform Equation (5) into the solution of 

the generalized matrix: 
T T T T( ) ,1 ,f f f f f

i i iY S S S S Y v Y Y v i l    

1 2, ,..., f

t

f l
U v v v     is obtained. 

3.1.3) If 
1

2
( 1,2,3)t t

f fU U f   , jump out of 

loop t. 

4) Get the projection matrix U1, U2 and U3. 

 

3.4 COMPUTATIONAL COMPLEXITY ANALYSES 

 

Sparsity reconstruction is the main process of sparse 

learning, analysis on the time complexity of sparse 

reconstruction of our proposed algorithm. Given training 

sample 1 2 3{ , , ,..., } R ,d n

nX x x x x    sparsity 

reconstruction of sparse learning is the problem of 

minimization solving based on 
1l  norm, which is 

 2 3
2 2 / 3d dn   [14]. The time complexity of TMSPP 

is divided into two parts: 

1) TMSPP divides image X into m images modules 
T T T T

1 2 3, , ,..., mX X X X X    . The time complexity of 

sparsity reconstruction for each module 

( / ) , (1 )d m n

kX R k m    is 
2 3

2 3

2 2

3

d n d

m m

 

 
 

, the 

time complexity of sparse reconstruction for all m 

modules is 
2 3

2

2 2

3

d n d

m m

 

 
 

. 

2) The time complexity of sparsity reconstruction on 

choosing first z modules with minimum errors for image 

sparse reconstruction is 
2 3

2 3

2 2

3

zd n zd

m m

 

 
 

. 

In short, the time complexity of TMSPP is 
2 3

2 3

2( ) 2( )

3

m z d n m z d
O

m m

  
 


. 

 

4 Experiments and analyses 

 

4.1 FACE DATASETS 

 

1) AR consists of over 4000 face images of 126 

individuals. For each individual, 26 pictures were taken 

in two sessions (separated by two weeks) and each 

section contains 13 images. These images include front 

view of faces with different expressions, illuminations 

and occlusions. A group of face images on AR are shown 

in Figure 2.  

2) YaleB contains 2414 front-view face images of 38 

individuals. For each individual, about 64 pictures were 

taken under various laboratory-controlled lighting 

conditions. A group of face images on YaleB are shown 

in Figure 3. 

 

 
FIGURE 2 A group of face images on AR 

 
FIGURE 3 A group of face images on YaleB 
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4.2 EXPERIMENTAL SETTINGS 

 

In order to evaluate effectively the classification 

performance of the algorithm, MWGSR [9] and MDA 

[13] are selected to compare with our proposed 

algorithm. A certain number of images are chosen 

randomly as training samples from each group face 

images and the rest facial images as test samples. 

Furthermore, all the face image size is adjusted to 3030 

for computational convenience. The nearest neighbour 

classification algorithm is used. m is set to 8 and z is set 

to 3. All experiments are repeated 20 times and the 

average recognition accuracy is gotten as experimental 

results. 

 

4.3 EXPERIMENTAL RESULTS AND ANALYSES 

 

The number of modules is set to 4 and first two modules 

with minimum sparse reconstruction error are chosen for 

reconstruct feature vectors.  

1) Firstly, the number of training samples in a group of 

samples is set to 4. With increment in feature dimension 

in first-order and second-order under the number of the 

same third-order dimension, recognition accuracies on 

AR are shown in Figure 4. 

R
ec

o
g
n
it

io
n
 a

cc
u
ra

ci
es

(%
)

First-order dimension Second-order dimension

 

a) The number of the third-order dimension is 3 

R
ec

o
g
n
it

io
n
 a

cc
u
ra

ci
es

(%
)

First-order dimension Second-order dimension

 

b) The number of the third-order dimension is 4 

FIGURE 4 Recognition accuracies vs. dimensions of first-order and 
second-order on AR under different dimension of the third-order 

From Figure 4 we can see that the recognition 

accuracies increase greatly with increment in dimensions 

of first-order and second-order and flat when the 

dimension exceeds certain less value. This illustrates that 

TMSPP can get the most classification performance in 

low dimension. 

2) Secondly, most recognition accuracies are shown in 

Tables 1 2 for further verification in the performance of 

TMSPP under the different number of training samples. 
 
TABLE 1 Experimental result on AR 

algorithm 
The training number of a group samples 

4 6 10 

MWGSR 70.35 78.50 84.24 

MDA 82.35 85.65 87.56 
TMSPP 75.35 84.05 92.40 

 
TABLE 3 Experimental result on YaleB 

algorithm 
The training number of a group samples 

10 15 20 

MWGSR 80.50 85.50 90.50 

MDA 86.53 90.65 92.45 

TMSPP 81.55 92.40 95.65 

 

Here bold data denote best and highest recognition 

accuracies under the same training sample.  

The following conclusions can be drawn from Tables 

1 and 2: 

1) Although MWGSR inherited the feature of sparse 

learning, In contrast to MDA, the recognition accuracy of 

MDA is higher than MWGSR, which illustrates that 

third-tensor dimensionality reduction method has better 

classification performance. 

2) Although MWGSR and TMSPP have taken advantage 

of some modules to guide sparse reconstruction. As a 

third-tensor dimension reduction algorithm, TMSPP not 

only preserve spatial relations of pixels in modules but 

also preserves spatial relations of modules, which is the 

reason that TMSPP has more obvious classification 

performance than MWGSR. 

3) TMSPP and MDA share common characteristics of 

third-order tensor dimensionality reduction. When the 

size of samples is small, the classification performance of 

TMSPP is worse than that of MDA. When the size of 

samples exceeds the certain number, the classification 

performance of TMSPP is better than that of MDA. This 

shows that TMSPP inherits sparse learning robust 

performance, and is more suitable to face image with 

external disturb. 

 

5 Conclusions 

 

Despite the sparse learning has good performance of 

representation, but sparse reconstruction is not suitable 

for large-scale high-dimensional image datasets thanks to 

the computation complexity. Tensor Modular Sparse 

Preserving Projection (TMSPP) is proposed for 

dimensionality reduction. Apart from solving the problem 

of the computational efficiency, TMSPP improves the 

robustness performance through modularizing image. As 
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third-order tensor dimensionality reduction, TMSPP not 

only preserves pixels spatial relation in each module but 

also preserves module spatial relation of modules. 

Experimental results on AR and YaleB show that TMSPP 

demonstrates the efficiency of our proposed. The next 

work is to study how to select the optimal number of 

module on different face datasets. In addition, the related 

semi-supervised dimensionality reduction is the future 

research work. 
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