

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

52

Mathematical and Computer Modelling

Research on the software trustworthiness extended
measurement based on IMC

Feng He1, Haican Peng2*, Kun Yao3

1College of Mathematics, Physics and Information Engineering, Jiaxing University, China

2Computer Science and Engineering, Beifang University of Nationalities, China

3Hanzhong Branch Company of Shanxi Province of China Telecom China

Received 13 May 2014, www.cmnt.lv

Abstract

This paper introduces two methods of extension measure based on model checking algorithm of interactive Markov chains (IMC) to

decide the software trustworthiness. The first extended measurement is to establish multiple corresponding temporal logic relations for

each software trustworthy attribute that affecting software trustworthiness, also is to use multiple temporal logic to describe a software

trustworthy attribute, which is aim to measure the software trustworthiness on the multi-level and fine-grained. Then the paper will

determine the measurement ultimately. The second extended measurement is to locate for the untrusted states, then find out the detail

path and detail parameters of the path. Next, we will get the location that not trusted through further analysis. Eventually meet people’s
expectations by improving.

Keywords: software trustworthiness, model checking, finite state machine model, trustworthy attribute

1 Introduction

Trust is essential to most human transactions [1].

Numerous research papers have addressed trust and

software trustworthiness from many kinds of different

perspectives in recent years [2]. However, at present, the

existing researches mainly focus on two aspects, which are

software reliability metrics and safety assessment [3]. M.

Ohba divided the software reliability model into two

categories: static model and dynamic model according to

the modelling object [4]. Among them, the dynamic model

becomes popular and has the most researchers. It models

with some data or information related to the running time.

This type of dynamic model utilizes software-testing

process to obtain the failure time or software failure

frequency over a period of time to estimate the number of

failures of the entire software and time of failure

occurrence or some other data involved with software

failure. This typical model is Markov Process Model [5],

Non-homogeneous Poisson Process (NHPP) [6] and

Bayesian Model [7]. Certainly, there are also other

extended models.

In addition, software interactivity cannot be neglected

any longer because of that, too many safety issues are

introduced through interaction. Nonetheless, people still

do not keep a watchful eye on the measurement of the

software interactivity. Therefore researching on software

interactive security measure is a necessary complement for

software reliability measure research and also a new

development. This paper will model the software

* Corresponding author e-mail: phc0409@126.com

interaction as the state model and utilize the model-

checking algorithm, which is a formal verification by

exhaustively searching the finite state automata. And then

convert the verification of properties to the corresponding

temporal logic, using the model checking tool to traverse

system model automatically, at last, it will check whether

the system meets the corresponding properties or not.

Compared with ordinary artificial validation method,

model checking is of speed and high accuracy and is very

useful for realizing the automation. The most important is

that this model-checking algorithm not merely can reflect

the behaviours of the software from the angle of function

layer, but also further measure the software credibility

from a performance perspective. Hence, this paper selects

the model-checking algorithm of the IMC model to give

two extended measurement to determine the software

trustworthiness.

The scope of this paper is organized as follows: Section

2 introduces related work. In Section 3 presents the model

checking in detail, especially the two extended

measurement methods based on IMC and will utilize the

two extended methods to decide the software

trustworthiness. At the end of this chapter we verify the

feasibility and effectiveness of these methods by

experiments. Conclusions and some directions for future

research are given in Section 4. Section 5 is the

acknowledgements.

app:ds:keep
app:ds:a
app:ds:watchful
app:ds:eye
app:ds:on

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

53

Mathematical and Computer Modelling

2 Related work

Many reliability models and measurement methods have

been proposed to estimate the software trustworthiness up

to now. However, due to the software is more complex, so

now there is no authority measurement in the world. At

present, the most popular methods of software reliability

analysis and evaluation include based on the development

model, based on the informal method, based on the

software behaviour, based on the formal method and based

on the model checking measurement.

Software reliability analysis and measurement based

on the development model usually makes full use of

various development model to guarantee the reliability of

the software. [8] proposed a trusted software design and

development process based on model-driven architecture

(MDA) which combines the executable formal

specification language with UML description method to

realize the executable formal specification description in

the whole software development life cycle and guarantee

the credibility of the software. This method can effectively

detect the software behaviour to identify whether is

trustable or not. Nonetheless, there is no detailed

implement process and clear instructions. [9] described the

software architecture applying AC2-ADL (Architectural

Description of Aspect-Oriented Systems) and proposed a

kind of trusted software architecture design method

supporting run-time monitoring. This way can effectively

achieves the trusted software system development process,

but still need to further improve and research on software

credible guarantee mechanism. [10] extended the trusted

chain suggested by TCG (Trusted Computing Group)

based on trusted computing platform. Through the

description of irregular track, it inserted the corresponding

check sensor into the key code that needed to be checked

to implement dynamic reliable detection at the runtime. It

is based on trusted computing and has the characteristics

of high formalization, but the applicable scope is small.

Based on the formalization of software reliability

mainly uses artificial method to analyse software and

obtain the corresponding measure matrix to evaluate

software reliability. [11] puts forward to extract different

attribute benchmark index to evaluate the trusted degree

based on the layered mechanism. This method is

applicable to large modular software system.

Nevertheless, the process of classifying the software

reliable properties and obtaining the corresponding

indicators is not fully automated. [12] proposed a trusted

software process assessment method based on the

evidence. This way picks the objective data as the

evaluation data. However, the corresponding metrics and

algorithm still need further improvement.

In information security, the research on the behaviour

of the software has always been used in intrusion

detection. The theory of based on the software behaviour

has been increasingly used in the dynamic measurement of

trusted computing. [13] introduced a dynamic credible

measurement based on software behaviour. At the same

time, it puts forward an authentication mechanism based

on expanded behaviour trace and behaviour measurement

information. [14] used the behaviour track and

checkpoints scenario to describe the dynamic

characteristics, its aim is to detect the attacks. The software

will stop running as long as finding any behaviour that

deviation from the original expected track. Based on

dynamic credible measurement, the measurements are

divided into trusted or untrusted, but the credibility of

software cannot be simply represented by trusted or

untrusted.

Compared with the general software reliability

analysis methods, the formal method based on strict

mathematical foundation can carry on the formal

descriptions or verification accurately and is suitable for

reliability analysis and evaluation of the software.

Model checking is a kind of effective formal

verification method. With the increasing development of

model test technology, more and more researchers will

apply the model checking technique to property

verification of the code. [15, 16] both adopted the model

checking method to validate the software trustworthiness.

However, the current study is centred around the UML

diagram of the early stage of the software development

phase, for this reason, it does not go deep into the

interaction level and also cannot verify the complex

software trustworthiness in the operation phase. In this

paper, we utilize the model-checking algorithm of IMC to

extend the measurement of software trustworthiness.

3 Model checking

In this section, we will introduce the model-checking

algorithm in detail. Next, the experiment, analysis and

measurement will be given.

The structure of the model is roughly divided into three

parts: modelling phase, running phase, analysis phase. The

overall structure framework is shown in Figure 1 below.

app:ds:verification

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

54

Mathematical and Computer Modelling

FIGURE 1 Overall structure framework

3.1 MODEL CHECKING ALGORITHM

The key algorithm is the two numerical iterative algorithm

F(s,t) and G(s,t).

Theorem one: for 21  t
AU .

1. If 2| s , 1),(Prob 21  t
AUs .

2. If)()|(21 PSss  ,

dxUsessR

Us

xt
A

xsE

Ss

t

t
A

),(Prob),(

),(Prob

21
')(

0

'

21

'.











 .

3. If)()|(21 NSss  ,

.),(Prob

),(Prob),(

),(Prob

),(

2
)(

1
'

21
')(

0),(

)(

0

'

21

'

'



 

















AssI

st
A

xt
A

xsE

ssR

s

t
A

A

A

Us

dxUsessR

Us





4. 1),(Prob 21  t
AUs .

Theorem two: for 21  

B

t

AU .

5. If))))()(()|((()|(\2
''

1 tsssss BAB   ,

1),(Prob 21  
B

t
AUs .

6. If)()|(1 PSss  ,

dxUsessR

Us

B
xt

A

Ss

t
xsE

B
t

A

),(Prob),(

),(Prob

21
'

0

)('

21

'













 .

7. If))()(()()|(\1 tssNSss BBA  

.),(Prob

),(Prob),(

),(Prob

\),(

2
)(

1
'

21
')(

0),(

)(

0

'

21

'

\

'

\



 

















BAssI

B
st

A

B
xt

A
xsE

ssR

s

B
t

A

BA

BA

Us

dxUsessR

Us





8. 1),(Prob 21  
B

t
AUs .

3.2 THE TWO EXTENDED MEASUREMENT

METHODS

The model-checking algorithm can only assess the

performance of the system. However, most users hope to

know whether the software system is trusted or not and the

measurement value. In addition, state transition as well as

the parameters in the model is also important. In this part,

we will give the two extended methods to solve the above

problems.

3.2.1 The first extension measure

The first extended measure is to establish multiple

corresponding temporal logic relations for each software

trustworthy attribute that affecting software

trustworthiness, that is to say that using multiple temporal

logic formulas to describe a software trustworthy attribute,

which is aim to measure the software trustworthiness on

the multi-level and fine-grained. Then the paper will

determine the measurement ultimately.

Here, we have to explain the trustworthy attribute,

which generally refers to the functionality, the

maintainability, the reliability, the survivability and the

controllability of the software. Utilizing these attributes to

describe the software trustworthiness. However, each

attribute is expressed by multiple temporal logic formulas.

The concrete practices are as follows.

The main algorithm of model checking just checks

whether each state meet the path formula that is given. If

meet the formula, it will return yes, whereas return no. In

our first extension measure, we still adopt it. In addition,

each temporal logic formula that corresponding to each

trustworthy attribute will be taken into account. Then

establish the corresponding relations between the

important states and the results of these states whether

meet each temporal logic formula, as shown below:

,

...

............

...

...

},...,,,{

10

11110

00100

210



























nmnn

m

m

scorrespond
nssss

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

55

Mathematical and Computer Modelling

where);(mjniij  represents that the state is

whether meet the jth temporal logic formula or not. If met,

then: (;) 1ij i n j m    or 0);( mjniij . It is

easy to find that 1);(,,  mjniji ij is the best

condition.

Now assume that:],...,,[21 nsssS  ,)(nisi 

indicates the weight of state is . 1 2[, ,...,]mL l l l ,

()jl j n indicates the weight of the jth temporal logic

formula.

Then the last measurement of the whole software can be

simply represented by 1 1

T

k n nm mM S L   ,
kM

indicates the kth trustworthy attribute that affecting the

software trustworthiness. After all are calculated, we can

continue to choose the weighted average method to

calculate the system reliability value. During this process,

the most important step is to determine the corresponding

temporal logic formulas for each trustworthy attribute,

because only then can we really reflect the software system

in detail. The experiment will be given in Section 3.3.

3.2.2 The second extension measure

The second extension measure is to locate the untrusted

states, then find out the detail path and detail parameters of

the path. Next, we will get the location that not trusted

through further analysis. Eventually meet people’s

expectations by improving.
In the model of IMC, state transition is used to describe

the path parameters. And the crucial factor of state

transition is the occurrence time of acts and the state of

residence time. Suppose we get the times, then we can

clearly depict the system. Hence, the paper obtains the

runtime parameters as follows:

, (), ()i k i act i j ns con s s s s       ,

where kcon denotes the jump from state is to state js

belongs to the kth condition, ()is denotes the residence

time of the state is ,)(iact s denotes the occurrence

time of the act from the state is .

The experiment will also be shown at the next section.

3.3 EXPERIMENT AND MEASUREMENT

In this part, we will give the related experimental data and

analysis for the two extension measure.

3.3.1 The experiment of the first extension measure

The experiment example is the example of 6.5.1 in [17].

Figure 2 is the IMC model diagram, as follows:

FIGURE 2 IMC model of a fault-tolerant system

Act is the set of acts: }Reset,Rep,,,,{ 321 vFFFFAct  ,

iF shows the ith processor is not work,
vF shows the

vector cannot work normally Rep represents the fix act, the

act of Reset can reset the system.

0.01,  0.02,  0.001,  0.2, 

2
0.2,F 

3
0.1,F  0.4,

vF  Rep 0.1, 

Reset 0.1.  As shown in Figure 2, there is no doubt that

the most important question is the fault tolerance in a fault-

tolerant system of IMC model. However, the fault

tolerance belongs to reliability. Then we select the

reliability to describe the trustworthiness of the system.

Temporarily we ignore other properties in this example.

Next, we can use several temporal logic equation to

describe the fault-tolerant system for fine-grained, as

follows:

1 1

12

1 0.02 { , } { , }()
v vF F F FP true U true

  ,

1 2 3

12

2 0.2 { , , ,Re }()F F F pP ture U true



  ,

12

3 0.5 2().ActP true U 

  

The fault tolerance is depicted using the three temporal

logic formulas. The first step is to build a relationship

according the result as follows:

0 1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , , }

1 0 1 0 1 0 1 0 0 1 1

1 1 1 1 1 1 0 0 0 0 0 .

1 1 1 1 1 1 0 0 0 1 1

corrensponds
s s s s s s s s s s s 

 
 
 
  

The second step is to determine the weight set of each

state and the temporal logic formula respectively.

0 1 10{ , ,..., }

{0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.06,0.1,0.12,0.02},

S s s s 

   1 2 3, , 0.3,0.3,0.4 .L l l l 

The reliability metrics is finally determined using the

following formula:

1 1 (11, 3) 0.6380T

k n nm mM S L n m      .

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

56

Mathematical and Computer Modelling

For this particular system, the measurement of the fault

tolerant is equal to the measurement of the reliability. So

the trustworthiness measurement value of the fault-tolerant

system is 0.6380. However, in general, the software

trustworthiness is depicted by many trustworthy attributes.

At this point, we should apply different method to

synthesize according to the different system and situation.

We can conclude that temporal logic formulas data in

table 1 and the corresponding results in table 2 according

to the first extended method and algorithm procedures.

TABLE 1 Temporal logic formulas data

Prob(si,φ) Φ1 Φ2 Φ3

S0 0.017 0.321 1.000

S1 0.022 1.000 1.000
S2 0.017 1.000 1.000

S3 0.021 0.213 1.000

S4 0.110 1.000 1.000

S5 0.021 1.000 1.000

S6 0.121 0.187 0.141

S7 1.000 0.000 0.475
S8 1.000 0.000 0.462

S9 0.018 0.000 1.000

S10 0.011 0.000 0.501

TABLE 2 Corresponding results

Φn S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Φ1 1 0 1 0 1 0 1 0 0 1 1
Φ2 1 1 1 1 1 1 0 0 0 0 0

Φ3 1 1 1 1 1 1 0 0 0 1 1

3.3.2. The experiment of the second extension measure

The way of the second extension measure is to obtain the

detail path and path parameters for the states, which cannot

meet the temporal logic formulas in the first extension

measure. Then locate the positions that make the reliability

low and give the reasons by analysing the path and the path

parameters.

Here we still choose the example above, track the path

and extract the operation path parameters to the fault-

tolerant. We find the state 6s does not meet the temporal

logic formula 2 according the Table 2. Now we will track

the path and extract the operation path parameters to the

state 6s as follows:

S6<0.3023,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.3810,Maxdouble>-S4<Maxdouble,0.2>-
S6<0.2832,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.3551,Maxdouble>-S2<Maxdouble,0.1>-
S0<0.2654,Maxdouble>-S1<Maxdouble,0.1>-

S3<0.3331,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.2446,Maxdouble>-S5<Maxdouble,0.1>-
S3<0.3086,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.2314,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.2785,Maxdouble>-S2<Maxdouble,0.1>-
S0<0.2119,Maxdouble>-S1<Maxdouble,0.1>-

S3<0.2608,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.1928,Maxdouble>-S5<Maxdouble,0.1>-
S3<0.2376,Maxdouble>-S2<Maxdouble,0.1>-

S0<0.1769,Maxdouble>-S1<Maxdouble,0.1>-

S3<0.2181,Maxdouble>-S4<Maxdouble,0.2>-
S6<0.1589,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.1961,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.1417,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.1379,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.1288,Maxdouble>-S5<Maxdouble,0.1>-
S3<0.1226,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.1477,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.1070,Maxdouble>-S2<Maxdouble,0.1>-
S0<0.0984,Maxdouble>-S1<Maxdouble,0.1>-

S3<0.1246,Maxdouble>-S2<Maxdouble,0.1>-

S0<0.0869,Maxdouble>-S1<Maxdouble,0.1>-
S3<0.0840,Maxdouble>-S2<Maxdouble,0.1>-

S0<0.0766,Maxdouble>-S1<Maxdouble,0.1>-

S3<0.0767,Maxdouble>-S4<Maxdouble,0.2>-
S6<0.0687,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.0835,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.0585,Maxdouble>-S5<Maxdouble,0.1>-
S3<0.0706,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.0459,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.0546,Maxdouble>-S4<Maxdouble,0.2>-
S6<0.0340,Maxdouble>-S5<Maxdouble,0.1>-

S3<0.0394,Maxdouble>-S2<Maxdouble,0.1>-

S0<0.0250,Maxdouble>-S1<Maxdouble,0.1>-
S3<0.0290,Maxdouble>-S4<Maxdouble,0.2>-

S6<0.0150,Maxdouble>-S8<Maxdouble,0.4>-

S10<0.0014,Maxdouble>-S9<Maxdouble,0.1>

Among them, the Maxdouble represents the maximum

double time. Here, if there is no Markov transfer except

action transfer, we assume that the residence time of the

state is Maxdouble. Similarly, if there is no action transfer

except Markov transfer, we suppose the occurrence time

of the action is Maxdouble.

From the above path, we can find that when the system

start run from s6 to s9, then the residual execution time is

0.0625 unit of time. However, the act starting from s9 is

only a Reset action operation, and the execution time of

the Reset action is 0.1 unit of time. Hence, the vector fails

due to the remaining time 0.0625 is less than 0.1. As a

result, the state s6 cannot meet the temporal logic formulas.

Next, it affects the software trustworthiness and makes the

measurement low.

4 Conclusions

This paper mainly proposed two expended measurement

methods based on IMC model. The first expended method

can give a final credibility value according to the result of

temporal logic formulas. More than that, the result is

intuitive and easy to understand to users. The second

expended method can track the path and extract the

operation path parameters for the important and untrusted

states in accordance with the specific results of the first

expended method. Of course, the intention is to analysis

the cause of the result.

Software interaction is one of the most important key

factors to the software reliability research. In the current

open network environment, the introduction of interaction

often leads to unpredictable risks, while this article on the

basis of software interaction has proposed two extended

methods, but there are a lot of limitations in this kind of

methods based on IMC model. Moreover, the factors we

considering are still not enough. So next, we want to

introduce more data information on the basis of the

dynamic interaction model, for example, the data or

information that has nothing to do with the running time to

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 52-57 He Feng, Peng Haican, Yao Kun

57

Mathematical and Computer Modelling

dynamically reflect the trustworthiness more accurately,

comprehensively and truly.

The purpose to study the trusted software is to build the

trusted software system that can meet the users, which

requires the creditability validation before putting it into

use. However, the current measurement theory, models and

methods are mostly stay in theory, there are also some

scholars that tried to apply various measurement methods

in different kinds of industrial production, service

system ,such as in [19-22], and obtained a series of

research achievements, this article only carried on the

analysis and verification of the experiment on a small fault

tolerance system. Then the focus of next step is to try to

apply the extended methods to more areas of different

systems. This will make the theoretical model can be used

in real life successfully and embody the research

significance.

Acknowledgments

This work was supported by the National Natural Science

Foundation of China (71061001): Research on the key

technology for semantic business process model validation.

References

[1] Cerf 2010 V G Trust and the Internet IEEE Internet Computing 14(5)

95-6

[2] Yuyu Yuan and Qiang Han 2011 A Software Behavior
Trustworthiness Measurement Method based on Data Mining,

International Journal of Computational Intelligence System 4(5)

817-25
[3] Tang Y, Liu Z 2010 Progress in Software trustworthiness metrics

models Computer Engineering and Applications 46(27) 12-6

[4] Ohba M 1984 Software reliability analysis models IBM Journal of
Research and Development 28(4) 428-43

[5] Littlewood B A 1975 Reliability model for systems with Markov

structure Applied Statistics 24 172-7
[6] Huang C Y, Lyu M R, Kuo S Y 2003 IEEE Transactions on Software

Engineering 29(3) 261-9

[7] Littlewood B, Verrall J L 1973 A Bayesian reliability growth model
for computer software Applied Statistics 22(3) 332-46

[8] Tang Y, Du Y, Liu W 2009 Design of Trusted Software Based on

MDA and Executable Formalization Computer Engineering 35(19)
138-40

[9] Wen J, Wang H, Ying S, Ni Y, Wang T 2010 Toward a Software

Architectural Design Approach for Trusted Software Based on
Monitoring Chinese Journal of Computers 33(12) 2321-34 (in

Chinese)

[10] Tian J, Li Z, Liu Y 2011 A Design Approach of Trustworthy Software
and Its Trustworthiness Evaluation Journal of Computer Research

and Devolopment 48(8) 1447-54 (in Chinese)

[11] Mukherjee A, Siewiorek D P 1997 IEEE Transactions on Software
Engineering 23(6) 366-78

[12] Du J, Yang Y, Wang Q, Li M 2011 Evidence-Based Trustworthy

Software Process Assessment Method Journal of Frontiers of

Computer Science and Technology 6 501-12 (in Chinese)
[13] Zhuang L, Cai M, Li C 2010 Software Behavior-Based Trusted

Dynamic Measurement Wuhan University (Nat Sci Ed) 56(2) 133-7

(in Chinese)
[14] Cheng L, Zhang Y 2009 A Verification Method of Security Model

Based on UML and Model Checking Chinese Journal of Computers

32(4) 1035-1039 (in Chinese)
[15] He F, Zhang H, Yan F, Yang Y, Wang H, Meng X 2010 Test of Trusted

Software Stack Based on Model Checking Wuhan University (Nat

Sci Ed) 56(2) 129-32 (in Chinese)
[16] Wu J, Wu Y, Tan G 2007 Interactive Markov Chain: The Design,

Verification and Evaluation of Concurrent System Science Press:

Beijing (in Chinese)
[17] Zhuang L, Cai M, Shen C 2011 Trusted Dynamic Measurement

Based on Interactive Markov Chains Journal of Computer Research

and Development 48(8) 1464-72 (in Chinese)
[18] Mohammed M H,·Lim C P,·Quteishat A 2014 A novel trust

measurement method based on certified belief in strength for a multi-

agent classifier system Neural Computing and Applications 24(2)
421-9

[19] Huynh T D, Jennings N R, Shadbolt N R 2006 Developing an

Integrated Trust and Reputation Model for Open Multi-Agent
Systems Autonomous Agents and Multi-Agent Systems 13(2) 119-54

[20] Saint Germain B, Valckenaers P, Van Belle J, Verstraete P, Van

Brussel H 2012 Incorporating trust in networked production systems
Journal of Intelligent Manufacturing 23(6) 2635-46

[21] Zhan G, Shi W, Deng J 2009 Sensor Trust: A Resilient Trust Model

for Wireless Sensing Systems ACM Sensys Ann Arbor USA 1-40

Authors

Feng He, born in November, 1964, Ningxia, China

Current position, grades: full professor of Computer Science at Computer Department, Jiaxing College, China.
University studies: M.Sc. in Mathematics (1977), PhD in Computer Sciences (2008) at Donghua University, China.
Scientific interest: Database and knowledge engineering, service-oriented computing
Experience: Lead and participated in National and Provincial Scientific research projects.

Haican Peng, born in April, 1987, Henan, China

Current position, grades: master's degree student.
University studies: Computer Science.
Scientific interest: information system analysis and integration, data mining.

Kun Yao, born in February, 1989, Shanxi, China

Current position, grades: Hanzhong Branch Company of Shanxi Province of China Telecom.
University studies: master's degree in Computer Technology (2013).
Scientific interest: computer networks and information security.

