

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

22
Mathematical and Computer Modelling

Multiple DAGs reliability model and fault-tolerant scheduling
algorithm in cloud computing system

Weipeng Jing1, 2*, Yaqiu Liu1, 2
1The College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China

2Heilongjiang province engineering technology research centre for forestry ecological big data storage and high performance (cloud) computing,
Harbin 150040, China

Received 1 March 2014, www.tsi.lv

Abstract

In this paper, in order to provide the reliable scientific workflow scheduling problem for cloud computing, a dynamic of RANK-

Hierarchical algorithm is put forward which taking account of communication contention as well as supporting task dependencies

(CCRH). A communication contention model is first defined, as soon as the earliest completion of the primary and backup task is

deduced, besides the executive processor is limited, use dynamic hierarchical method and calculate of each DAG unfair degree factor

for multiple DAGs scientific workflow. It can deal with the problem that multiple DAGs workflow comes at different time and have

various kinds of structure. Both the theory and experiments have proved the algorithm not only improve the scheduling fairness of

multiple DAGs workflow but also shorten the average execution Makespan effectively while meeting reliability constraints and

meanwhile the produce well robustness.

Keywords: cloud computing, multiple DAGs, RANK-Hierarchical, reliability

1 Introduction

Cloud computing as a new computing model gets more and

more attention. It is integrated by a variety of distributed

computing, storage and application resources, meantime,

realized multi-level virtualization and abstraction. It is

efficient to make large-scale network resources form

provide to user in reliable way [2]. Cloud computing as the

next generation computing model plays an important role

on scientific computing and commercial computing, it has

been concerned by current academia and the business

community. Now some typical cloud computing has been

appeared, such as Google Cloud [1], Microsoft Cloud [14],

Amazon EC2 [15] and IBM Cloud [16], these systems are

committed to achieve web search, social network based on

cloud computing.

In these fields of scientific computing applications,

such as high-energy physics, astronomy, polymer

materials, earth sciences, forestry resources and so on, due

to huge task of data need to deal with, cloud computing

system can provide powerful computing support. Great

relevance and priority constraint relationship that may

exist between the type of application computing tasks, so

it should be on-demand dynamically provision,

configuration, reconfigure and deprivation computing

resource services in the cloud computing environment to

achieve cloud computing scientific workflows high

scalability and availability. The aim of resource scheduling

is to achieve calculation, collection of storage resources

and scheduling tasks to meet the relationship between

* Corresponding author e-mail: 39750600@qq.com

spatial and temporal effectively. The Traverna [23],

ASKALON [19], VGrADS [32], Pegasus [24] respectively

to achieve distributed computing, scheduling management

of storage resource.

In recent years, due to the dynamic expansion of cloud

computing, high availability, resources assigned according

to the need, some projects used cloud computing platform

manage scientific workflow have been emerged. Such as

the Amazon EC2 [15] can provide scalable, reliable,

service-on-demand computing and storage services on

scientific computing applications. Literature [30,31]

describes the scientific workflow applied on the Amazon

cloud platform’s runtime and energy costs; addition, the

ASKALON [19] and VGrADS [32] have been started to

support scientific workflow applied on cloud computing

platform.

In heterogeneous distributed environments (cloud

computing, grid systems), use the DAG to describe task

relationship for scientific workflow applications. The

DAG workflow scheduling algorithm is divided into static

scheduling algorithm and dynamic scheduling algorithm.

The static scheduling algorithm is that assumption the

overall structure and precedence constraints are known,

execution time of the task can be calculated. So resources

are allocated before the execution of the task, then no

longer be adjusted. The dynamic scheduling algorithm can

allocate resource dynamically based on workflow changed

in the task execution process. Literature [3, 4] proves the

static scheduling algorithm is better than the dynamic

scheduling algorithm in different angles.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

23
Mathematical and Computer Modelling

In the cloud computing scientific workflow

applications, which faced mass intensive data processing

performance:

1) in the scheduling process of cloud computing

scientific workflow, existing multiple DAG submitted at

the same time or submitted dynamically during calculation

process, therefore it is required to the scheduling algorithm

can meet the changes in dynamic environment;

2) in the enterprise-class workflow applications, it is

need to set the trusted protection mechanism to tolerate

failures when system is running;

3) the reasonable scheduling mechanism, it should to

guard user that submit scientific computing request has

little effect on data centre’s load and position.

Therefore the dynamic scheduling algorithm which has

a high reliability fault-tolerant ability is important in cloud

computing to meet the users demand for dynamic tasks

submitted. This paper provides solutions to the above

questions by proposing an innovative dynamic of RANK-

Hierarchical scheduling algorithms to maximize the

performance and reliability.

The rest of this paper is organized as follows. In

Section 2, we present system and mathematical models. As

part of the system model, we design the processor model,

task model, communication links model, the task priority

to identify and underlying assumptions. In Section 3, we

propose the multi-DAG scheduling algorithm CCRH.

Simulation results show that proposed algorithms improve

the performance compared to reference algorithms by

varying number of DAGs parameters in Section 4. Prior

related works are compared in Section 5 Finally, in Section

6, we conclude the paper by summarizing the comparison

results and future work.

2 System model

In this section, we introduce a scheduling model in cloud

computing provider, which consists of processor, tasks and

communication link. In cloud computing, the parallel tasks

of scientific workflow applications can use the weights of

nodes and edges to represent a directed acyclic graph

(DAG), the following is formal definition:

Definition 1: Node and weights of side of the DAG

Figure can use the four-array (, , ,)G V E w c , which

1 2 3{ , , ... }NV v v v v represents the number of tasks,

{ | , }ij i jE e v v V  represents the communication edge

combination of dependency between tasks, ()iw v

represents computational cost of the task, ()ijc e represents

communication cost between iv and jv

Definition 2: The collection { : }x xiv V e E 

represents the task of iv ’s predecessor node set, denoted by

().ipred v The collection { : }x ixv V e E  represents the

task of iv ’s successor node set, denoted by ()isucc v . If

() ,ipred v  the task node iv is the entry node,

expressed as entryv . If ()isucc v  , the task node iv is

the exit node, expressed as exitv .

Definition 3: cloud computing environment use a

variety of heterogeneous computing platforms built

environment, set of heterogeneous processors described as

 1 2, , MP P P P  , M , which indicates the number of

heterogeneous processors. The processor kP on the task

iv of primary’s start time and completion time represent

as (,)p

s i kt v p , (,)p

f i kt v p respectively; the task jv of

backup’s start time and completion time represent as

(,)B

s j kt v p , (,)B

f j kt v p respectively. Primary and

secondary version of the task iv scheduling processor

represent as ()p

iP v and ()B

iP v respectively.

Definition 4: the cloud computing system is network

structure of any interconnection. Denote any processor’s

communication between hP and kP as hk .

In order to better illustrate the problem, we make the

following assumptions:

1) The CPU time used by the task switching and

process scheduler is negligible;

2) At the same time only exists one processor failure,

it is impossible existing two processor failure at the same

time. And fault according to the Poisson distribution;

3) The failure of the processor is fail-stop mode, the

processor status is normal or failure to stop, while ignoring

the fault detection time;

4) The multi-DAG workflow tasks arrive at any

moment randomly in order to meet user’s demand in cloud

computing environment.

5) The communications link of cloud computing

system is the arbitrary interconnection duplex structure,

task communication only allow the same direction in the

same time.

3 Multi-DAG scheduling algorithm CCRH

Priority of static scheduling method is the key to determine

task priority, so computation of task priority has efficient

impact on scheduling algorithm. The priority

determination method of HEFT [18] algorithm is a widely

typical algorithms applied to the actual. For example, the

ASKALON [19] system also applied HEFT algorithm, and

to prove the validity of scheduling DAG.

In the scientific workflow applications of cloud

computing, as the DAG task reached dynamically,

therefore a static priority method of calculation the

multiple DAG mission priority cannot be used, this paper

proposes a DAG scheduling algorithm mining dynamic

and static, dynamic scheduling algorithm processes

dynamically reached DAG task on the hierarchical, while

static points to single DAG scheduling tasks in accordance

with the static method.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

24
Mathematical and Computer Modelling

3.1 CHECKING THE PDF FILE

Single DAG task priority uses static scheduling method,

the algorithm set tasks iv and jv with dependent manner

inspired by HEFT [18], and jv run directly dependent on

the operating results of iv . Considering the computing and

communication’s general consumption computed tasks

priority:

()
() () max { () ()}

i

i i ij j
j succ v

rank v w v c e rank v


   , (1)

where ()iw v represents average execution costs on all

processors of task iv , ()ijc e represents average

communication cost between task iv and jv . The priority

of task iv is the largest value that plus direct successor task

priority and communication with its own computational

cost. Priority of all tasks is traversing the task graph

upward from export task; the export task’s priority is

defined as:

() ()exit exitrank v w v . (2)

This paper considers the competition of

communication link, the basic idea of the scheduling in the

communication section is treat the computing nodes and

communication in the DAG equally. Therefore,

communication contention scheduling algorithm should

not only consider the processor scheduling, but also

consider the communication link scheduling among

processors [25, 26]. In order to better solve the link

communication competition, this article uses any cloud

computing environment, network interconnect

heterogeneous computing system communication path to

find the shortest path search algorithm based on insertion

strategy [26]. Defined (,),ijLST e (,)ijLFT e as ije

communication start time and completion time in the

communication link and:

(,) (,) ()ij ij ijLFT e LST e c e  .

3.2 PRIMARY AND BACKUP TASKING

SCHEDULING

In order to improve the reliability of the cloud computing

system, in this paper the primary and backup scheduling

method is used to achieve fault tolerance which performs

redundant tasks in the backup processor, while ensuring

the real-time nature of the task. And in order to improve

system performance, this paper uses overlapped primary

and backup tasks to determine the earliest start time of

primary and backup task.

3.2.1 The primary task scheduling

First the primary task is consider to schedule, according to

the backup completion time of the set of predecessor

()jpred v , the start time of the primary task jv has

following three situations:

1)
()()

(,) max { (,), (,)}
i ji j

p B

s j f i ij
v pred vv pred v

t v p t v p LFT e


 , The

start time of the primary task jv is greater than the

maximum of the latest completion time of the backup task

set ()jpred v and data transmission time in the

communication link, then if the processor where the

primary of any task has failed, the task jv can successfully

receive the message which sent by all the predecessor task.

2)
()()

(,) max { (,), (,)}
i ji j

p p

s j f i ij
v pred vv pred v

t v p t v p LFT e


 and

()()
(,) max { (,), (,)}

i ji j

p B

f j f i ij
v pred vv pred v

t v p t v p LFT e


 . The start

time of the primary task jv is less than the maximum of

the latest completion time of the backup task in the task set

()jpred v and data transmission time in the

communication link. In this case, if the start time of the

backup task is less
()()

max { (,), (,)}
i ji j

B

f i ij
v pred vv pred v

t v p LFT e


, then

when the processor where the task iv fails, the task jv

cannot successfully receive the message sent by the entire

predecessor task, and cannot get the right results.

Therefore, the start time of the backup task jv is greater

than
()()

max { (,), (,)}
i ji j

B

f i ij
v pred vv pred v

t v p LFT e


 that meet the fault

tolerance of the system.

3)
()()

(,) max { (,), (,)},
i ji j

p p

s j f i ij
v pred vv pred v

t v p t v p LFT e




()()
(,) max { (,), (,)}

i ji j

p B

s j f i ij
v pred vv pred v

t v p t v p LFT e


 and the

completion time

()()
(,) max { (,), (,)}

i ji j

f B

s j f i ij
v pred vv pred v

t v p t v p LFT e


 . The start

time of the primary task jv is greater than the maximum

of the latest completion time of the backup task set

()jpred v and data transmission time in the

communication link, and the completion time is less than

the maximum completion time of the backup.

In CCRH, when the algorithm schedules the primary of

the different DAG task, the primary task can be considered

to be independent and non-priority task, and its constrains

of independent scheduling is only with their own priority,

looking for the processor of the earlier start to complete

task based on scheduling processor queue.

3.2.2 The backup task scheduling

In this section, we analysis the earliest start time of

executing the backup task jv . First we define the

constraints of scheduling the primary task. When the

schedule of the primary task jv meet the state (1) or (3),

the start time of its backup task must meet:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

25
Mathematical and Computer Modelling

(,) (,)B p

s j h s j kt v p t v p . (3)

When the schedule of the primary task jv meet the

state (2), the start time of its backup task must meet:

()()
(,) max { (,), (,)}

i ji j

B B

s j h f i ij
v pred vv pred v

t v p t v p LFT e


 . (4)

In order to achieve the fault-tolerant of the system, the

processor of Cloud computing environment be scheduled

by the backup task jv also need to meet the processor

constraint: When the schedule of the primary task jv meet

the state (1), the processor scheduled by its backup task

meet:

()

() { ()}
i j

B p

j i

v pred v

P v P v



. (5)

When the schedule of the primary task jv meet the

state (2) or (3),
2()jpred v represents the task set that

meeting the state (2) or (3) in set ()jpred v , ()jpd v

represents the task set that exist indirect and direct

dependence and meet the state (2) or (3) of the task jv :

2

2

()

() { () } { ()}

i j

j j i

v pred v

pd v pred v pd v


  . (6)

So

() ()

() {{ ()} { ()}}pd

i j i j

B p p

j i i

v pred v v pred v

P v P v P v
 

  . (7)

Here ()p

pd iP v represents the processor where all

primary task in ()ipd v .

Lemma: the earliest start time of the backup task jv is

()()
max { (,), (,)}

jj

B

f i ij
i pred vi pred v

t v p LFT e


and its backup task cannot

be dispatched to the processor(the virtual machine)

() ()

{ ()} { ()}pd

i j i j

p p

j j

v pred v v pred v

P v P v
 


.

Proof: assume that the start time of the backup task jv

is less than
()()

max { (,), (,)}
ii

B

f i ij
i pred vi pred v

t v p LFT e


, then when the

processor where the backup of ()jpred v complete time

last failure, need to execute the backup task, jv will not be

able to receive the messages sent, and task jv fail. Assume

the backup task jv is scheduled to the processor

() ()

{ ()} { ()}pd

i j i j

p p

i i

v pred v v pred v

P v P v
 


, then when the

processor ()p

jP v fail, and the malfunction of its precursor

node do not recover, then the backup task jv will not run

properly. So the assumption is not true.

The goal of scientific workflow task scheduling in

cloud computing environment is getting the earliest

completion time (Makespan) of the task. The earliest

completion time of all DAG tasks is the exit node

completion time of the backup task.

(,)B

f exitMakespan t v p . (8)

The earliest start time of CCRH looking for is

calculating the earliest completion time of the backup task

in scheduling strategy of the entire task.

3.3 MULTI-DAG HIERARCHICAL SCHEDULING

In DAG scheduling model of the cloud computing system,

as the DAG workflow a will compete with other DAG

workflow for the same set of computing resources, so the

Makespan (the time from submit DAG a to finish the last

task) of the workflow a is likely longer than the Makespan

which it use the cloud computing environment separately,

these two Makespan can be represented as ()multiM a and

()ownM a separately. Literature [18] Slowdown is

described this ratio: () / ()multi ownSlowdown M a M a , so

the inequities factor ()Unfaines s of a scheduling

algorithm s is defined as :

() ()
a A

Unfaines s Slowdown a Avgslowdown
 

  , (9)

where A is a set of being given multi-DAG.

AvgSlowdown is the average of Slowdown of all DAG,

i.e.
1

()
a A

AvgSlowdown Slowdown a
A  

  , A represent

the base of set A, ()Unfaines s is an important indicator

that be used to measure the unfair degree of multi-DAG

scheduling algorithm.

In the literature [7], the method of the multi-DAG task

scheduling is: sorting the new task and the remaining tasks

in DAG ascending according to the weight. If the weight

of the new DAG task is always less than that the remaining

DAG tasks, then the new DAG task is not scheduled,

which will lead that the new DAG task cannot be

scheduled as the weight.

So this paper proposes the multi-DAG scheduling

method based on layer, the basic principle is to stratify the

every DAG arrived in cloud computing environment any

time, and the every layer of the last DAG is merged to that

one where the DAG task do not be performed. Then it sorts

every layer ascending on the basis of the task weight. So it

will avoid the problem of the time span increasing due to

the remaining task of previous DAG not be scheduling.

The concrete steps are as follows:

1) To stratify each DAG task in the scientific workflow

processing.eg: in the 0 moment DAG-A arrives, then

DAG-Ai(i=1,2…m) represent the i-th layer of the DAG-

A.

2) To calculate the priority weight of all the tasks in

every DAG according to the formula.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

26
Mathematical and Computer Modelling

3) If it is single DAG, sort the task descending base on

the priority weight, and submit to the schedule queue, then

schedule in turn. The order is the primary task first and

then the backup. Otherwise go to step (4).

4) If it is multi-DAG, merge the first layer of the last

DAG to the next layer of the current DAG task.eg: in the t

moment, when DAG-B arrives, the DAG-Ai task is

performing, then put the DAG-B1 task to DAG-Ai+1

layer.

5) The tasks of every layer sort ascending according to

the weight, e.g.: the tasks of DAG-Ai+1 sort ascending

according to the weight, submit the schedule queue, then

schedule the task in turn. The order is also the primary task

first and then the backup.

6) Calculate unfair degree factor ()Unfaines s

according to the Equation (9), and sort ascending.

Schedule task to the processor low ()Unfaines s priority.

7) If the unfair degree factors ()Unfaines s of the

multiple DAG equal, then schedule tasks in turn according

to the Makespan.

4 Test results and analysis

The simulation of the algorithm is compared with HEFT

[18], BMCT [17] in the fairness of the fair factor

scheduling, the scheduling time, the processor utilization

and the task running time(the multi-DAG task of HEFT

adopt the same way of stratifying), and compared with

MaxAR [29] in robustness. In order to reflect the

advantage of the algorithm in the scientific workflow

better, we use four types of DAG task: random DAG task,

FFT, Laplace and Fork-join, in which every type of the

DAG contains 2-10 DAG task, and every DAG contains

10-50 task.

The experimental environment has Inter®Xeon E7420

2.13GHz，RAM 4G, the cloud computing environment of

1T hard disk. And use CCR to describe the ratio of

communication and computing in DAG task graph, the

value of the CCR select random number in 0.1-1.

4.1 THE FAIRNESS

Compare the fairness of CCRH, HEFT and BMCT

algorithm for different scientific workflow DAG Figure.

Figure 1 a–d represent the fairness of the three algorithms

in the random DAG Task FFT, Laplace, Fork-join graph

respectively. The HEFT and BMCT using the same

layered approach, its fairness do not have much difference.

As CCRH use dynamical method, its fairness has

improved greatly, but do not appear larger hopping

phenomenon.

a) Random DAG

b) FFT

c) Laplace

d) Fork-join

FIGURE 1 The Comparison of algorithm fairness

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of DAGs

U
n

fa
in

e
s
s

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of DAGs

U
n

fa
ir

n
e

s
s

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of DAGs

U
n

fa
ir

n
e

s
s

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of DAGs

U
n

fa
ir

n
e

s
s

BMCT

HEFT

CCRH

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

27
Mathematical and Computer Modelling

4.2 THE MAKESPAN ALGORITHM

Compare the Makespan of CCRH, HEFT and BMCT

algorithm for different scientific workflow DAG Figure.

Figures 2 a–d represent Makespan in random DAG Tasks,

FFT, Laplace, Fork-join respectively on three algorithms.

There is little difference can be seen from Figure 2 in the

three algorithms’ Makespan. The main reason is that the

three algorithms select a similar-priority comparison

algorithm. BMCT is better than HEFT as BMCT considers

communication constraints between tasks and as CCRH

adopt the technology of primary and secondary version to

improve system reliability, but its backup algorithm

increases its Makespan.

a) Random DAG b) FFT

c) Laplace d) Fork-join

FIGURE 2 The Comparison of average Makespan algorithm

4.3 THE LARGE-SCALE DATA COMPUTING TIME

In order to better test the overall performance of algorithm,

by analyzing running time of 100 DAG in randomly

generated environment. It is can be seen that HEFT

performance the best of three algorithms, BMCT is poor.

The CCRH use the technology of primary and secondary

versions to improve the reliability, meanwhile expense its

running time.

FIGURE 3 The Comparison of resource utilization

 BMCT HEFT CCRH

90.1%

89.6

96.8%

FIGURE 4 The large – scale data computing time

4.4 FOOTNOTES THE RESOURCE UTILIZATION

In order to better reflect utilization of the algorithm on

cloud environment resources, we research the average

utilization rate of the processor at four different scientific

workflow loads. It is can be seen to from Figure.4 CCRH

has a higher processing utilization. Thus CCRH have

better benefits in the cloud environment that resource

usage accounting

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of DAGs

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

500

1000

1500

2000

2500

Number of DAGs

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

Number of DAGs

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

BMCT

HEFT

CCRH

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Nuber of DAGs

A
v
e

ra
g

e
 M

a
k
e

s
p

a
n

BMCT

HEFT

CCRH

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Number of DAGs

R
u

n
n

in
g

 T
im

e
 (

In
 m

s
e

c
.)

BMCT

HEFT

CCRH

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

28
Mathematical and Computer Modelling

4.5 THE ROBUST OF ALGORITHM

In view of existing research for DAG task’s scheduling

algorithm, there is little on the robust of algorithm itself.

The literature [28] tests 20 kinds of heuristic scheduling

algorithm’s robustness by introducing the standard

deviation of Makespan. The literature and existing results

assuming that the scheduler can obtain the information of

the computing nodes at any time, and in practical

applications, especially in large-scale cloud computing

platforms, the collection of node information is affected by

the competition in the communication link, node load

factors, literature [29] proposed a novel robustness test

method, which can be an measure the performance of

algorithm effectively.

In order to reflect the scheduling model based on

communication competitive advantage, in the simulation

test, we assume that the scheduler compute nodes

information in every 2 milliseconds. Testing the

robustness of the algorithm on three parts: degradation

approximation factor, average wait time and decay degree

of critical path. Compare with the literature [29] MaxAR

algorithm. The approximation factor defined as:
max

min

t

t
  ,

here
1...

max 1...max (,)k M p

i N f i kt t v p

 is the maximum

completion time of the backup task iv in the processor set,
1...

min 1...min (,)k M p

i N f i kt t v p

 is the minimum completion

time of the backup task iv in the processor set; average

waiting time of the critical path is

1

1
((,) (,))

N
B

ij f i k

i

cpw LFT e t v p
N 

  ; the average

attenuation of the critical path is defined as follows:

(,) (,)
1

(,)

B

ij f i k

i B

f i k

LFT e t v p
cps

t v p


  . It can be seen from

Figure.5 due to use the tolerant mechanism of primary and

secondary version, the CCRH performs the worst

performance on approximate, but as CCRH can calculate

the optimal start time of current task, thus the approximate

factor attenuates in an acceptable range.

FIGURE 5 The comparison of approximate factor

FIGURE 6 The average waiting time of critical path

Figure 6 shows the changes of critical path on average

waiting time in the node information within the update

interval. As CCRH fully considers link communications

competition, its waiting time is more accurately reflect the

algorithm to obtain the actual performance.

FIGURE 7 The average attenuation of critical path

It is can be seen from Figure.7 that the CCRH can

calculate the optimal start time of the current task, the

average attenuation of the critical path performs better.

Meanwhile, in Figure 6 and Figure 7, with an increasing of

node information’s interval, so the algorithm robustness

are affected, so choose the appropriate time to update the

node information is the key to affect algorithm robustness.

5 Related work

The core idea of cloud computing is to manage and

schedule a large number of computing resources

connected by a network, and to constitute a pool of

computing resources on-demand service to users. The key

issues is how to schedule the resource fast and reasonable

in cloud computing. So to schedule multiple DAG task is

a way in effect of improving scientific calculation in

scientific workflow applications of cloud computing. 10
1

10
2

10
3

5

6

7

8

9

10

11

12

13

14

15

tmes(ms)

A
p

p
ro

x
im

a
ti
o

n
 f
a

c
to

r

BMCT

HEFT

CCRH

10
1

10
2

10
3

15

20

25

30

35

40

45

50

times(ms)

C
ri

ta
l
p

a
th

 w
a

it
n

g

BMCT

HEFT

CCRH

10
1

10
2

10
3

0

5

10

15

20

25

times(ms)

%
D

e
g

ra
d

a
ti
o

n

BMCT

HEFT

CCRH

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

29
Mathematical and Computer Modelling

Some of the relevant multi-DAG scheduling

algorithms have been proposed, e.g.: literature [17]

proposes a way of performing the multi-DAG task in turn,

which result in producing a lot of idle wait time in the

processor and prolonging the running time. Literature [5,

7, 12, 13] proposes a way of using a single DAG schedule

way to schedule a complex DAG which is composed by

multiple DAG. In [5], it proposes that multiple DAG

merge into a complex DAG, then allocate resource for the

complex DAG layer. In [7], it proposes a Planner-guided

scheduling policy, which uses dynamic PANK-HYBD to

schedule the priority for the multi-DAG tasks. These

algorithms, however, does not consider the case that the

DAG arrive at different times. In addition, literature [6]

analysis [5, 7, 12, 13, 17] shows that the simple merger of

DAG does not enhance the performance of algorithm

significantly. Literature [13] proposes a multi-DAG

scheduling algorithm that based on service time face to

date-intensive applications. However this algorithm does

not solve the problem which the running time increase

because of the remaining tasks do not be scheduled in the

former DAG. It is one of the keys in the cloud computing

environment about scheduling problem that how to

effectively solve the multi-DAG scheduling.

Moreover, the main goal of these algorithms is to

explore the best completion time of the whole task, and

ignore the task reliance. As the cloud computing is a new

service model based on the large-scale low-cost service

cluster, which hardware and software easily fail due to

their own reasons or external factor. Literature [8]

proposes to copy the task fully and define the position of

this backup. In literature [9], an algorithm is proposed to

meet the best Makespan and reliability, which improve the

performance by putting the task to the computing nodes

that has the smallest failure rate. Literature [10] proposes

to improve the reliability by copy task based on literature

[9], and schedule the task to the processor of load lightest.

It proposes a fault-tolerant scheduling way of the priority

constraint and the reliability cost driven, which

emphasizes “the strong primary copy”, and demand that

the task must received the result of its all predecessor node,

so this algorithm only consider the predecessor node of the

task, without considering the completion of all nodes task.

In literature [8, 10, 11], it uses the copy way in

compromising the reliability and system performance.

However, these methods only judge the copy task itself,

without calculate the start time of coping the task truly,

which affects the algorithm performance.

And these foregoing algorithms assume that the

processors of any network are fully connected and it can

receive the correlation information between scheduler and

processor and between processors at any time. However,

in practical applications, this assumption is untenable in

the complex cloud computing environment. Its studies

have shown that the scheduler algorithm considered the

competition in the communication links can improve the

accuracy grade effectively in Literature [27]. Literature

[25] proposes a communication competition model in

heterogeneous computing environment, and uses it to

prove the validity of the scheduling algorithm, but this

model is to consider the case of any network

interconnection. In literature [26], it achieves the search

and scheduler problem of processor in any interconnection

network by the shortest path search algorithm in the

communication competition model.

6 Contribution and future work

Against the reliable scheduling problem of scientific

workflow in cloud computing system, this paper put

forward a new method which use primary and secondary

version to improve the system fault tolerance and dynamic

hierarchical scheduling, the scheme has solved the

problem when the multiple DAG task in quite different

weights, the time span of DAG which arrived before will

not be increased as the remaining tasks delays in

scheduling. Simulation results show that in the premise of

reliability requirements, the algorithm in fairness,

Makespan, resource utilization, system run time showed

better performance. The next step is to research in a given

real cloud computing system architecture, how to solve the

scheduling policies reliability under different failure

probability, and through the different DAG scientific

workflow load verify the algorithm’s validity.

Acknowledgment

The work described in this paper is supported by the

Fundamental Research Funds for the Central Universities

(DL13CB05) and the Application technology research and

development in Harbin (2013AE1CE007) and

Technological innovation talent research project in Harbin

(2013RFXXJ089).

References

[1] http://www.googlecloud.com/

[2] Boss G, Malladi P, Quan D, Legregni L, Hall H 2007 Cloud
computing IBM White Paper

[3] Wieczorek M, Prodan R, Fahringer T 2005 Scheduling of scientific

workflows in the Askalon grid environment SIGMOD Record 3(34)
56-62

[4] Mandal A, Kennedy K, Koelbel, C, Marin G, Mellor-Crummey J,

Liu B, Johnsson L 2005 Scheduling strategies for mapping
application workflows onto the grid Proceedings of the 14th

International Symposium on High Performance Distributed

Computing (HPDC 2005) North Carolina USA 125-34
[5] Iverson M, Ozguner F 1999 Hierarchical, competitive scheduling of

multiple dags in a dynamic heterogeneous environment. .Distributed

Systems Engineering, 1999 3(6) 112-20
[6] Zhao H, Sakellariou R 2006 Scheduling multiple DAGs onto

heterogeneous systems Proceedings of the 15th Heterogeneous

Computing Workshop (HCW) Rhodes Island Greece

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 22-30 Jing Weipeng, Liu Yaqiu

30
Mathematical and Computer Modelling

[7] Yu Z, Shi W 2008 A planner-guided scheduling strategy for multiple

workflow applications Proceedings of the Parallel Processing –
Workshops 2008 ICPP-W'08 International Conference Portland

Oregon USA 20081-8
[8] Feng J, Humphrey M 2004 Eliminating Replica Selection—Using

Multiple Replicas to Accelerate Data Transfer on Grids Proceedings

of the Parallel and Distributed Systems (ICPADS 2004) Newport
Beach CA USA 359-66

[9] Dongarra J J, Jeannot E, Saule E, Shi Z 2007 Bi-objective scheduling

algorithms for optimizing makespan and reliability on heterogeneous
systems Proceedings of the 19th Annual ACM Symposium on Parallel

Algorithms and Architectures (SPAA 2007) New York USA 280–8

[10] [Saule E, Trystram D 2009 Analyzing scheduling with ransient
failures. Information Processing Letters 109(11) 539-42

[11] [Qin X, Jiang H 2006 A novel fault-tolerant scheduling algorithm for

precedence constrained tasks in real-time heterogeneous systems
Parallel Computing 32(5) 331-56

[12] [Hönig U, Schiffmann W 2006 A meta-algorithm for scheduling

multiple dags in homogeneous system environments Proceedings of
the 18th International Conference on Parallel and Distributed

Computing and Systems (PDCS 2006) Dallas Texas USA

[13] Zhu L, Sun Z, Guo W, Jin Y, Sun W, Hu W 2007 Dynamic multi
DAG scheduling algorithm for optical grid environment SPIE 6784

Network Architectures, Management and Applications 2007 67-84

[14] http://www.microsoft.com/azure
[15] http://aws.amazon.com/ec2/

[16] http://www.ibm.com/ibm/cloud/

[17] Sakellariou R, Zhao H 2004 A Hybrid Heuristic for DAG Scheduling
on Heterogeneous Systems Proceedings of the 13th Heterogeneous

Computing Workshop(HCW 2004) Santa Fe New Mexico USA

[18] Topcuoglu H, Hariri S, Wu M 2002 Performance effective and low-
complexity task scheduling for heterogeneous computing IEEE

Transactions on Parallel and Distributed Systems 13(3) 260-74

[19] Wieczorek M, Prodan R, Fahringer T 2005 Scheduling of scientific
workflows in the Askalon grid environment SIGMOD Record 3(34)

56–62

[20] Pandey S, Wu L, Guru S, Buyya R 2010 A particle swarm
optimization based heuristic for scheduling workflow applications in

cloud computing environments Proceedings of the 24th IEEE

International Conference on Advanced Information Networking and
Applications (AINA 2010) Perth Australia 400-7

[21] Salehi M A, Buyya R 2010 Adapting market-oriented scheduling

policies for cloud computing Proceedings of the 10th Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP

2010) Busan Korea 2010 351-62

[22] Casanova H, Legrand A, Zagorodnov D, Berman F 2000 Heuristics

for scheduling parameter sweep applications in grid environments
Proceedings of the Heterogeneous Computing Workshop 2000 349-

63
[23] Oinn T, Addis M, Ferri J, Mavin D, Senger M. Green-wood M,

Carver T, Glover K, Pocock M R, Wipat A, Li P 2004 Tavern: A tool

for the composition and enactment of bioinformatics workflows
Bioinformatics 20(17) 3045-54

[24] Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Patil S, Su M

H, Vahi K, Livny M 2004 Pegasus: Mapping Scientific workflows
onto the grid Proceedings of the European Across Grids Conference

Nicosia Cyprus 11-20

[25] Sinnen O, Sousa L A 2006 Toward a realistic task scheduling model,
IEEE Transactions on Parallel and Distributed Systems 17(3) 263-75

[26] Tang X, Li K, Padua D 2010 Communication contention in APN list

scheduling algorithm Science in China (Series F Information
Sciences) 52(1) 59-69

[27] Macey B S, Zomaya A Y 1998 Performance evaluation of CP list

scheduling heuristics for communication intensive task graphs
Proceedings of the First Merged International Parallel Processing

Symposium and Symposium on Parallel and Distributed Processing

March-April 1998 538-541
[28] Canon L-C, Jeannot E, Sakellariou R, Zheng W 2008 Comparative

evaluation of the robustness of dag scheduling heuristics. In Sergei

Gorlatch, Paraskevi Fragopoulo, Thierry Priol editors, Integration
Research in Grid Computing, Core GRID integration work-shop

Hersonissos Crete Greece 63–74

[29] Hirales-Carbajal A; Tchernykh A; Yahyapour R 2012 Multiple
Workflow Scheduling Strategies with User Run Time Estimates on

a Grid Journal of Grid Computing 2012 10(2) 325-46

[30] Juve G, Deelman R, Vahi K, Mehta G, Berriman B, Berman B P,
Maechling P 2009 Scientific workflow applications on Amazon EC2

Proceedings of the 5th IEEE International Conference on e-Science

2009 59-66
[31] Deelman E 2010 Grids and clouds: making workflow applications

work in heterogeneous distributed environments Int. J. High

Perform. Comput. 24 284-98
[32] Ramakrishnan L, Koelbel C, Kee Y-S, Wolski R, Nurmi D, Gannon

D, Obertelli G, Yarkhan A, Mandal A, Huang T M, Thyagaraja K,

Zagorodnov D 2009 VGrADS: enabling e-science workflows on
Grids and clouds with fault tolerance Proceedings of the Conference

on High Performance Computing Networking, Storage and Analysis

New York USA 47 1–12

Authors

Weipeng Jing, born in January, 1979, Heilongjiang

Current position, grades: Lecture in Northeast Forestry University. Aa member of the CCF
Scientific interests: modelling and scheduling for distributed computing systems, system reliability estimation, fault tolerant computing and system
reliability, distributed computing.

Yaqiu Liu, born in February, 1971, Heilongjiang

Current position, grades: Professor at the Northeast Forestry University.
University studies: M. Eng. in Control Theory and Engineering from Northeast Forestry University in 1999. PhD in Navigation, Guidance and Control
from Harbin Institute of Technology in 2004.
Scientific interests: process control, distributed computing, cloud computing, intelligent control and soft computing, model reconstruction.

http://www.microsoft.com/azure
http://aws.amazon.com/ec2/
http://www.ibm.com/ibm/cloud/

