

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

65
Computer and Information Technologies

Design of software error detection system based on SPARC V8
and research on the key technology

Chunmei Huang1*, Chunmao Jiang1, MingCheng Qu2
1School of Computer Science Technology and Information Engineering, Harbin Normal University, Harbin, Heilongjiang 150025

2School of Computer Science and Technology, Harbin Institute of Technology

Received 12 June 2014, www.tsi.lv

Abstract

This paper analyses the key issues confronted when SIHFT is implemented on the SPARC V8 platform, gives the algorithm to solve

the problem and the corresponding technology solutions. Software error detection technology system was designed based on SPARC

V8, and software signature control flow error detection technology was implemented, the system is based on the architecture of

SPARC V8, uses software signature control flow error detection technology and copy instruction error detection technology as the

prototype, it’s a software system which detects transient faults induced by space radiation and was developed through research,

analysis and transformation, with availability, modifiability, portability, maintainability, readability, scalability and other features.

The error detection coverage rate of software error detection technology suitable for target platform was tested through simulation

experiments. The result data of experiments conducted in the emulator TSIM shows that on the basis of given average performance

overhead, the system had high error detection coverage rate when brought in register injected fault and memory injection fault. This
proved the SIHFT technology is feasible and effective.

Keywords: SIHFT, architecture, SPARC V8

* Corresponding author e-mail: hsdrose@126.com

1 Introduction

SIHFT (Software Implemented Hardware Fault

Tolerance) technology is a Software fault-tolerant

technology, which is developed by the Stanford

university centre for reliability calculation for ARGOS

projects, through the method of software to detect and

correct hardware transient fault caused by radiation. It is

comprised of a software implemented EDAC technology,

copy instruction error detection technology (EDDI),

Control Flow Checking by Software Signatures (CFCSS)

and Watchdog timer. Due to the majority of storage has

implemented hardware EDAC at present, while watchdog

timer belongs to the category of hardware research, so in

this article, we are dedicated to research two core

technologies which are Control Flow Checking By

Software Signatures(CFCSS) and copy instruction error

detection (EDDI).

SIHFT is still in the preparatory stage in domestic,

has not yet entered the stage of practical development [1,

2]. In foreign countries, space research institutions and

academia carried on the thorough research on this

question and some research results were obtained [3, 4].

The United States ARGOS (the Advanced Research and

Global Observations Satellite) Satellite did an in-orbit

experiment about the main method of the commercial

device resist radiation and the SIHFT error detection

coverage reached more than 99% [5].

Bound by design technology and production

technology and other aspects, there is a large gap between

the domestic research on microprocessor and application

level with foreign. Generally speaking, the

microprocessor performance is low and relies on import

leading to cannot satisfy the spacecraft to achieve more

control autonomously and data processing requirements.

What’s more, in the field of high technology our

countries are blockaded by foreign countries. Therefore,

it is very difficult to obtain radiation-hardened hardware

from abroad, so the software fault-tolerant technology has

a special significance in the development of China's space

industry. This paper analyses the key issues confronted

when SIHFT is implemented on the SPARC V8 platform,

gives the algorithm to solve the problem and the

corresponding technology solutions. And on this basis,

design a software error detection technology system

based on SPARC V8.

2 Fundamental Concepts

2.1 SOFTWARE SIGNATURE CONTROL FLOW

ERROR DETECTION TECHNOLOGY

Software signature control flow error detection

technology is a kind of do not need a watchdog processor

or other hardware accessory pure software control flow

error detection technology, used to test the execution of a

program control flow errors which caused by the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

66
Computer and Information Technologies

radiation. The primary idea is to divide program into

basic blocks, and next construct the program flow chart,

for each basic block gives a unique signature in advance,

which called a compile time signature, and compute the

value which is the result of function f while the input is

the signature of the father’s basic block and the son’s, and

later save the value into the basic block of the son, this

information is compiled into the program at compile

time. When the program executed, the control flow for

each run to a new node will generate a runtime signature

G according to the information, which is compiled into

the program at compile time. Subsequently compare the

runtime signature G and compile time signature, if they

are equal, there are no program control flow errors

occurred; if unequal, there are the program control flow

errors have taken place, then turn into fault handler.

When multiple control flow inflow the same node,

runtime adjusted signature D is required to test control

flow detection.

Software signature control flow error detection

technology used V = {v1, v2,...,vn } represents the basic

block of a collection of nodes, used E = { brij | brij is the

edge from node vi to another node vj} represent a

collection of edges of control flow between the basic

blocks, so a program can be expressed by a program flow

chart map P = {V, E}. Node vj is included by the succeed

collection suc (vi) of node vi, if and only if brij in E.

Node vi is included by the precursor collection pred (vj)

of node vj, if and only if brij in E. If during the program

executes, the edge brij exist but brij is not in E, says edge

brij is illegal. Illegal side shows that the control flow

error happened. If one node v received more than two

control flow, referred to as the fan-in node, which has

more than one node in the pred (v).

2.2 COPY INSTRUCTION ERROR DETECTION

TECHNOLOGY

Copy instruction error detection technology refers to the

repeated calculation by "copy" instructions to error

detection. The basic idea is to use different registers and

instruction of the variable "copy" assembly language

source program. The original instruction of the assembly

language source program is called main instructions; the

"copy" instructions added to the source program is called

shadow instruction. General registers and memory units

are divided into two groups to correspond to the main

instructions and shadow instructions. The homologous

registers and memory units should always have the same

value, if the value in a pair of register corresponding to

the main instructions and the shadow instructions

becomes not equal because of the instantaneous error,

therefore, compare values in this two register can detect

the errors. In the copy instruction error detection

technology, introducing comparison order to compare the

value of the corresponding register, if they are an unequal

then call error handler.

3 System Design

Software error detection technology system to after

modification of the GCC cross compiler generates a fixed

part of registers the assembly language source as an

input, and to the error detection function of an assembly

language program as an output. As shown in figure 1, it is

the top chart of the system data flow graph, depicts that

the developed system data exchange relations with the

surrounding environment.

FIGURE 1 The system model of software error detection system

By analysing software signature control flow error

detection technology and copy instruction error detection

technology, the processing steps of the system should be,

first of all, needed to divide the assembly language source

program into basic blocks, based on basic block generate

the program flow chart, and next according to the

structure of the program flow chart in each basic block's

head to add software signature check instructions. For

each basic block, no stores basic block is divided at first,

subsequently generates shadow instruction and constructs

a dependency graph, finally carries on the instruction

scheduling. Therefore, we will functions divided into

basic blocks; software signature technology processing

and copy instructions deal with three parts, as shown in

figure 2.

FIGURE 2 The function of software error detection system

System has three input files, which are the assembly

language source program; instruction opcode grouped

information file and register division method file.

Considering the modifiability and scalability of the

system, will be mainly related to the specific platform

information about an input to the form of a configuration

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

67
Computer and Information Technologies

file. Instruction opcode grouped information file storage

system related instruction operation code and the

information about the operation code group. Register

division method file storage SPARC V8 registers the use

method includes the corresponding relation of main

registers and shadow registers; software signature control

flow error detection technology used registers, the

matching relation of status register and a certain register.

After the assembly language source program divided into

basic blocks, with basic block’s information and the

configuration file input to the software signature part

processing, therefore, obtained the assembly language

program, which has the function of control flow check.

Finally, delivery the signature check instructions and

assembly language source program of each basic block to

copy instruction’s parts processing, obtained the

assembly language program which has the function of

copy instructions check and control flow check.

After dividing the basic block, the data flow passed to

copy instruction’s error detection technology is the

information of basic block. After software signature error

detection technology processing, the data flow passed to

copy instruction technology is with signature check

instructions information of basic block. These two types

of information transmitted is intended to enable the two

technologies can be used independently; the system is

easy to cut.

In summary, the software error detection technology

based on SPARC V8 system architecture is shown in

figure 3. System consists of three modules. Basic block

partition module called label mapping, function return

statement processing, determine the basic block entry and

determine the basic block exports. Software signature

technology processing function subdivided into control

flow graph generation; add software signature check

instructions and optimization. Copy instruction’s

technology processing called no store basic block

division, produce the shadow’s instructions, and construct

a dependency graph and instruction scheduling.

Command recognition module almost is called by all

modules (not noted on the picture). Each module

implements must follow high cohesion and low coupling

principles. System according to the level gradually

refined until the bottom of the module.

FIGURE 3 The structure of software error detection system

4 The key technology research

4.1 INSTRUCTION RECOGNITION

Function of the instruction recognition modules is given

an instruction; identify the opcode of this instruction. In

basic block division, shadow instruction generation and

other process modules, all need to be able to correct

recognition instruction, thus instruction recognition

module is called by the upper most modules.

In order to improve the efficiency of instruction

recognition, all the opcode saved into the hash table in

alphabetical order, hash function: hash address = first

address of the hash table + opcode field first character

ASCII value - 97. During the recognition, first calculate

the hash address according to the opcode field first

character, second followed by matching opcode of the

overflow table, if the overflow table has a prefix of the

encoding, depending on the opcode field length matching

recognition.

All the instruction cpcode related to system and

grouping information are stored in the instruction cpcode

grouping information files, the instructions grouped by

category (data processing, data transmission and control

flow), syntax format and the processing method of

shadow instruction.

4.2 BASIC BLOCK DIVISION

Basic block is the largest collection of the statement’s

sequence for the program, which can be executed

sequentially; it has only one entry statement and export.

Basic block is an important concept in the control flow

and data flow analysis to the compiler theory. Basic block

division is the preamble step to construct a program flow

graph. Program flow graph is the program's control flow

semantic representation; each node represents a basic

block, and edge represents control flow between basic

blocks. The division of basic block in compiler theory

and based on basic block division code optimization is

carried out on the intermediate code, while the software

error detection technology basic block division was

conducted on the assembly code. The abstract

intermediate code of a basic block division algorithm is

applied to the assembly language on basic block division,

and the handling of the specific issues related to an

instruction set is needed for basic block division problem.

The intermediate code of the basic block division

algorithm from here, assembly language basic block

division algorithm is given.

4.2.1 Basic block division algorithm of assembly

language program

Input: assembly language source program;

Output: The information table of Basic block

(1) Label mapping

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

68
Computer and Information Technologies

Establish one-to-one relationship between the label

and its line number.

(2) Sub functions return statement processing

Set up corresponding relationship between function

return statements of assembly language program and the

statement to jump.

(3) Determine the entry of basic block

After program entry, the line numbers in the assembly

instructions to fill entrance set.

For the part of operation code, which is

B/CALL/TA/FBA/CBA or B + A unconditional jump

instruction, the label will have to jump map to line

number, fill the assembly instruction line number which

after the line number just mentioned to the entrance set .

For the function return statements, fill the line number

followed by the line number of assembly instruction, to

which is function return statement jumped to the entrance

set.

For conditional transfer instruction, assembly

instruction line number after this instruction fills to the

entrance set. Then let the conditional transfer instruction

label mapping line number, fill the assembly instruction

line number followed by this line number to the entrance

set.

(4) Determine the export of basic block

Sort the entrance set by the line number ascending,

S1, S2,…,Sn. For Si, i = 1, 2,... , n - 1, will be the first

transfer instruction’s line number after Si into export sets,

if there is no transfer instruction, will be the last one

before entrance Si+1 assembly instruction line number

fill in the exports set. For Sn, will be the first transfer

instruction’s line number after Sn into export sets

4.3 CFCSS INSTRUCTION GENERATION

4.3.1 Generation algorithm of signature error detect

instruction

Input: Program flow graph

Output: The information table is comprised of error

detect instruction

Explanation: Algorithm is to define the composition of

each node in the flow diagram error detect instructions.

The error detect instructions are divided into instruction

related to G as “G=Gdj” 、 “br G≠sj error” 、

“G=GD” and related to D such as “D=0000”or

“D=SiSm” .There are all or part of the instructions

included by one node. For one certain node, the position

of G_FLAG represents the composition of error detect

instruction related to G has been defined; the position of

D_FLAG represents whether error detect instruction

related to D has been defined in the error detect

instructions. When it detects a situation that is beyond

the scope of processing a message will be sent out and

quit.

Algorithmic process:

(1) Initialization, count the data which the subsequent

steps of the algorithm needed. Including, the

number of each node’s precursors, if the number of

precursor is greater than 1, mark for the fan-in node;

the number of each node’s successor and the

number of fan-in node in the successor, mark

whether each successor is fan-in node.

(2) Grants each node of the program flow graph a

unique signature.

(3) Sort all the nodes by the number of fan-in node in

successor descending.

(4) For each node i in the list after sorting

If (no precursor node) //head node

{ Assembly code is “mov GSR, Si”; location is

G_FLAG;

If there is no successor node, there is no instruction of

“D=SiSj” in the mark error detection instruction.

 }

 else

//both have precursor and successor node

{ if (successor node j is non-fan-in node)

{ calculate dj=SiSj, there is instruction of “G=G

dj” and ”br G≠sj error” in the mark error detection

instruction, there is no instruction of “G=G D”,

location is G_FLAG.

 If there is no fan-in node in the successor of node,

there is no instruction of “D=SiSj”, location is

G_FLAG.

 }

 else if(successor node j is fan-in node)

 { if(i’s D_FLAG has set)

{ if(there is a fan-in node in it’s successor node

G_FLAG has not set)

tip exit;

 else go to(4)(handle next node)

}

 else

{ if(there is a D_FLAG had positioned pioneer

node ,which is node i’s successor’s fan-in) tip exit;

 else

for each fan-in node j: calculate dj=SiSj, there is

instruction of “G=G dj”, “br G≠sj error” and “G=G

D” in the mark error detection instruction, location

is G_FLAG.For i, instruction of “D=0000” in the

mark error detection instruction ,location is D_FLAG.

For each non- precursor node of i, there is instruction

“D=SiSm” in the mark error detection instruction,

location is D_FLAG.

}

}

}

4.3.2 The optimization of the signature error detect

instructions

The function of optimization of the signature error

detected instructions is to optimize the signature error

detect instruction, to reduce the cost of add signature

error detect instructions. According to software signature

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

69
Computer and Information Technologies

error detection technology optimization algorithm, under

the need in some basic blocks first do not conduct the

compare of error detection. If there is an error of control

flow, error will be according to the control flow being

transferred to the back, until detected in once compared.

The advantage is to reduce the comparison instruction,

improves the application performance; the shortcoming is

to accumulate the error backward, once found errors,

code needs to be executed again whose length gets

greater during restoration.

4.4 INSTRUCTION GENERATION OF EDDI

Copy instruction error detection technology through the

"copy" instruction to conduct repeated to calculate to

detect transient faults. In this technique, general-purpose

registers are divided to two groups, called primary

registers group and shadow registers a group. The values

of the primary register with the corresponding shadow

register always are same. Under the SPARC V8

architecture, some registers do not have enough

corresponding shadow registers, so that bringing shadow

instruction generation method difference with the original

technology method. Learned by the ideas of SWIFT

algorithm, in the implementation, not have the copy on

storage instructions and memory, which does not

implement the memory test.

4.5 INSTRUCTION SCHEDULING

Instruction scheduling is the method of a sort for main

instruction and shadow instruction to improve the error

detection coverage rate and reduce the execution time in

the instruction error detection technology. In order to

ensure the instruction sequence after scheduled and

without scheduling instruction sequence on the semantic

equivalence, instruction scheduling be based on

instruction dependency relationship graph. In copy

instruction error detection technology, the dependency

relationship graph is instructions as the vertex and the

dependency relationship as to the edge of the directed

graph.

The dependency relationship between instructions is

must satisfy the constraint conditions during instruction

scheduling. Reference [6] is pointed out shortcoming of

the definition [5] of the original dependency relationship,

according to the principle of compilation techniques [7,

8], dependency relationship between instructions was

redefined as: the instruction j after the instruction i,

instructions j depend on the i when the instructions i and j

is really relevant / anti-related or output-related. In the no

storage basic block when the last instruction is store

instructions or transfer instructions, not to participate in

instruction scheduling. Thus, in no storage basic block,

instruction which participated in scheduling could only

happen in the register data-related. In establishing

instruction dependency graph, only need to according to

the register data-related to establish dependency

relationship.

In the copy command error detection technology, goal

of scheduling instruction is to maximize the error

detection coverage and minimize the execution time.

Under the superscalar architecture, instruction scheduling

can reduce the program execution time [9, 10]. Assembly

line of SPARC V8 processor is five levels; it has no

correlation [11] in every stage, so the instruction

scheduling will not reduce the instruction execution time.

Thus, the goal of instruction scheduling is how to

maximize the error detection coverage. According to the

instruction scheduling algorithm, on the premise of meet

the dependency graph, required to execute commands to

the i, number of primary instructions and shadow not

equal. On the premise of meet the dependency graph,

priority scheduling primary instruction, when perform to

a certain instruction, the number of primary instructions

and shadow are greatest, therefore, the error detection

coverage is the largest. In no stored basic block does not

participate in instruction scheduling is storage instruction

located on the last of no stored basic block and transfer

instruction and so on. Therefore, before the instruction

scheduling, it first determines the boundaries of

scheduling and then establishes a dependency graph,

finally perform scheduling.

Instruction Scheduling Algorithm:

input: Instruction list of the no stored basic block

output: Instruction list after scheduling

Algorithmic process:

(1) Determine the boundaries of scheduling

(2) Establish dependency graph

(3) Perform scheduling according to dependency

graph:

The node which precursor is 0 arranged in two

lists by the main command and shadow command.

while (number of main command in the list>0 ||

number of shadow command >0)

 {if (number of main command in the list >0)

{Select the line number the smallest primary

instruction scheduling. In the original list to

delete the node, added to the end of the list of

instructions to be scheduled, number of main

command in the list reduce one; Subsequent

penetration of this command reduce one, add

the nodes which penetration is zero to the

end of the list of main and shadow command

by main command and shadow command.

Calculate the number of list command of

main command and shadow command. }

else {Steps to deal with the main command list and

shadow command list is the same.}

}

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

70
Computer and Information Technologies

5 Simulation and result analysis

In our experiment, we use a simulator is tsim-eval-2.0.7a

[12]. Experimental test code using the QuickSort,

InsertSort, Fibonacci, MatrixMul these four commonly

used test programs, using Gaisler Research compile BBC

cross compiler developed by LEON2 and LEON3 to

assembly file, and then use software error detection

technology system processing into assembly code with

fault-tolerant code, using the BCC [13] compile a

connection to generate the ELF file and execute in the

TSIM.

The experiment process is to inject a fault into register

and memory code runtime, count the experimental data.

Limited space, Table 1 and Fig.4 only show the final

experimental results.

TABLE 1 Result of fault injection

index Fibonacci QuiciSort InsertSort MatrixMul
The average detected

coverage of SIHFT

Source average

accuracy

PC test 88.0% 82.1% 86.7% 92.1% 87.2% 54.5%
NPC test 75.9% 76.3% 88.6% 70.8% 77.9% 45.0%

R test 98.0% 96.1% 90.4% 90.0% 93.6% 75.7%

FP test 76.0% 72.9% 99.0% 92.1% 85.0% 28.1%
MEM test 82.4% 83.2% 75.7% 78.0% 79.8% 37.5%

FIGURE 4 Comparison chart of source code and SIHFT error detection rate

According to calculation of 32 general-purpose registers/

PC/ NPC and four status register, statistics of Fibonacci,

etc. four test cases used r register, through calculation,

error detection coverage over the last as shown in table 2.

TABLE 2 Result of fault injection

Test procedure
Source Code incorrect

results rate
SIHFT undetected rate SIHFT detected rate

Fibonacci 10.3% 4.8% 95.2%

QuickSort 11.0% 4.0% 96.0%

InsertSort 10.4% 5.3% 94.7%
MatrixMul 11.4% 4.8% 95.2%

average value 10.8% 4.7% 95.3%

It can be seen from table 2 source code register failure

not detection rate was 10.8% (system crash + wrong

result+ Infinite loop) and after joining fault-tolerant code,

register failure not detection rate fell to 4.7%, namely the

register error detection coverage rate is 95.3%.

In the results from the experiments on the simulators,

TSIM data indicate that assuming the given performance

overhead, register to inject faults, error detection

coverage rate is 95.3%; Memory Injects faults, error

detection coverage of 79.8%, this suggesting that SIHFT

technique is effective and feasible.

6 Conclusions

This paper, according to the actual requirements of

project, analysed the key problems that are realized on

SPARC V8 platform to SIHFT technology, and gave the

algorithm to solve the problems and the corresponding

technical solution, on this basis, designed a software error

detection technology system based on SPARC V8,

realized the software signature control flow error

detection techniques, tested the error detection coverage

that is suitable for the target platform software error

detection technology by the simulation test. The results

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 65-71 Huang Chunmei, Jiang Chunmao, Qu MingCheng

71
Computer and Information Technologies

from the experiments on the simulators TSIM data show

that, on the basis of the average performance overhead

has been given, the coverage of error detection is higher

when register and storage injection failure has been

introduced, it shows that SIHFT technique is effective

and feasible.

Acknowledgment

This work was supported by Harbin reserve Talent
project (2014RFQXJ073).

References

[1] Keyan Pan, Changlong Wang 1998 Radiation-hardened

Technology Onboard Digital Electronic Devices (3) 67-8
[2] Qiongying Ren, Jinrong Cai, Guangxuan Luo 2012 Single Particle

Effects of Board Computer and Protection and Reinforcement of

it’s Software Guizhou University (Natural Science Edition) 15(3)
178-80

[3] Oh N, Shirvani P P, McCluskey E J 2002 Control-flow checking by
software signatures IEEE Transactions on Reliability 51(1) 111-22

[4] Oh N, Shirvani P P, McCluskey E J 2002 Error detection by

duplicated instructions in super-scalar processors IEEE
Transactions on Reliability 51(1) 63-75

[5] Shirvani P P, Saxena N, Oh N, Mitra S, Yu Shu-Yi, Huang Wei-Je,
Fernandez-Gomez S, Touba N A, McCluskey E J 2013 Fault-

Tolerance Projects at Stanford CRC CRC Technical Report

[6] Zhenyuan Huang 2006 Research and Implementation of an
Onboard Computer Software Error Detection Technology Harbin

Institute of Technology Master Thesis 2006 50-7

[7] Muchnick S S 2005 Advanced Compiler Design and
Implementation Mogran Kaufman Kejia Zhao and Zhiyu Shen.

Machinery Industry Press 195-9, 381-90
[8] Shen J P, Lipasti M H 2004 Modern Processor Design - Basis of

Superscalar Processor Chengyi Zhang, Yu Deng, Lei Wang.

Electronic Industry Press 44-7, 8586
[9] Boyin Lu, Baolin Yin 2001 A Scheduling Optimization Algorithm

Based on DAG Graph Instruction Computer Engineering and
Applications 2001(12) 121-4

[10] Shuxin Yang, Zhaoqing Zhang 2004 Global Instruction Scheduling

Summary Computer Engineering and Applications 2004(21) 24
[11] The SPARC Architecture Manual Version 8 SPARC International,

Inc. Revision SAV080SI9308. 1992 1~57
[12] TSIM2 Simulator User’s Manual for Version 2.0.7 Gaisler Research

AB. January 2007 6-11

[13] BCC-Bare-C Cross-Compiler User's Manual. Version 1.0.29
Gaisler Research. February 2007 3-18

Authors

Chunmei Huang

Current position, grades: Lecturer of informatics at Computer & Informatics Department, Haerbin Normal University.
University studies: M.Sc. in Mathematics (2011) from Harbin Engineer University.
Research interests: different aspects of Cloud Computing and Embedded Computing.

Chunmao Jiang

Current position, grades: professor of informatics at Computer & Informatics Department, Haerbin Normal University
University studies: he received his M.Sc. in Mathematics (2004) and PhD in Information Sciences (2013) from Harbin industry University.
Research interests: different aspects of Cloud Computing and Distributed Systems.

Mingcheng Qu, born in 1980

Current position, grades: Ph.D. in school of computer science and technology of Harbin Institute of Technology.
Research interests: embedded computing and P2P etc.

