

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

39
Mathematical and Computer Modelling

Fast fractional-pel interpolation algorithm of H.264 based on
CUDA

X G Hong1, H Liu1*, Y Xiao2

1School of Information Engineering, Nanchang University, Nanchang 330031, China

2Institute of Computing Technology, Nanchang 330031, China

Received 12 June 2014, www.tsi.lv

Abstract

H.264 video standard introduces fractional pixel motion compensation technology to obtain a more precise motion vector and a higher

compression ratio. But, it increases the complexity of the motion compensation process at the same time. In order to solve the

difficulties, we analysis the procedure of fractional-pel interpolation in H.264 and propose a fast fractional-pel interpolation algorithm

based on CUDA. Experimental results show that the fast algorithm enables locating fractional pixel effectively and improves the speed

of fractional pixel motion estimation. Compared with the CPU serial algorithm, the fast algorithm can significantly improve encoding
rate almost four times in processing high-resolution video sequences.

Keywords: H.264, CUDA, interpolation algorithm, fractional-pel

1 Introduction

H.264 is a highly compressed digital video codec standard.

It is proposed by the Joint Video Team (JVT), which is

grouped by the Video Coding Experts Group (VCEG) of

ITU-T and the Moving Picture Experts Group (MPEG) of

ISO/IEC [1]. Compared with other video coding standards

such as MPEG-2, H.263, the H.264 standard has high

compression ratio and high adaptability to the network.

Because of that feature, the H.264 standard can be widely

used in digital television, wireless video communication,

video conference over IP and other multimedia services.

Nevertheless, the design of H.264 uses intra prediction

in intra-frame, multiple frames reference capability,

quarter-pixel interpolation, and flexible macro-block

ordering in order to enhance Motion Estimation (ME) and

Motion Compensation (MC). But, it also increases the

complexity of algorithm and the encoding computation.

By analysing the H.264 encoding process, we conclude

that the inter prediction takes more than 75% of the

encoding time [2]. Moreover, in the process of inter

prediction to get the fractional pixel has cost most of the

calculation. So, in order to improve the computing speed

of inter prediction, we must take an efficiently and fast

interpolation algorithm to get the fractional pixel.

On the other hand, personal computers commonly

equipped with GPU. Recently, the progress of GPU has

caught a lot of attention; they have changed from fixed

pipelines to programmable pipelines; the hardware design

also includes multiple cores, bigger memory sizes and

better interconnection networks which offer practical and

acceptable solutions for speeding both graphics and non-

graphics applications. GPU are highly parallel and are

* Corresponding author e-mail: liuhao_ncu@sina.com

normally used as a coprocessor to assist the Central

Processing Unit (CPU) in computing massive data.

NVIDIA developed a powerful GPU architecture

denominated Compute Unified Device Architecture

(CUDA), which is formed by a single program multiple

data-computing device. Hence, the fractional pixel

interpolation algorithm developed in the H.264 encoding

algorithm fits well in the GPU philosophy and offers a new

challenge for the GPU.

This paper proposes a fast fractional pixel interpolation

algorithm to accelerate the half-pixel and quarter-pixel in

the process of inter prediction in the H.264 by using

CUDA. The proposed algorithm efficiently develops the

parallel computing of GPU to implement the parallel

computing of fractional pixel interpolation. The remainder

of this article is organized as follows: Section 2 briefly

introduces fractional pixel interpolation process in H.264.

Section 3 the fast fractional-pel interpolation algorithm

processing based on CUDA is presented. Experimental

results and compared to traditional approach are discussed

in Section 4. Sections 5 show the conclusion and some

ongoing work.

2 Overview of H.264 fractional-pel interpolation

process

H.264 uses the 1/4 pixel precision to complete Motion

Estimation (ME) and Motion Compensation (MC). Com-

pared with 1/2 pixel precision in H.263, it can get more

than 2dB coding gain [3].The mainly process of fractional

pixel interpolation algorithm shows as follows [4]:

I. Get the half-pixel: The half-pixel where between two

integer-pixels (as b, h, m, s, etc. shown in Figure 1 (a)).

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

40
Mathematical and Computer Modelling

H.264 uses A sixth-order finite impulse response filter

(FIR) to obtain the interpolated value by the neighbouring

integer pixels. The weighted value of FIR is 1/32,-5/32,

5/8, 5/8, -5/32, 1/32.

We can get the half-pixel value of b as follows:

((E 5F 20G 20 5) / 32)b round H I J , (1)

Similarly, the integer-pixel include of A, C, G, M, R,

T through the sixth-order FIR can obtain half-pixel value

of h. Once all of the adjacent integer-pixels (vertical or

horizontal direction) get their half pixels, the remaining

half pixels such as j can be calculated by six of vertical or

horizontal half pixels. For example, the half pixel of j is

calculated by value of cc, dd, h, m, ee, ff, which is shown

in the Figure 1 (a).

BA aa

HG b

m

E

h j

N

cc

M s

D

K

C

SR gg

UT hh

F

dd

L

I

ee

P

J

ff

Q

bb

a)

G a b Hc

h i j mk

M s N

G

d

b H

f

h

n

m

M s N

j

G b H

h mj

M s N

e

p

g

rq

b)

FIGURE 1 Fractional pixel distribution

II. Get the quarter-pixel: We use the linear

Interpolation algorithm to obtain the value of quarter-pixel

by the half pixel and integer pixel in the horizontal or

vertical. The quarter-pixel distribution is shown in the

Figure 1 (b). We can get the quarter-pixel value of a as

follow:

((G b) / 2)a round , (2)

The remaining quarter-pixels such as e, g, p, r can be

calculated by linear interpolation with a pair of half-pixel

on the diagonal.

3 CUDA implementation of fractional-pel

3.1 CUDA PROGRAMMING MODEL

CPU and GPU work together in the CUDA programming

model [5]. CPU is responsible for the serial parts of the

code, and GPU is responsible for parts of the algorithm

where is intensive and can be used to parallel Computing.

The structure of the CUDA programming model is shown

in the Figure 2. Typically, the different of the implemen-

tation of the algorithm in GPU and CPU is the kernel

function. Kernel function is part of a parallel program,

which is used to parallel computing. The kernel function

is used __global__ to declare function type in the CPU and

executes on the device in the GPU.

Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

thread(0,0) thread(1,0) thread(15,0)……
thread(0,1) thread(1,1) thread(15,1)……

thread(0,15) thread(1,15) thread(15,15)……

…
…

…
…

…
…

Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

Grid 0

Grid 1

CPU

serial

code

Kernel

Kernel<<<>>>()

serial

code

Kernel

Kernel<<<>>>()

FIGURE 2 The structure of the CUDA programming model

3.2 ANYLYSIS OF FRACTIONAL PIXEL

INTERPOLATION

By analysing the H.264 encoding process [6-8], we

conclude that the 4×4 sub-block includes three kinds of

possible pixel value such as integer-pixel, half-pixel and

quarter-pixel. As shown in Figure 3, the red point mark as

integer pixel such as the point of 0.The white point is the

fractional pixels. Among the white point, the point of

2,8,10 is half-pixel, the others is quarter-pixel. According

to the predicted locations can be divided into the following

six kinds of situations in the process of inter prediction.

I. The prediction point right on the integer-pixel where

is region of 0.In this case, we should not need to calculate

other fractional pixel. This is the simplest type of situation.

II. The prediction point right on the region of 1_2_3.In

this case, we must calculate the corresponding fractional

pixel by the interpolation algorithm.

III. The prediction point right on the region of

4_8_12.This case is similar to the second case so that we

use the same method get the fractional pixel.

IV. The prediction point right on the region of

6_10_14.In this case, the middle of half-pixel should use

the other value of half-pixel to calculate. So, we must get

the corresponding half- pixel first, then uses this half-pixel

and the others half-pixel to get the value of quarter-pixel.

V. The prediction point right on the region of 9_10_11.

This case is similar to the fourth case so that we use the

same method get the fractional pixel.

VI. The prediction point right on the region of

5_7_13_15.In this case, all of the pixels is quarter-pixel

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

41
Mathematical and Computer Modelling

and they must be calculated by linear interpolation with a

pair of corner half-pixel. The computation in this case is

quite large because all of the quarter-pixel by linear

interpolation.

0 1 2 3

5 6 7

9 10 11

13 14 15

4

8

12

FIGURE 3 The 4×4 sub-block pixel distribution

From the analysis of the six cases, we can find that it

needs according to different conditions to deal with the

fractional pixel in H.264. In each condition it should use a

large number of interpolations to derive the corresponding

value of half-pixel and quarter-pixel. Because of this

reason, the inter prediction occupies most of H.264 coding

and decoding time. So, using the fast fractional-pel

interpolation algorithm based on CUDA can accelerate

fractional pixel positioning time so that it can improve

encoding and decoding time and efficiency of H.264.

3.3 THE SPECIFIC IMPLEMENTATION PROCESS

Firstly, judging the region where the prediction point falls.

Secondly, according to the prediction region get the

corresponding half-pixel. Finally, according to the value

of half-pixel get the corresponding quarter-pixel in the

prediction region.

3.3.1 Judging the prediction region

In JM8.6 specification [9] defines a method named

get_block(). In this method, there are two variables named

dx and dy which are use to judge the location of prediction

point. The variable of dx means the abscissa of the nearest

integer-pixel on left. The variable of dy means the ordinate

of the nearest integer-pixel on left. The specific conditions

of the judgment are shown in the Table 1.

TABLE 1 Judgment of specific conditions

Judge conditions Region of location

if (dx == 0 && dy == 0){} region of 0

if (dy == 0){ if ((dx&1) == 1){….}} region of 1_2_3

if (dx == 0){ if ((dy&1) == 1){….}} region of 4_8_12
if (dx == 2){ if ((dy&1) == 1){….}} region of 6_10_14

if (dy == 2){ if ((dx&1) == 1){….}} region of 9_10_11

others region of 5_7_13_15

3.3.2 Calculate the fractional pixel in the corresponding

region

In this step, we use the bilinear interpolation algorithm

based on CUDA to get the value of half-pixel [10, 11].

Then parallel computing the corresponding quarter-pixel

by the calculated half-pixel. We use the prediction point

right on the region of 5_7_13_15 as an example to describe

the fast interpolation algorithm based on CUDA to get the

value of fractional pixel.

I. As shown in the Figure 1 (a), the half-pixel of b can

be calculated by the four integer-pixels on the diagonal (C,

D, M, N). Calculation method as follows:

x

y

(x,y)

b

(1,0)

(0,1)

(0,0)

(1,1)

C D

NM

(0,y) (1,y)

(x,0)

(x,1)

FIGURE 4 Bilinear interpolation algorithm

As shown in the Figure 4, the point of b is (,)xyF x y ,

the value of integer-pixel{C:
00 (0,0)F , D:

10 (1,0)F , M:

01(0,1)F , N:
11(1,1)F }is (

00f ,
10f ,

01f ,
11f).

In the Y-direction, we use the linear interpolation the

get the value of 0 (0, y)yF :

0 00 01 00()yf f y f f . (3)

In the Y-direction, we use the linear interpolation the

get the value of 1 (1, y)yF :

1 10 11 10()yf f y f f , (4)

Then, we use the value of 0 (0,)yF y and 1 (1,)yF y to

get the value of (,)xyF x y in the X-direction:

0 1 0()xy y y yf f y f f , (5)

Substituting Equations (3) and (4) into Equation (5),

combination and simplification can get as follow:

00 01 10 11=(1-)(1-) (1) (1) () .xyf x y f y x f x y f xy f (6)

Set:
0() 1v x x ;

0() 1v y y ;
1()v x x ;

1()v y y

then
00 0 0() ()v v x v y ;

01 0 1() ()v v x v y ;
10 1 0() ()v v x v y ;

11 1 1() ()v v x v y . Then, Equation (6) can be simplified as

follows:

00 00 01 01 10 10 11 11.xyf v f v f v f v f (7)

II. Using Equation (7) to calculate the half-pixel. The

basic computational unit of fractional pixel in the H.264 is

the 4×4 sub-block [12].We use a thread-block to calculate

a 4×4 sub-block. For the resolution is W×H in a frame, the

number of thread-block is shown as Equation (8):

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

42
Mathematical and Computer Modelling

 / 4 / 4n W H . (8)

The number of half-pixel, which should be calculated

in a 4×4 sub-block is 33. So, we should distribute 33 thre-

ads in a thread-block and each thread is responsible for

calculating the value of a half-pixel. The flow diagram is

shown in the Figure 5.

4×4

Sub

block

Host

copy date from

memory to video

meomory
distribute

blocks

and

threads

Thread1

Thread2

…
…

…

Thread32

Thread33

Start kernel

back the result to the

memory

S

H

A

R

E

D

M

E

M

O

R

Y

Device

FIGURE 5 Flow diagram of calculate half-pixel based on CUDA

III. Calculate the quarter-pixel. There are two kinds of

quarter-pixel that we should to calculate. One is used the

integer-pixel and half-pixel by the linear interpolation to

get (the point of a in the Figure 1 (b)). The other one is

used a pair of half-pixel on the diagonal to get (the point

of e in the Figure 1 (b)).The number of tread-block can be

calculated by Equation (8).There are 120 quarter-pixels in

a 4×4 sub-block, so, we distribute 120 threads in a thread-

block and each thread is responsible for calculating the

value of a quarter-pixel.

IV. The process of implementation on CUDA.

It can be seen from the CUDA programming model

that the CPU serial code is responsible for data preparation

and initialization of the device. The work which is shown

as Host in the Figure 5 mainly includes memory allocation,

video memory allocation, grid configuration, etc. The

CPU will start the kernel function when the preparatory

work is completed. The kernel function is used to parallel

processing the data on the video memory by the GPU. To

realize the algorithm proposed in this paper, we should

create two kernel functions. One of the functions is used

to calculate the half-pixel and the other one calculates the

quarter-pixel. As the Device show in the Figure 5, the

block in the kernel function creates threads to parallel

computing [13] the value of half-pixel. Then, CPU

executes its serial code to clean the kernel function and

start next kernel function. At the same time, the CPU serial

code will put the value of integer-pixel and half-pixel into

video memory. After that, the kernel function will start the

threads to parallel computing the value of quarter-pixel.

The data will be copied from video memory to memory

when fractional pixels have been calculated. Finally, the

space of memory and video memory will be freed and exit

the CUDA.

V. The pseudo-code, which describes implementation

process is shown as follows:

Fractional_pel:

//allocation of video memory space

cudaMalloc()

//copy the data from memory to video memory

cudaMemcpy(cudaMemcpyHostToDevice)

dim3 block_half(n,1,1)

//calculate the number of thread, distribute 33 threads.

dim3 thread_half(33,1,1)

//obtain the value of half-pixel.

GPUhalf_pel<<<block_half,thread_half>>>()

//--------calculate the quarter pixel------

dim3 block_quarter(n,1,1)

//calculate the number of thread, distribute 120 threads. dim3

thread_quarter(120,1,1)

GPUquarter_pel<<<block_quarter,thread_quarter>>>()

//obtain the value of quarter-pixel

cudaMemcpy(cudaMemcpyDeviceToHost)

//free the space of memory and video memory

cudaFree()

4 Experimental results and analysis

In this work, we use NVIDIA GeForce 9600 GSO as GPU

platform which presents the characteristics depicted in

Table 2. The CPU platform is AMD Sempron™ Processor

3200+ 1.80GHz. We use Microsoft Visual Studio 2008

and CUDA5.0 as the programming platform which runs on

the operating system of Window 7. We use

cuda_Nsiht_Visual_Stuio_Edtion as the performance anal-

ysis tool.

TABLE 2 GPU main features

Characteristic GeForce9600 GSO

Compute capability

Global memory

Number of multiprocessors

Number of cores

Constant memory
Shared memory per block

Registers per block

Active threads per multiprocessor
Max threads per block

GPU Clock rate

1.1

512M

6

48

64KB
16KB

8192

768
512

1.5GHz

The performance evaluation of the fast fractional-pel

interpolation algorithm of H.264 based on CUDA that we

proposed based on JM8.6 encoder [9]. The test sequences

are shown in Table 3.

TABLE 3 Test sequences

Test

sequences
Resolution Frames

Sample

format

Carphone QCIF(176×144) 150 YUV 4:2:0
Akiyo QCIF(176×144) 300 YUV 4:2:0

Bus CIF(352×288) 150 YUV 4:2:0

Foreman CIF(352×288) 300 YUV 4:2:0
Blue_sky 1080P 150 YUV 4:2:0

Riverbed 1080P 300 YUV 4:2:0

For testing, QCIF (176×144), CIF (352x288) and

1080p are selected. These three kinds of video sequences

have different resolution and different number of frames.

The sample format of them is YUV 4:2:0. Firstly, the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

43
Mathematical and Computer Modelling

proposed algorithm is put into JM encoder to replace the

original algorithm, and then we realize the proposed

algorithm on CUDA-based GPU. At last, we integrate the

CPU implementation with the original algorithm and the

GPU implementation with the proposed algorithm in JM

encoder. The test sequences shown in Table 2 are used to

test these two implementations. We get the encoding rate

of two implementations. Table 4 lists the results of the

comparison results of CUDA technology and CPU

implementations. And Figure 6 shows the improvement of

these video sequences.

TABLE 4 Encoding rate comparisons

Test

sequences

Encoding rate(fps)
Speed Up

CPU CUDA

Carphone 8.93 9.34 1.05
Akiyo 8.34 9.25 1.10

Bus 5.72 8.67 1.52

Foreman 4.89 8.56 1.75
Blue_sky 2.56 8.45 3.30

Riverbed 2.23 8.33 3.74

FIGURE 6 Comparison of encoding rate

From Table 4 and Figure 6, we can see the proposed

algorithm for acceleration of the encoding rare in different

resolution and the CUDA-based algorithm achieves higher

efficiency than the CPU-based algorithm. For video

sequences with the same resolution and different number

of frames (Carphone and Akiyo, Bus and Foreman,

Blus_sky and Riverbed shown in the Table 3), we can

summarize that under the same resolution, the amount of

encoding computation is not very large when video

sequence frames is less. In this case, encoder takes most

time in data copies when it uses CUDA so that the

acceleration effect is not obvious. However, with the

increase of the video frames and amount of computation,

the advantage of the GPU parallel processing can be

reflected and the speedup also increases.

For video sequences with the same number of frames

and different resolution (Carphone and Foreman, Akiyo

and Blus_sky, Bus and Riverbed shown in the Table 3), we

can summarize that the acceleration effect of low-

resolution video sequences is not obvious. However, with

the increase of the resolution of the video, there are more

4×4 sub-block will be divided in a frame of the video

sequence. In this case, the number of the fractional-pel,

which should be calculated will increases so that it

increases the amount of computation of the encoder and

the encoding rate is also decreased.

However, from the speedup shown in the Table 4, we

can know that the acceleration effect is more obvious with

the increase of the resolution. This is also reflected that the

fast algorithm based CUDA can significantly improve

encoding rate in processing high-resolution video

sequences.

5 Conclusions

In this paper, we take the advantage of advantage of

parallel computing in CUDA and propose to use CUDA

technology to speed up the H.264 fractional-pel interpo-

lation. The results show it is an effective approach to deal

with this highly data-adaptive processing algorithm and it

is can use to deal with high-resolution video sequ-

ences.H.264 standard is the most widely used standard and

it is important to optimize its algorithm and execution time

on a continuous basis. For future work, we will continue

to optimize other modules and reduce complexity of the

whole process based on CUDA technology.

Acknowledgments

This project is supported by the Graduate innovation fund

project of Jiangxi Province, China 2013.

References

[1] ITU-T RECOMMENDATION 2003 Advanced Video Coding for

Generic Audiovisual Services ISO/IEC 14496
[2] Blasi S G, Peixoto E, Izquierdo E 2013 Enhanced Inter-Prediction

Via Shifting Transformation in the H. 264AVC Circuits and Systems

for Video Technology 23(4) 735-740
[3] Wedi T, Musmann H G 2003 Motion and aliasing-compensated

prediction for hybrid video coding Circuits and Systems for Video

Technology 13(7) 577-86
[4] Richardson I E 2004 H.264 and MPEG-4 video compression: video

coding for next-generation multimedia Wiley

[5] NVIDIA 2012 CUDA Compute Unified Device Architecture
Programming Guide Version 5.0 Applications

http://developer.download.nvidia.com

[6] Fang Y, Zhou J 2006 Fast Fractional-pel Interpolation Algorithm of
H.264 Computer Engineering (1) 076

[7] Chen Z, Xu J, He Y, Zheng J 2006 Fast integer-pel and fractional-pel

motion estimation for H.264/AVC Visual Communication and Image

Representation 17(2) 264-290

[8] Wang Y J, Cheng C C, Chang T S 2007 A fast algorithm and its VLSI
architecture for fractional motion estimation for H. 264/MPEG-4

AVC video coding Circuits and Systems for Video Technology 17(5)

578-83
[9] Joint Video Team Software 2010 JM8.6 Applications

http://iphome.hhi.de/suehring/tml/download/

[10] Gribbon K T, Bailey D G 2004 A novel approach to real-time bilinear
interpolation Field-Programmable Technology 126-31

[11] Liu J J ,He Z, Chen L 2010 Bilinear interpolation of geomagnetic

field Computer Application and System Modeling (ICCASM) V2-
665

[12] Lu X, Tourapis A M, Yin P, Boyce J 2005 Fast mode decision and

motion estimation for H.264 with a focus on MPEG-2/H. 264
transcoding Circuits and Systems 1246-9

[13] Farber R 2011 CUDA application design and development Elsevier

CPU

GPU

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 39-44 Hong X G, Liu H, Xiao Y

44
Mathematical and Computer Modelling

Authors

Xianggong Hong

Current position, grades: Associate professor, Nanchang University.
University studies: MS degree in School of Electronics and Communications Engineering at Nanchang University in 2009.
Scientific interest: image processing technology, video communication technology.

Hao Liu

Current position, grades: Master of Signal and Information Processing, Nanchang University.
University studies: Nanchang University in School of Information Engineering (2008-2015).
Scientific interest: communication and information system, video communication technology.

Yun Xiao

Current position, grades: natural science researcher of Institute of Computing Technology, Jiangxi.
University studies: MS degree at School of Computer Science from East China, Jiaotong University.
Scientific interest: data mining, database development.

