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Abstract 

To improve the precision of the underground intrusion localization in the optical-fibre sensing perimeter protection application, an 

intrusion localization algorithm based on the Unscented Kalman Filter (UKF) is presented. The geometrical relationships of the 

sensors and the intruder are analysed and the state equation and the measurement model are deduced. Then the UKF algorithm is 

used to estimate and track the location of the intruder. The simulations demonstrate that the algorithm improves the intrusion 

localization precision and the intruder can be tracked even if no enough sensors detect the intrusion signal. 
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1 Introduction  

 

The optical fibre sensing-based intrusion detection 

technologies have been widely used in perimeter security 

protection systems, with the characters of high vibrational 

sensitivity together with electromagnetic interference 

immunity. The optical fibre sensing technologies used for 

intrusion detection include the interferometer-based 

optical fibre sensors and the optical time domain 

reflectometry (OTDR)-based optical fibre sensors [1-9]. 

The OTDR-based optical sensors are sensitive to very 

low vibrations and can be used in intrusion detection. 

However, it is subject to the quality of the laser and 

costly [8]. The Sagnac interferometer-based optical fibre 

sensing system is of high sensitivity to vibrational 

disturbances and low cost [2, 3]. The Mach-Zehnder 

interferometer based optical fibre sensing technologies 

have the same property of high phase-sensitivity as the 

OTDR-based technologies and have been studied widely 

[4]. To improve the performance of the perimeter security 

system, the distributed optical fibre sensing system has 

been used in intrusion detecting systems [1]. 

In a perimeter protection system, it is important to 

localize the intruder when an intrusion signal is detected. 

The need for intrusion localization is more necessary for 

an underground perimeter protection system to reduce the 

rate of false alarm. Generally, the underground intrusion 

signals to be detected are acoustic (or vibrational) signals 

generated by the intruder. When an intrusion occurs, the 

waveforms sampled in the sensors are processed and 

analysed in amplitudes, phases and frequencies to judge 

the intrusion, and the time of arrival (TOA) of the 

intrusion signal is used to locate the position of the 

intruder approximately [9]. Actually, the properties of the 

received intrusion signals are studied to localize the 

intruder by many researchers [10]. As in the 

interferometer-based optical-fibre sensor system, the time 

interval between the moment the laser was sent out and 

the moment the intrusion signal arrives at the receiver can 

not be got where the consecutive laser pulses are used. To 

get the precise TOAs of the intrusion signals, many 

signal-processing algorithms were employed [11]. 

However, the approaches suffer from the measurement 

errors for the fast speed of the laser propagating in the 

optical fibre, the errors of the time limit the precision of 

the intrusion localization to tens of meters [12].  

In this paper, a state estimation based intrusion 

localization algorithm is proposed to get high precise 

underground intrusion localization estimation. The 

geometrical relationships of the distributed sensors and 

the intruder are analysed and the state equation and the 

measurement model are deduced. Then the Unscented 

Kalman Filter (UKF) is used to estimate and track the 

location of the intruder. The simulation demonstrates that 

the algorithm improves the intrusion localization 

precision and the intruder can be tracked even if no 

enough sensors detect the intrusion signal. 

 

2 Intrusion Localization Algorithm based on the 

Geometric Relationship of the Sensors and the 

Intruder 

 

As mentioned above, the optical-fibre sensor-based 

intrusion detecting technologies include the 

interferometer-based methods and the OTDR-based 

methods. Although the principles of the two methods are 

distinct, to detect the underground intrusion signals, both 

methods use the optical fibre sensors to detect the 
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acoustic signals generated by the intruder. The acoustic 

signals may be generated by the excavating or ambulating 

actions of the intruders. As the acoustic signals are 

detected by the optical fibre sensors, the signals are 

processed and the TOAs are got. Then the geometrical 

equations can be deduced from the locations of the 

distributed sensors and the differences of the TOAs. For 

convenience, a Sagnac interferometer-based optical fibre 

sensing system is used to detect the underground 

intrusion in our work. 

When the underground intrusion signal occurs, the 

resultant vibrations or acoustic signals can be detected by 

the optical-fibre sensors. The detected signals may be of 

the different phases or be of various light intensities. As 

the sensing light signals are converted to the electric 

signals and then converted into digital signals, the digital 

signals are processed and analysed in amplitudes and 

frequencies. And the signals with certain amplitudes and 

waveforms are judged as the markers of the intrusion. 

Then the time intervals between the moment the laser 

pulse was sent out and the moment the 0-phase of the 

intrusion signal waveform can be got. The time interval is 

the time the acoustic signal costs in propagating from the 

intruder to the sensor. So it is called time of arrival 

(TOA) of the intrusion signal. 

When an intrusion signal is detected, the moment t 

which is called TOA can be gotten by signal processing. 

If the moment the intruder generated the vibrational 

signal is t0, the time interval (t-t0) includes the time for 

the acoustic signal arriving at the sensor and the time for 

the laser propagating in the optical fibre. As shown in 

Figure 1, the distance from the intruder to the sensor is 

equal to the distance the acoustic signal transports in 

TOA of the intrusion signal. As the locations of the 

sensors are fixed, the time for the laser is almost constant 

and can be calibrated previously. Then the geometrical 

relationship between the sensor i and the intruder is: 

       
2 2 2

0i i i I i i
x x y y z z v t t T        , (1) 

where, (xi, yi, zi) is the location of the ith sensor, (x, y, z) 

is the location of the intruder, and vI is the transporting 

speed of the vibrational signal generated by the intruder, 

t0 is the moment the intruder generated the vibrational 

signal, Ti is the time for the laser propagating in the 

optical fibre of the ith sensor, and ti is the moment at 

which the intrusion signal in the ith sensor is detected in 

the receiver. 

 
FIGURE 1 In an underground perimeter protection system, the distances 

from the intruder to the sensors are equal to the distance which the 

acoustic signals transport from the intruder to the sensors. 
 

As in the Equation (1), the parameters t0 and vI are 

unknown, the parameters can be ignored by using the 

different distances of the sensors,  

2 2 2 2 2 2( - ) ( - ) ( - ) - ( - ) ( - ) ( - )i

( - -( - ))

x x y y z z x x y y z zi i j j j

t t T Ti j i jI
v

   

  , (2) 

where ( )  is the absolute value sign. 

As long as the intrusion signal is detected by enough 

sensors, the parameters (x, y, z) and Iv  can be computed 

with optimal estimation methods such as the Least-

Square methods. The Least-Square based intrusion 

localization algorithm is as follows: 

Firstly, the equation (2) can be written as, 

     

     

  

2 2 2

2 2 2

0

i i i

j j j

I i j i j

x x y y z z

x x y y z z

v t t T T

    

     

    

. (3) 

Then the left side of the equation (3) can be denoted 

by a function, 

       

     

  

2 2 2

2 2 2

, , ,
ij i i i

j j j

I i j i j

f x y z v x x y y z z

x x y y z z

v t t T T

     

     

  

. (4) 

To solute the equation (3), use the linearization about 

the nominal value ˆ ˆ ˆˆ( , , , )x y z v ,  

ˆ ˆ ˆˆ, , , Ix x x y y y z z z v v v        . (5) 

Substitute equation (5) to equation (4), we get 

   ˆ ˆ ˆˆ, , , , , ,
ij ij

ij ij ij ij

f x y z v f x y z v

x

f f f f y

zx y z v

v



 
 

       
   

      
  

. (6) 

From equation (3),  

 ˆ ˆ ˆˆ0 , , ,
ij ij ij ij

ij ij

x

f f f f y
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zx y z v
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If there are n sensors, which detected the intrusion, for 

 1,2,..., 1i n   and  2,3,...,j n  the equation (7) can 

be written as, 

     R A E  , (8) 

where,

12 12 12 12

13 13 13 13

1, 1, 1, 1,

12

13

1,

,

n n n n n n n n

f f f f

x y z v

f f f f

x y z v

f f f f
n n

x y z v

R

R

R A

R    

   

   

   

   

   


   

 
 

 
 

 
 

  
        

          
    

 

  (9) 

and 

( )TE x y z v      . (10) 

Then the method of least squares can be used to get 

the optimal estimation of the nominal value ˆ ˆ ˆ( , , )x y v . 

Here we use the minimal residual method of least squares 

by solving Z , 

   
1

T T

k k kk k
E A A A R



     
, (11) 

where k=1, 2… is the number of iterations, and the 

estimation in k-step iteration is 

1 1

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ
k k k

x x x

y y y

z z z

v v v
 

     
     

     
      

     
          

. (12) 

The partial derivative terms in equation (7), (9) are 

given by 

2 2 2 2 2 2
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  (13) 

The algorithms from equation (4) to (13) above are 

repeated recursively, the iteration is going on until E  is 

less than a set tolerance. However, as the geometrical 

relationship in Equation (2) does not consider the noises 

in the parameters, the number of the iterations of the 

algorithm may be too large and the algorithm results in 

bad precision. Especially, when the number of the 

distributed sensors, which detected the intrusion signal is 

less than 4, the errors of the location estimation increase 

remarkably. 

 

3 UKF-based Intrusion Localization Algorithm 

 

To improve the accuracy of the location estimation of the 

intruder, the state estimation methods can be used to track 

the location of the intruder when the measurement noises 

and the system noises are considered. The state equations 

and the measurement model are deduced from the 

geometric relationship in equation (2) and the UKF 

algorithms are used for state estimation. 

 

3.1 THE SYSTEM EQUATION AND THE 

MEASUREMENT MODEL FOR INTRUSION 

LOCALIZATION 

 

As in equation (2), the speed of the vibrational signals 

propagating underground is unknown. To improve the 

precision of the location estimated, the unknown speed of 

the vibrational signals and the moment the intruder 

generated the vibrational signals as well as the location of 

the intruder and the moving speed of the intruder, are 

considered as the state parameters, i.e., 

0

T

x y z I
X x y z v v v v t    . For simplification, the moving 

speed of the intruder is considered almost constant, i.e. 

the variation of the moving speed is zero, and a zero-

mean Gaussian noise is added. Moreover, the speed of the 

vibrational signal is considered constant and the zero-

mean Gaussian noise is added. Then we get the state 

equations as: 

X AX W  , (14) 

where, 

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

A

 
 
 
 
 
 
 
 
 
 
 
  

. (15) 

And W is the noise vector of the state parameters, the 

means of which are considered zero and the covariance 

matrix  1 2 8...R diag    . 
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The measurement parameters are the moments when 

the intrusion signal arrives at the sensors, ti, i.e., 

 1 2 ...
T

nY t t t . From Equation (1), we get 

2 2 2

0

1
( - ) ( - ) ( - )

i i i i i

I

t x x y y z z t T
v

      . (16) 

Then the measurement model can be written as: 

( )Y G X V  , (17) 

where, ( )G   is the measurement function vectors as noted 

in Equation (5), and V is the measurement noise vector, 

with the mean m and the covariance matrix 

 
1 2

...
nt t t

Q diag    . 

 

3.2 THE UKF ALGORITHM 

 

As the measurement equation in (17) is nonlinear, the 

original Kalman Filter cannot be used for state estimation 

directly. If the equation is linearized, the extended 

Kalman Filter (EKF) can be used to estimate the location 

of the intruder. However, the errors in the linearization 

may result in state estimation errors [13, 14]. As the 

unscented Kalman Filter (UKF) algorithm is excellent in 

nonlinear system, it is adopted in our work [15, 16]. The 

algorithm can be described as follows: 

 

3.2.1 Initiation 

 

At first, the initial mean and covariance of the 8-

dimensional state sector can be computed as: 

0 0
ˆ ( )X E X , (18) 

0 0 0 0 0
ˆ ˆ[( )( ) ]TP E X X X X   . (19) 

 

 

 

 

 

3.2.2 Sigma Point Sample and the Weight 

 

The symmetric sampling method is used and (2n+1) 

points   0,1,...,2n,k 1
i

x k k i    are sampled. The 

points and the weight are selected as follows: 

   0

ˆ1 1k X k    , (20) 

        1

ˆ1 1 1
xx

i

k X k n P k       , 1,...,i n , (21) 

        ˆ1 1 1 , 1,...,2
i xx

k X k n P k i n n         , (22) 

where, n is the dimension of feature state, λ=α2(n+к)-n is 

a scale parameter. The α is constant which determines the 

spread of the sigma points around ˆ ( 1)X k   and is usually 

set to a small positive value. In addition, the constant к is 

another scale parameter, which is set to (3-n). β is used to 

incorporate prior knowledge of the distribution of the 

system states. 

In addition, two weights m

i
  and c

i
  are used to 

compute the mean and covariance of the state estimation: 

0

m

n








, (23) 

2

0 (1 )c

n


  


   


, (24) 

1
, 1,..., 2

2( )

m c

i i i n
n

 


  


. (25) 

 

3.2.3 Time Update 

 

The predicted mean and covariance are computed as 

follows: 

   1 1
i i

k k tA k    , (26) 

2

0

ˆ ( | 1) ( | 1)
n

m

i i

i

X k k k k 


   , (27) 

2

0

( | 1) [ ( | 1)

ˆ ˆ( | 1)][ ( | 1) ( | 1)]

n
m

xx i i

i

T

i

P k k k k

X k k k k X k k

 





   

   

 , (28) 

( | 1) ( ( | 1))i iY k k G k k   , (29) 

2

0

ˆ( | 1) ( | 1)
n

c

i i

i

Y k k Y k k


   . (30) 

3.2.4 Measurement Update 

 

Moreover, the predicted observation mean, innovation 

covariance and the cross relation matrix are computed as 

follows: 

2

0

( ) [ ( | 1)

ˆ ˆ( | 1)][ ( | 1) ( | 1)]

n
c

yy i i

i

T

i

P k Y k k

Y k k Y k k Y k k




  

   


, (31) 
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2

0

( ) [ ( | 1)

ˆ ˆ( | 1)][ ( | 1) ( | 1)]

n
c

xy i i

i

T

i

P k k k

X k k Y k k Y k k

 


  

   

 , (32) 

1( ) ( ) ( )xy yyK k P k P k , (33) 

ˆ ˆ ˆ( ) ( | 1) ( )[ ( ) ( | 1)]X k X k k K k Y k Y k k     , (34) 

( ) ( | 1) ( ) ( ) ( )T

xx xx xyP k P k k K k P k K k   . (35) 

The algorithms above are repeated from equation (20) 

to (35), the iteration is going on to estimate and track the 

location of the intruder. 

 

4 Simulations and Experiments 

 

To test the precision of the intrusion localization 

algorithm proposed, simulations are performed in given 

data. In the simulations, the distributed Sagnac-based 

optical-fibre sensors are used and the sensors assumed to 

be located in lines and rows as shown in Figure 2, and the 

distance between each pair of the neighbouring sensors is 

50 meters, and all the sensors are assumed to be buried 

1.5 meters below the ground. The propagating speed of 

the vibrational signal the intruder generated underground 

is assumed to be constant, i.e. 1000m/S. Generally, the 

sampling rate of the receiver is above 10k times per 

second. So the errors of the TOAs are considered below 

0.1mS and the measurement noise is considered zero 

mean and the covariance 0.1. The intruder is considered 

moving in a speed 1m/S, and the initial 

R=diag(1,1,1,1,1,1,1,1). The number of sigmal points is 

set to 21 in simulation.  

 
FIGURE 2 The locations of the sensors for simulation 

 

Figure 3 depicts the result of the simulations. The 

error of the locations is below 0.5 meters and the 

locations of the intruder can be tracked precisely. 

Moreover, the errors of the estimation under various 

numbers of the sensors, which detected the intrusion are 

listed in table 1. It demonstrates that even if only one 

sensor detects the intruder, the algorithm can track the 

intruder precisely. 

 
FIGURE 3 The Simulation of the Intruder Localization Estimation 

 

TABLE 1 The statistical errors with various number of sensors, which 
detected the intrusion 

Number of the 

sensors 

The 

parameters 

Errors of estimation 

(meters) 

1 x 1.46 
1 y 1.722 

1 z 2.21 

3 x 0.73 
3 y 0.92 

3 z 0.88 
5 x 0.18 

5 y 0.22 

5 z 0.3 

 

5 Conclusions 

 

To improve the precision of the underground intrusion 

localization in the optical-fibre sensing perimeter 

protection application, an UKF-based intrusion 

localization algorithm is proposed in the paper. The state 

equation and the measurement model are deduced from 

the geometrical relationship of the sensors and the 

intruder, and the UKF algorithm is used to estimate and 

track the location of the intruder. The simulation 

demonstrates that the algorithm improves the intrusion 

localization precision and the intruder can be tracked 

even if no enough sensors detect the intrusion signal. 
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