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Abstract 

Stochastic resonance phenomenon induced in a system described by over-damped fractional Langevin equation with  -stable noise 

is investigated. When there is no external  -stable noise, the stochastic resonance is observed in case of the fractional order less than 

one certain threshold. By applying  -stable noise, the influences of the noise intensity and characteristic exponent of  -stable noise 

on the occurrence of stochastic resonance phenomenon are characterized. We find that the proper noise intensity enlarges the peak 

value of output power spectrum which is significant for stochastic resonance. Adjusting the noise intensity, the behaviour of signal-to-

noise ratio is non-monotonic and with a maximum value. Under the same conditions, the lower value of characteristic exponent of 

-stable noise leads to the smaller noise intensity to achieve stochastic resonance. 

Keywords: stochastic resonance, over-damped fractional Langevin equation,  -stable noise 

 

1 Introduction 

 
The fractional calculus has a long history since it was first 

described by G.W. Leibniz [1], it allows the derivatives or 

integrals to be any non-integer order. Fractional calculus 

has been applied in many situations, such as 

viscoelasticity, confined geometries, biological tissues, 

thermoelasticity and control system etc. [2-6]. The 

classical derivatives and integrals form of fractional 

calculus are defined by Riemann-Liouville and Caputo. 

Stochastic resonance (SR) has been widely 

investigated during past decades. It is a nonlinear 

phenomenon where a signal can be enhanced by adding 

noise. In the classical SR theory, models based on integer-

order equation and double-well potential is defined to 

describe the resonance, which is characterized by the flow 

over the potential barrier [7]. In such a system, the 

occurrence of a single-well escape is a result of 

competition between damping and excitation. But this SR 

phenomenon is expected to be more complicated in system 

with memory effect, which can be introduced by hidden 

variables of non-viscous damping [8]. 

Recently, the phenomenon of stochastic resonance in 

the fractional order systems was investigated. The authors 

claimed that the stable steady states can be changed by 

fractional order damping and then lead to single- or 

double-well resonance behaviour [9]. SR was also 

investigated in the under-damped fractional Langevin 

equation, the signal-to-noise (SNR) and output signal’s 

spectrum is found being non-monotonic, that indicates the 

SR phenomenon occur [10]. The authors also investigate 

that the SR phenomenon appears in the fractional order 
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system and this characteristic can be used to detect the 

weak signal [11]. Peng Hao etc. studied the SR in the over-

damped bistable system with chirp signal, the results show 

that there is certain relation with the chirp signal frequency 

and SR [12]. 

In most of the previous studies of SR in fractional-

order system, the noise was assumed to be white Gaussian 

noise. It is commonly used to describe various phenomena 

due to the Central Limit Theorem. White Gaussian noise 

is just an ideal case for fluctuations, however, in practical 

applications, non-Gaussian statistics is better to explain the 

additive noise, such as noise in communications channel 

and embedded wireless laptop transceivers [13], were 

found to be impulsive, so they cannot be characterized well 

using the Gaussian noise. The  -stable noise can describe 

the impulsive characteristic of noise much better, it can 

maintain the generation mechanism of natural noise and 

limit distribution of propagation conditions, match the 

actual data well. Gaussian noise is a particular example of 

it [14]. Its distribution follows heavy-tail stable law 

statistics with infinite variance; it can not only simulate the 

stable situation of noise, but also the impulsive status. 

The interest to discuss  -stable noise in SR has just 

been started. The authors of [15] employ numerical 

methods to find the solution of stochastic Langevin 

equation and space fractional kinetic Equation, they 

studied the properties of the probability density function 

(PDF) of a bistable system driven by heavy tailed white 

symmetric Lévy noise. It is founded that in contrast to the 

bistable system driven by Gaussian noise, in the Lévy case, 

the positions of maxima of the stationary PDF do not 
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coincide with the positions of minima of the bistable 

potential. Tomasz Srokowski [16] discussed with 

generalized Langevin equation with double-well potential, 

the probability density distributions converge with time to 

a distribution similar to a Gaussian but tails have a power-

law form. The SR phenomenon is emerged by means of 

spectral amplification. 

In this paper, we consider the SR phenomenon induced 

by over-damped fractional Langevin equation with  -
stable noise, in addition, by a period driving force. When 

the rate of the jumping between the potential wells due to 

the  -stable noise coincides with the frequency of the 

oscillatory force, the SR is observed. We discuss this 

phenomenon and demonstrate the influence to SR by 

various sets of the model parameters, signal-to-noise 

(SNR) and power spectrum amplification are taken as 

characteristic. 

The paper is organized as follows. In section II, we 

introduce the models and methods of over-damped 

fractional Langevin equation and  -stable noise. The 

related potential function and density function of  -stable 

distribution are obtained in different cases. In section III, 

the variation of output signal and power spectrum with 

noise intensity is analysed, and we demonstrate how model 

parameters such as characteristic exponent modify its 

properties, in particular the SNR function. Section IV is 

some discussions and conclusions. 

 

2 Models and methods 

 

Consider an over-damped fractional Langevin equation 

[15, 16] driven by  -stable noise 

0 1

( )
( ) ( ) ( )C p dV x

D x t F t E t
dx

   , (1) 

where 0 ( )C pD x t  is the p  order fractional order derivative 

to ( )x t  by using Caputo’s definition, and 0 1p  , the 

Caputo’s definition is written as 

( )

1

1 ( )
( )

( ) ( )

n
t

p

a t p na

f
D f t d

n p t




  

   . (2) 

We take a lower limit 0a   for the above definitions. 

1( ) cos(2 )F t A t  is an external signal with amplitude 

A and frequency  , and ( )t  denotes the  -stable noise 

with characteristic exponent   ( (0,2]  ), which obey 

to the  -stable distribution. E is the intensity of  -stable 

noise. When 2  , ( )t  becomes a Gaussian noise. The 

potential function V(x) in the Equation (1) is defined as  

2 4( ) / 2 / 4 ( 0, 0)V x ax bx a b       (3) 

V(x) is a symmetric double-well potential, as shown in 

Figure 1. There are two minima located at 
mx , they are 

separated by a potential barrier with height 

2 / (4 )V a b  . Without the extern periodic forcing or the 

forcing is too weak, the particle cannot roll periodically 

from one potential well into the other on. From Equation 

(2) the Caputo’s definition of fractional order differential, 

we can see the fractional order p relates with the memory 

characteristic, the bigger p means the memory 

characteristic much less, when 1p , it turns into the 

integer differential order, which indicates totally loss 

memory, while 0p , it differential equal to constant 1, 

that indicates the same memory characteristic to the speed 

of each time. 

 
FIGURE 1 Sketch of the double-well potential V(x) 

When there is no noise applied to the Equation (1), just 

in the presence of periodic driving force cos(2 )A t , by 

changing the fractional order p , the double-well potential 

is tilted back and forth, thereby the potential barriers of the 

right and the left well will be successively raised and 

lowered, respectively, in an anti-symmetric manner. 

Figure 2 shows the numerical simulation of Equation (1) 

without the noise ( )t , the other parameters are 

1, 0.3, 0.01a b E f    . Figure 2(a) indicates the 

curves when fractional order p changes from 0.9 to 0.1 

with step 0.1; Figure 2(b) shows the curves when p 

changes from 0.3 to 0.2 with step 0.01. From the figures it 

can be concluded that as the fractional order p attenuated 

from (0,1). The particle is doing partial periodic motion 

around the balance point 1x   or 1x    with frequency 

0.01f  , when p reaches a threshold pt, the particles hop 

the potential barrier top which takes place at 0x   into the 

other well, thus do the periodic motion between 1x    

with the centre at 0x  . From the simulation results, the 

threshold pt is 0.29. When p is less than pt, the particles can 

hop the potential barrier top without external noise energy, 

thus the stochastic resonance phenomenon cannot be 

appeared. While p is greater than pt, the particles just do 

partial periodic motion around one well, it only needs the 

synchronized action with the external noise to produce 

stochastic resonance phenomenon. 
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a) b) 

FIGURE 2 Time domain of output signal with different fractional order p 

 -stable noise ( )t  obeys  -stable distribution, 

whose characteristic function is [14]: 

exp( [1 (tan )sign( )] ), 1
2

( )
2

exp( [1 log sign( )] ), 1

u i u i

t

u i u u i

 
   



   



   

 
    


, (4) 

where (0, 2], [ 1,1], 0 and        , sign(u) 

function is -1 for a negative number, 0 for the number zero, 

or +1 for a position number.  -stable noise characteristic 

function is determined by four parameters: characteristic 

exponent  , scaling parameter  , symmetry parameter 

 and location parameter  . A small value of   will 

imply considerable probability mass in the tails of the 

distribution. It corresponds to the Gaussian distribution 

(for any  ) when 2  , a Cauchy distribution with 

1, 0    and a Lévy distribution with 

1 / 2, 1   . 

Figure 3 illustrates the PDF of  -stable noise with 

different parameters. Figure 3(a) shows the relation of 

symmetric  -stable noise PDF with different 

characteristic exponent parameters  , Figure 3(b) 

displays the relation of skewed  -stable PDF with 

different symmetry parameters  . 

In this paper the fractional order operator is 

approximated by a refined Oustaloup recursive filter [17] 

in a specified frequency range  ,b h   and of order N. It 

is given by 

2

2(1 )

h h

p

h

d ds b s
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b d s b s d
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A good approximation is obtained with b=10, d=9. 

 

3 Numerical results 

 

We fix the parameters in Equation (1) as 1a b  , 

0.3A , 0.01  , , 0.5  , 1.0  , 0   for 

 -stable noise ( )t , Equation (1) turns into: 

3( )
0.3cos(2 0.01) ( )

pd x t
x x E t

dt
        (6) 

where E is the noise intensity. 

 

3.1 THE VARIATION OF OUTPUT SIGNAL AND 

POWER SPECTRUM WITH NOISE INTENSITY 

 

First we investigate the effects of  -stable noise on the 

evolution of x(t) under fractional order p=0.75. We choose 

the noise intensity E=1.5, The time domain and frequency 

spectrum of input signal and output signal x(t) are shown 

in Figure 3. Figure 4(a) shows the time domain of input 

signal which is the external periodic signal with  -stable 

noise, some sharp spikes are visible for the heavy tails of 

 -stable noise, Figure 4(c) illustrates the power spectrum 

of input signal, the peak amplitude of power spectrum is 

0.1732 at frequency 0.01. Figure 4(b) shows the time 

domain of output signal, Figure 4(d) illustrates the power 

spectrum of output signal, the peak amplitude of power 

spectrum is 0.5198 at frequency 0.01, greater than 0.1732, 

which shows the SR significantly occurred. From Section 

II, we found that if there is no noise applied to the system, 

when fractional order p is greater than 
tp , no SR 

phenomenon happened. From Figure 4 we know that the 

 -stable noise with proper intensity can cause the 

hopping of the particle between two potential wells, thus 

lead to the SR effect. 

 

1.5 
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FIGURE 3 α-stable probability density functions 

 
FIGURE 4 The time domain and power spectrum of input and output signal when intensity E=1.5 

Figure 5 illustrates the statistics of particle oscillating 

back and forth between wells, it can be seen that the SR 

phenomenon is the enhancement of output signal via 

tuning the noise intensity, but when the noise intensity is 

bigger enough, the effect of SR gradually diminish. At a 

lower noise level, the particles oscillates at the minima of 

the potential wells for a long time and rarely switches 

between two potential wells, thus the periodic particles can 

hardly be visible at the other potential well. Under this 

circumstances, the periodic component of the output signal 

x(t) is primarily doing motion around the potential 

minima, which is interval motion in stochastic resonance, 

it is illustrated by Figure 5(a) where noise intensity E=0.7. 

However, when the noise intensity is increased to a certain 

value, the input-output synchronization effect happens, the 

periodic particles doing motion between two potential 

wells, we call it the interval motion in stochastic 

resonance. Figure 5(b) illustrated this phenomenon. Figure 

5(c) shows that the synchronization vanishes when noise 

intensity is larger enough, that means the system flips too 

many times between its stable states within each forcing 

period, thus statistically irrelevant. 
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FIGURE 5 The process histogram of output signal 

3.2 THE SNR FUNCTIONS WITH DIFFERENT 

CHARACTERISTIC EXPONENT 

 

SNR is often taken as one quantitative indicator to 

demonstrate the SR phenomenon [18]. The definition is: 

1
lim ( )

( )N

SNR S d
S




 



 


  , (7) 

where ( )S d



 



  represents the power carried by the 

signal, ( )NS   represents the noise power spectrum near 

the frequency, and ( )S   denotes the power spectrum of 

signal. 

Figure 6 shows the SNR versus the noise intensity E 

with different characteristic exponent of  -stable noise, 

the other parameters being kept same. The values of SNR 

decrease with the noise intensity E at first, then begin to 

increase, and when the noise intensity reach to a critical 

value ESR, the values of SNR achieve a maximum and after 

that decrease again. Under the different characteristic 

exponent  , the SNR is clearly non-monotonic, thus 

indicates the occurrence of SR phenomenon. As increasing 

the characteristic exponent   the SNR shifts towards 

bigger values of noise intensity. 

 

4 Discussions and conclusions 

 

In this paper, the properties of over-damped fractional 

Langevin equation with  -stable noise have been studied. 

In case of no external  -stable noise, the stochastic 

resonance phenomenon is observed when fractional order 

is less than one certain threshold. When fractional order is 

greater than the certain threshold, the SR is not appeared. 

However, by applying the  -stable noise, even at the 

situation with larger fractional order, the SR phenomenon 

is occurred, by comparing with the output power spectrum 

of input signal and output signal, we investigate that the 

proper noise intensity enhance the peak value of output 

power spectrum, the behaviour of SNR is non-monotonic, 

there is a maximum value when the noise intensity 

changes, thus is the typical SR phenomenon. We also find 

that at the same conditions, the smaller of the characteristic 

exponent of  -stable noise, the lower of noise intensity to 

achieve the SR. 

 
FIGURE 6 SNR versus noise intensity E with different   
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