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Abstract 

Line segment detection is a typical image processing problem with constantly evolving solutions. Following the line segment detect 

(LSD) by Grompone von Gioi, two branches of algorithms merged. The first branch aimed to improve its speed at the cost of lower 

accuracy; the second applied in the opposite way. We investigated the philosophies of these methods, and attempt to develop a line 

segment detection algorithm based on statistical analyses of quantified directions (LSDSA) to achieve better accuracy and faster 

speed. We utilize a statistical approach estimating the distributions of pixels with direction values approximating the direction 

changes when traversing along the edges given by any edge detector. It efficiently reduces the dimension of the input data, and incurs 

limited increasing in computation time for validation process. The simulation results show that the proposed algorithm achieves 

better performance compared to the existing typical LSD algorithms. The experiment using industrial data in noisy cases also 

exhibits excellent performance. 
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1 Introduction 

 

Straight lines, such as straight roads, horizons and the 

walls, are basic visual elements in the world. They are 

represented by line segments in digital images. As mobile 

devices and digital cameras became popular, processing 

images are serviced as a common daily task for many 

people, and the number of digital images has increased 

heavily.  

As a basis of the image processing algorithms, line 

segment detection are useful for various high-level image 

processing tasks such as crack detection in materials [1], 

robot-navigation [2] and many others [3, 5, 6, 4]. 

Roughly, there are three sets of typical algorithms for line 

segment detection [7]:  

(1) Algorithms based on geometric duality [9, 11, 12, 

10] such as Hough transformation (HT) [8] and Gaussian 

kernel-based Hough Transform (KHT) [13]. They usually 

suffer from the expensive computational costs of 

implementing geometric duality and the low detection 

accuracy. Although KHT made a great improvement of 

the voting procedure introduced by HT, it totally depends 

on the pre-processing procedure composed of algorithms 

proposed in [14] and [15] to provide the input data.  

(2) Algorithms based on the analysis of the gradient 

orientations. Following the typical LSD of none-

parameter-turning features [16], Akinlar proposed a line 

segment detector based on edge drawing algorithm 

(EDLines) [7]. EDLines is about 10 times faster than 

LSD, while its accuracy just approximates LSD. Yang 

proposed a line segment detector using two-orthogonal 

direction image scanning (TODIS) [22], which achieves 

better detection accuracy compared to LSD, but it 

consumes about 8 times of the computational time than 

LSD. 

(3) Algorithms using line geometrical properties and 

the relative positions of pixels. They extract the line 

segments by traversing along the edge pixels given by the 

edge detectors. As an example, the algorithm proposed in 

[20] tries to find the blurred lines in a grey level image 

and its prototype is reported in [19]. Although the 

algorithm detects segment accurately, it also generates 

lots of positive false [7, 17, 22].  

Generally, algorithms faster than LSD such as 

EDLines suffer from lower accuracies; algorithms with 

higher accuracies than LSD such as TODIS consume 

more computation resources.  In this paper, we attempt to 

explore a method that could preserve higher accuracy and 

higher speed, namely, faster than TODIS and more 

accurate than EDLines 

Inspired by the strategy introduced in [18] and 

direction value processing method proposed in [23], we 

develop an algorithm called LSDSA maintaining 

statistical records about direction values found in steps of 

the traverse and it dynamically decides whether the 

current traverse should continue or cease in each step 

based on the records. Once LSDSA finds the traverse 

leads to a line whose direction values differ a lot from the 

traversed line segment, the traverse terminates and the 

line segment is stored. After all found segments are 

validated, the distorted ones are split to shorter segments 

based on a statistical computation of the records. Finally, 
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LSDSA checks the possibility of linking the segments of 

the similar direction values by appropriately extending 

the segments. 

Basically, LSDSA needs two parameters: sample size 

and the minimal length of a line segment. Since there is 

no record initially, we sample a number of pixels as the 

first parameter. The minimal length filters the found 

segments based on their lengths. Actually, we can 

combine these two parameters into one parameter and 

automatically determine it by the dimensions of the 

image space if necessary. The experiment shows that 

LSDSA runs at least 2 times faster than TOIDS and its 

accuracy is higher than EDLines. 

The rest of this paper is organized as follows. Section 

2 introduces the work related to LSD. Section 3 presents 

LSDSA. The experimental results are reported in in 

Section 4. Finally, we conclude the paper in Section 5. 

 

2 Background 

 

In this section, we focus on two issues related to LSDSA, 

namely, inner border tracing [23, 24] and foot-of-normal 

method [27]. 

 

2.1 INNER BORDER TRACING 

 

The border tracing is used to find the inner border of a 

region in a binary image. Typical border tracing methods 

includes versions for 4-connectivity and 8-connectivity. 

They label the positions in the neighbourhoods of the 

different connectivity’s by using direction values tied to 

the directions in the image plane. The direction values of 

8-connectivity as shown in Fig. 1 reflect more directions 

than 4-connectivity. 
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FIGURE 1 Direction values of 8-connectivity 

The border tracing algorithm of 8-connetivity is 

shown in a diagram named activity diagram [25, 26] 

which satisfies the standards of Unified Modelling 

Language (UML) as shown in Fig. 2. The mod operations 

associated with the estimation of odevity of the dir yield 

values lying in a fixed range when dir can only be one of 

the values shown in Fig. 1. Hence there is a mapping 

between the input and output values of dir. The mapping 

can be represented by a matrix, i.e., a look-up table and 

the computations of the mod operations which actually 

are replaced by simple searches are accordingly reduced 

to O(1). 

The anti-clockwise search for the non-zero pixel is 

implemented by updating the variable dir after each 

check of a pixel in the neighbourhood, and stops once a 

non-zero pixel is found. The search will lead the centre of 

the searching to move to the found pixel and repeat. A 

continuous series of searches is called tracing. The 

tracing always starts at the first non-zero pixel in the 

upper left corner of the region and ends at the same pixel, 

no matter what shape of the checked region is used. Non-

zero pixels of the inner border may be record more than 

once if the region is not closed, e.g., a one-pixel-width 

curve. 

[dir is even] [dir is odd]

[Pi = P1 && Pi-1 = P0]

[else]

Inner Border Tracing

Find P0 with the minimal x and y coordinates

Define a variable dir and initialize its value to 7

dir = (dir + 7) mod 8 dir = (dir + 6) mod 8

Start from the direction of dir,  search the 3-by-

3 neighborhood of the current pixel in an anti-

clockwise order and update dir after the search

Store the first-found non-zero pixel as Pi

Return P0, P1, … ,Pn-2 as the inner border

  
FIGURE 2 General structure of inner border tracing 

 

2.2 INNER BORDER TRACING 

 

The algorithms based on Hough transformation (HT) 

usually have high computation cost. Their most 

expensive step is the procedure called voting to change 

the values of points (cells) in the parameter space 

according to pixel coordinates s in the image foreground. 

Its computational complexity is O(m ● n2 ) where m 

denotes the degree of the parameter space discretization 

and n denotes one dimension of an image. 

The foot-of-normal algorithm could reduce the 

computational complexity of the voting to O(n2) based on 

the fact that one line can only have one intersection with 

the normal which crosses the origin of the coordinate 

system. The intersections just are defined as votes as  

shown in Fig. 3. 

X axis

Y axis G(gx, gy)

N(x0, y0)

P(x, y)

0

  
FIGURE 3 Foot-of-normal method 
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The origin is a fixed reference point. Assuming P is a 

point on the line and line ON  is the normal of line PN , 

from the facts that vector ON  is perpendicular to vector 

PN  and ON  parallels to gradient vector (gx, gy) given 

by a Sobel operator, we get 

0 0/ /x yg g y x  and 
0 0 0 0( ) ( ) 0x x x y y y    . (1) 

Solving the above formulae for x0 and y0, we obtain 

the formula of the voting point,  

0 xx v g  , 
0 yy v g  , where 

2 2

x y

x y

x g y g
v

g g

  



  (2) 

Davies [27] analysed the line estimation error and 

found the image should be subdivided to reduce the error. 

The basic steps of the foot-of-normal method consist of 

subdividing the image, computing (x0, y0) in each sub-

image whose origin is its centre instead of the upper-left 

corner, and finally making a vote at (x0, y0). Fig. 4 shows 

the voting results of a real-word image. The original 

image is divided to 20-by-20 and 50-by-50 sub-images 

indicated by white lines. The squares in the resulting 

images denote the voting points. Obviously, the more the 

image is subdivided, the more lines can be detected. 

   
FIGURE 4 Results of the foot-of-normal method 

 

3 The Proposed Algorithm 

 

The basic idea of LSDSA is to dynamically link the 

pixels in the foreground of an image by using a statistical 

approach with low computational complexity. We 

develop a novel approach to represent the geometrical 

properties of line segments. Here, 8 infinite directions 

could be represented by direction values defined in 

section 2.1. The number of directions is determined by 

the resolution of the input image and the size of the 

neighbourhood employed. Among the neighbourhood of 

small sizes, a 3-by-3 neighbourhood reflects an adequate 

range of directions. 

The general structure of LSDSA is shown in Fig. 5. It 

requires a pre-processing to generate the binary edge 

image based on the input image. The pre-processing is 

denoted by a solid rectangle labelled by the text “Detect 

Edge”. Any edge detector can be employed in the pre-

processing. 

In Fig. 5, the largest dotted rectangle denotes the body 

of LSDSA. In this rectangle, three subroutines are 

designed to (1) find roughly straight-line segments, (2) 

find and break distorted line segments, and (3) link 

adjacent line segments with similar directions. They are 

represented by rectangles marked Subroutine 1, 

Subroutine 2 and Subroutine 3 in Fig. 5 and the sub steps 

of Subroutine 2 and Subroutine 3 are shown in their 

rectangles respectively. 

When the detection of line segments is completed, the 

detected segments can be directly returned or processed 

by a post-processing to generate the global straight lines. 

As shown in Fig. 5, the two possible choices are denoted 

by two branches below the rectangle of the proposed 

algorithm. By combining the foot-of-normal method and 

the inverse HT algorithm [28, 29], the global lines can be 

obtained as the final result. 

 

Detect Edge

Line segments

1-pixel-width edge image

[line segments are desired]

Return line segments Apply foot-of-normal method

[global lines are desired]

Apply inverse Hough Transformation

Return global lines

Step 2.2 Find Split Position

Step 2.1 Find Distorted Segments

Step 2.3 Split Distorted Segments

Step 3.2 Estimate Linking

Step 3.1 Estimate Terminals

Step 3.3 Link Segments

Rough segments

Separated segments

Refined segments

Separated segments

Proposed Algorithm

Subroutine 2 

Subroutine 3

Subroutine 1

  
FIGURE 5 General procedure 

 

3.1 FINDING ROUGHLY STRAIGHT LINES 

 

Subroutine 1 performs a scan of the edge image and 

conditionally tracks each continuous curve (edge). It is 

used to rapidly find roughly straight-line segments 

without using any voting process. The following 
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subroutines after Subroutine 1 do not need to scan the 

whole image, and the size of the data is reduced to 

segments found by Subroutine 1. T the relatively 

sophisticated processing can be integrated to the 

following subroutines without drastically decreasing the 

speed of the algorithm. The details of Subroutine 1 are 

shown in Fig. 6. 

In Fig. 6, m and minLength represent the sample size 

and the acceptable minimal length of the found line 

segment respectively, which are configured manually as 

input arguments. Variable toleranceVal is employed to 

distinguish the line segments of difference directions, 

e.g., if toleranceVal is set to 2, then direction values 0 

and 1 are envisaged as representing the same direction 

because their difference is less than toleranceVal. The 

difference between two direction values is defined to be 

the smaller number of sectors between the direction 

values shown in Fig. 1. Namely, for direction values 0 

and 3, the number of sectors can be anti-clockwise 

counted as 3 or clockwise counted as 5, and the 

difference is 3. The difference between two direction 

values such as dir1 and dir2 can also be expressed as 

if   -   4 then     8 -   -  ; 

else        -  

dir1 dir2 difference dir1 dir2

difference dir1 dir2

 


. (3) 

When a non-zero pixel is found during Subroutine 1 

scan, the scan is temporarily paused and the track 

operation is inserted. The track operation first tries to 

locate the right end of the curve. To locate the right end, 

the subroutine only checks the positions coinciding with 

direction values of 6, 7 and 0 of Fig. 1 in the 

neighbourhood of a non-zero pixel, moves the searching 

centre to it and repeat. The last-found pixel is envisaged 

as the right end of the line segment and the sampling 

starts at it. The searching procedure may split a line 

segment into several short segments, for example, if we 

apply the right-end searching to the right segment in 

Fig.7, it will stop before the pixel labelled 5 is reached 

because this pixel is in the direction 5 instead of 6, 7 or 0. 

This drawback may be fixed by merging segments in 

Subroutine 3. 

Segments, Directions and Occurences in Fig.6 

respectively are the set of found line segments, the set of 

the direction values and the set of statistical information 

of direction values associated with each segment. 

Variables tempSegments, tempDirections and 

tempOccurences contain the temporary data of Segments, 

Directions and Occurences respectively. The data of 

three temporary variables can be arbitrarily overwritten. 

To illustrate these steps clearly, we depicts a simple 

binary image whose foreground contains two line 

segments in Fig. 7. Table 1 illustrates the result of its 

sampling procedure. The sampling procedure is denoted 

by the solid rectangle marked “Sample m pixels” in Fig. 

6. 

 

[The difference of 
the compared direction 
values are less than 
toleranceVal ]

[m pixels have been linked]

[Under 8 connectivity, a 
non-zero pixel adjacent to
 the current pixel is found]

Try to scan a new pixel just adjacent to a scanned 

one from left to right in a single row and from the 

top row to the bottom row in the image space

[There are pixels which are not scanned] [else]

[else][New scanned pixel is non-zero]

[There is a path formed by non-zero 
pixels adjacent to the right 
side of the scanned pixel]

[else]

Traverse the path to its end

Start the tracing at 

the end of the path

Start the tracing at 

the scanned pixel

Sample m pixels

This step simply records 
coordinates, direction values 
and statistical information of 
linked pixels respectively in 
tempSegments, tempDirections 
and tempOccurences, and set 
all found pixels to 0

[else]

Set the last (mth) sampled pixel to the current pixel

Compare the direction values of 

the current pixel and maxDir

Update tempSegments, tempDirections and 

tempOccurences based on the information 

of the current pixel and set its value to 0

Sample m pixels

[m pixels have been linked]

[else]

[else]

Upadte 

Segments, 

Directions, 

Occurences 

based on the 3 

temporary lists 

and the value 

of minLength

[else]

Scan a pixel

Search the neighborhood of the scanned pixel

Initialize variables: m:int, toleranceVal: int, minLength: int, maxDir: int, 

maxDirSample: int, Segments: List<List<int>>, Directions: List<List<int>>, 

Occurences: List<int[ ]>, tempSegments: List<List<int>>, tempDirections: 

List<List<int>>, tempOccurences: List<int[ ]>

In Occurences, find the direction value of the largest 

number of the linked pixels and copy the value to maxDir

Find the direction value of the largest number of the 

sampled pixels and copy the value to maxDirSample

Compare maxDir and maxDirSample

[The difference of the compared direction 
values are less than toleranceVal ] [else]

FIGURE 6 Details of Subroutine 1 
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FIGURE 7 Representation of a binary image by lattices 

 

TABLE 1 Values of Segments, Directions and Occurrences 

Member 
Value 

0     1    2    3    4     5      6      7      8 

Segments[0] 22  39  54  69  84  101  116  131  130 

Segments[1] 41  58  59  76  91  108  125  141    Ø 

Directions[0] 7     7    5    5    5     7      5      5      4 
Directions[1] 7     7    0    7    5     7      7      6      Ø 

Occurrences[0] 0     0    0    0    1     5      0      3      5 
Occurrences[1] 1     0    0    0    0     1      1      5      7 
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3.2 DETECTING AND BREAKING DISTORTED 

LINES 

 

In order to detect and break distorted lines, we launch 

three steps in Subroutine 2: (1) detect distorted segments; 

(2) determine positions of split; (3) splits distorted 

segments. 

We detect distorted segments based on Occurrences. 

We find that the distribution of the direction values of a 

roughly straight line segments is similar with a uni-modal 

Gaussian distribution. Any multi-modal distribution 

implies the corresponding segment is distorted. Once the 

multi-modal is found, the difference between the 

direction values of the largest and the second largest 

modals is estimated. As shown in Fig. 8, we first detect 

the direction value of the second largest number of pixels 

which corresponds to a modal in the distribution in 

Occurrences, and then estimate the ratio and the 

difference of the maximal direction value and the found 

value which are respectively denoted by the variables 

maxDir1 and maxDir2. Only when the difference exceeds 

torleranceVal and the ratio is larger than the parameter 

thresholdRatio whose value is experimentally set to 0.8, 

the corresponding segment is confirmed distorted. 

Initialize variables: segmentIndex: int, entryIndex: int, 

maxDir1: int, maxDir2: int, thresholdRatio: double, 

dirGroup: List<int>, positionsOfSplit: List<int>

Try to read an unvisited member of Segments

[There is an unvisited member in Segments] [else]

Copy the index of the unvisited member to 

segmentIndex and mark the member visited

Find the largest and the second largest entries of the 

member with the index segmentIndex in Occurences, then 

copy their values to maxDir1 and maxDir2 repectively

[maxDir1/maxDIr2 > thresholdRatio AND the difference 
between the direction values corresponding to maxDir1 
and maxDir2 is not less than toleranceVal ][else]

Clear the entries of positionsOfSplit and add 0 to positionsOfSplit

Try to read an unvisited entry of the member with index segmentIndex in Directions

[There is an unvisited entry in the member] [else]

Copy the index of the entry to entryIndex, mark the entry visited, and 

compute the differences between the entry and every entry of dirGroup

[All differences are less than toleranceVal] [else]

Add the entry to dirGroup Add entryIndex to splitPostions 

and clear all entries of dirGroup

Add the index of the last entry of the member with index segmentIndex in Directions

to positionsOfSplit, and mark the first entry of positionsOfSplit visited

Clear the entries of dirGroup

Step 2.1 Find Distorted Segments

Step 2.2 Find Positions of Split

Step 2.3 Split Distorted Segments

Check the direction value to see 
whether it is a new direction value 
type to the types recorded in dirGroup 

 
FIGURE 8 Details of the two steps of Subroutine 2 

Next, in Step 2.2 we attempt to find the pixels where 

the main direction of a segment drastically changes. The 

strategy is assuming the segment is formed by several 

parts associated with specific direction value groups 

represented by dirGroup in Fig. 8. For each group, the 

differences among all elements are less than 

toleranceVal. Initially, dirGroup is empty and then the 

direction value of the first pixel encountered in the 

checking is added to it. The direction values of the 

following pixels are compared with the value in group. If 

the difference is adequate, the pixel is taken into the part, 

otherwise it is marked as a possible position in the 

segment to split and recorded by positionsOfSplit in Fig. 

8. 

Step 2.3 shown in Fig. 9 tries to split the segment 

according to postionsOfSplit. The lengths of different 

parts of a segment are compared with minlength. Only a 

segment with parts of lengths exceeding minLength is 

split and causes Segments, Directions, and Occurences to 

be updated. The updating procedure is denoted by four 

solid rectangles just above the thick horizontal bar in Fig. 

9. 

Try to read an unvisited entry in positionsOfSplit

[There is an unvisited entry in positionsOfSplit] [else]

Find the entries in the member with index segmentIndex 

in Segments according to the values of the lastest 

visited and the current entries of positionsOfSplit 

Compute the length between the found entries in Segments

[else] [The computed length exceeds minLength]

Find the entries in the member with segmentIndex in 

Directions according to the values of the last visited 

and the current entries of positionsOfSplit 

Add the segments between the found entries in Segments and 

Directions as the new members to Segments and Directions, and 

delete the original segments in the corresponding old members

Compute the statistical information based on the new-added 

segment in Directions, add the computed information as a new 

member to Occurences, and delete this information from the 

corresponding old member 

Mark the new-added member in Segments visited

Mark the current entry of positionsOfSplit visited

Check the member with index 

segmentIndex in Segments

[else] [The member exists]

Mark the checked 

member visited

The values of the lastest 
visited and the current 
entries are envisaged as 
indices of entries in 
Segments[segmentIndex]

Step 2.1 Find Distorted Segments

Step 2.2 Find Positions of Split 

 
FIGURE 9 Details of the last step of Subroutine 2 

 

3.3 LINKING ADJACENT LINES WITH SIMILAR 

DIRECTIONS 

 

In Subroutine 3, we attempt to merge segments by 

appropriately extending the segments and comparing the 

directions with other segments found adjacent to the 

extensions. It composes three steps: Step 3.1 estimate 

terminals, Step 3.2 estimate linking and Step 3.3 link 

segments as shown in Fig. 5. 

Step 3.1 locates the geometrical ends of segments for 

the subsequent extending operation. Although Subroutine 

1 starts the traces from the right ends of segments, the 

first saved pixels may not be the right end because 

Subroutine 2 split segments and some of the first saved 

pixels of these segments are not the right end. The details 
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of finding geometrical ends are shown in Fig. 10. The 

ends can be easily found by estimating the directions of 

segments, i.e., if the maximal direction value is one of 5, 

6, 7 and 0 (1 <= maxDIrection <= 4), the first recorded 

pixel is the geometrical right terminal; otherwise the first 

one is the left terminal. 

After identifying all ends, we will estimate the path 

for extending in Step 3.2. Since the values of all entries in 

Directions range from 0 to 7 and these entries can reflect 

the geometrical shapes of segments basically, the entries 

may be envisaged as strings of letters 0 to 7 and their 

patterns can thus be found using approximating string 

matching [21]. Here we consider a simple but efficient 

strategy. We observe that the distribution of direction 

values around the middle point of a segment always 

follow a certain pattern. Therefore, we construct a path by 

repeatedly copying the middle direction values as shown 

in Fig. 11. 

The 1st entry of a 
segment may not be its left 
end, e.g., the 1st recorded 
pixel of a segment with 
maxDirection lying in [1 4] is 
geometrically the right end 
of the line segement

Initialize variables: maxDirection: int, leftEnd: int, 

rightEnd: int, terminals: List<int[ ]>

Try to read a member of Segments

[There is an unvisited 
member in Segments] [else]

Read a member

Copy the index of the read member to 

segmentIndex and mark the member visited

Find the direction value corresponding to the largest occurrence value 

by checking the member with index segmentIndex in Occurences

Copy the found direction value to maxDirection

Copy the first and the last entries of the member with index 

segmentIndex in Segments to leftEnd and rightEnd respectively

[1 <= maxDIrection <= 4] [else]

Exchange the values of leftEnd and rightEnd

Add leftEnd and rightEnd to the member 

with index segmentIndex in terminals

Step 3.2 Estimate Linking

Step 3.3 Link Segments

 
FIGURE 10 Details of Step 3.1 in Subroutine 3 

Since Subroutine 1 traverses from one end of a line 

segment to the other, the recorded direction values 

reflects the pattern along the direction approximated by 

maximal direction value. Hence, the found path is only 

appropriate for one end, and inverses for the other. For 

instance, two red lattices in Fig. 12 indicate two ends; the 

colourful lattices between the ends denote the body of a 

line segment and the grey pixels form the two paths. The 

lattices of the segment except the paths are marked by 

their direction values obtained by tracing from the 

geometrical right terminal. The yellow pixel lies in the 

middle of the segment. The path adjacent to the left 

terminal, denoted by the variable leftPath in Fig. 11, is 

obtained directly by copying the direction values of 

lattices around the middle lattice. The path adjacent to the 

right terminal is obtained by reversing the direction 

values of the left path consisting of direction values 5, 3, 

5, 4 and 4; the right path contains the corresponding 

inverse direction values 1, 7, 1, 0 and 0. The inverse path 

is denoted by rightPath in Fig. 11. 

When moving along a path, we could check the 

neighbourhood of the moving centre to find other 

segments but it is computationally expensive. We employ 

an alternative approach by checking the ends of segments 

whose identities lying in a range with the identity of the 

current segment as centre and parameter detectRadius in 

Fig. 11 as a radius. This is because the difference 

between identities of two segments in Segments partially 

reflects their geometrical distance in image space. The 

detectRadius is set to 20 in our experiment. 

After the connection information of all segments is 

collected by Step 3.2, Step 3.3 showed in Fig. 12 checks 

each member of Connections to perform the merging. If 

the statuses of ends indicate valid linking, it will 

simultaneously merge the associated segments with the 

current one and checks the statuses of the merged 

segments to see whether they can be further merged with 

other ones. This iterative procedure will stop until the 

statuses of both ends are null. For instance, segment 1, 3 

and 4 will be merged together according to Connections. 

If the variable connections indicates 
two ends of current segment  have 
been linked to other segments, then 
there is no need to check the current 
segment

Only the segments of 
direction values similar 
with the current segment 
are worthy to be 
detected to see whether 
the linkage is possible

Try to read a member of Segments

[There is an unvisited member in Segments]

Read a member

Copy the index of the read member to segmentIndex and mark the member visited

Initialize variables: detectRadius: int, connections: List<CustomizedClass>, group: List<int>, 

leftPath: List<int>, rightPath: List<int>, isLeftConnect: bool, isRightConnect: bool, tempIndex: int 

Check the member of index segmentIndex in connections

[else]

Find the direction value corresponding to the largest occurrence value 

by checking the member with index segmentIndex in Occurences

Compute the range whose center is segmentIndex and the radius is detectRadius

In Occurences, find the member with the indices in the computed range, then find the 

direction values corresponding to the largest occurrence values of these members

Compute the differences between maxDriection and the found direction values

[At least one of the differences is of value 4 or less than the toleranceVal]

Add the indices of the members found in Occurences satisfying the above condition to group

Copy 50% direction values of the middle part of the member with the index segmentIndex in 

Directions to leftPath and rightPath, and repeatedly copy the values if the total length is less 

than minLength, then reverse the values of leftPath or rightPath based on maxDirection

In the image space, start from the leftEnd of the 

member with the index segmentIndex in terminals, 

move along the direction values recorded in 

leftPath. In each move, check the neighborhood of 

the moving center to see whether the ends of the 

members in group are in the neighborhood

[The member contains information about leftEnd 
and rightEnd with respect to the index segmentIndex]

Set isLeftConnect and isRightConnect to true

Set isLeftConnect or isRightConnect to false according to the cases in 

which the member contains no information about leftEnd or rightEnd 

[isLeftConnect is fasle] [else]

In the image space, start from the rightEnd of the 

member with the index segmentIndex in terminals, 

move along the direction values recorded in 

rightPath. In each move, check the neighborhood 

of the moving center to see whether the ends of 

the members in group are in the neighborhood

[isRightConnect is fasle][else]

Copy the corresponding index in group to tempIndex

rightEnd of the member with index tempIndex in 

terminals; tempindex; leftPath; leftEnd  of the member 

with index segmentIndex in terminals; segmentIndex 

are sequentially recorded in members of indices 

segmentIndex and tempIndex in connection

leftEnd of the member with index segmentIndex in 

terminals; segmentIndex; rightPath; rightEnd  of 

the member with index tempIndex in terminals; 

tempIndex are sequentially recorded in members of 

indices segmentIndex and tempIndex in connection

Copy the corresponding index in group to tempIndex

[else] [else] [One entry of group is found in the neighborhood]

[else]

Step 3.3 Merge Segments

Step 3.1 Estimate Terminals

Geometrically, the value
 4 means the two segments 
share the same slop

Namely, if the member  
contains the information 
about leftEnd, then set 
isLeftConnect to fasle; if the 
information about rightEnd is 
contained, then set 
isRightConnect to false, 
otherwise leave isLeftConnect 
or isRightConnect unchanged

The copied 
50% direction 
values are 
appropriate 
to one end of 
the segment 
but opposite 
to the other 
end

[One entry of group is found in the neighborhood]

 
FIGURE 11 Details of Step 3.2 in Subroutine 3 
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This iteration tries to find 
and record the chain of 
segments whose left end 
can be linked with the 
right end of the segment 
with the index globalindex 
in Segments

[The member of segmentIndex in connections contains the information 
about the leftEnd with respect to the index segmentIndex]

Initialize variables: globalindex: int, tempSegment: List<int>

Try to read an unvisited member of connections

[There is an unvisited member in connections][else]

Return Segments Copy the index of the member to globalindex 

and tempIndex, and mark the member visited

Copy tempIndex to segmentIndex

Copy the index associated with the rightEnd 

stored in the member of connections to tempIndex

Firstly generate a copy of the leftPath stored in the member of connections, secondly 

generate a copy of the member with segmentIndex in Segments, then sequentially 

link two copies and tempSegment, finally set tempSegment to the resulting segment 

Delete the connection information about the leftEnd with 

respect to segmentIndex in the member of connections

[else]

Copy the globalindex to segmentIndex and tempIndex

Copy tempIndex to segmentIndex

[The member of segmentIndex in connections contains the information 
about the rightEnd with respect to the index segmentIndex]

Copy the index associated with the leftEnd stored 

in the member of connections to tempIndex

Delete the connection information about the rightEnd with 

respect to segmentIndex in the member of connections

[else]

Delete the connection information about the rightEnd 

with respect to tempIndex in the member of connections

Delete the connection information about the leftEnd with 

respect to tempIndex in the member of connections

Generate a copy of the member with tempIndex in Segments, then sequentially link 

the copy and tempSegment, finally set tempSegment to the resulting linked segment

Firstly generate a copy of the member with segmentIndex in Segments, secondly 

generate a copy of the rightPath stored in the member of connections, then sequentially 

link two copies and tempSegment, finally set tempSegment to the resulting  segment 

Generate a copy of the member with tempIndex in Segments, then sequentially link 

tempSegment and the copy, finally set tempSegment to the resulting linked segment

Mark the member with index tempIndex in connections visited

Mark the member with index tempIndex in connections visited

Delete the members with the same index segmentIndex 

in Segments, Directions and Occurences

Delete the members with the same index segmentIndex 

in Segments, Directions and Occurences

Add tempSegment to Segments and mark it visited

Clear tempSegment

This iteration tries to 
find and record the 
chain of segments 
whose right end can 
be linked with the 
left end of the 
segment with the 
index globalindex in 
Segments

To ensure the 
segments in the 
connection chain 
are invisible to 
the following 
iterations

Step 3.1 Estimate Terminals

Step 3.2 Estimate Linking

FIGURE 12 Details of Step 3.3 in Subroutine 3 

 

4 Experimental Results and Discussion 

 

In order to evaluate the performance of LSDSA, we test 

KHT [13], EDLines [7], TODIS [22] and LSDSA using 

two corpora of artificial and the real-world images. We 

developed an application package [30] for edge detection 

using C#. In general, LSDSA achieves performance 

similar to TODIS, which is a better result than KHT and 

EDLines. However, the computation cost of LSDSA is 

obviously lower than TODIS. 

 

4.1 CASE COMPARISONS 

 

Figure 13 lists some samples of line detections using 

LSDSA and KTH. We use colourful lines to display the 

segment results of LSDSA to distinguish the distinctive 

parts of a continuous curve. For example, the circle on 

the top of the building in the sub image labelled as H10 

of Fig. 15 is indicated in H12. At the first glance, the 

indicated circle may seem to be a false detection. 

Actually, the detected circle in H12 is denoted by two 

kinds of colours (blue upper and purple lower). Thus, two 

roughly straight line segments are detected by the 

algorithm instead of a circle. The values of parameters m 

and minLength are set to 4 and 30 respectively according 

to the resolution of the test images. 

 

 
FIGURE 13 LSDSA compared with KHT 

Fig. 14 compares the lines detected by LSDSA and 

EDLines. The parameters m and minLength of LSDSA 

are set to 3 and 8 respectively. All line segments detected 

by EDLines are marked by solid lines in the second 

column. Although the difference between LSDSA and 

EDLines is not as large as the difference between KHT 

and LSDSA, LSDSA can discover more significant line 

segments that are ignored by EDLines, such as the seams 

on the face of the building in G10 and the edges of the 

front doors of the house in G20. We also note that 

LSDSA can detect a line segment about the lady’s right 

arm in G32, which is the border between the highlight 

and the lowlight areas of the arm surface, and its 

curvature continuously changes. However, EDLines fails 

to detect it. 

Although TODIS is the slower than EDLines, KHT 

and LSD, it exhibits the best accuracy. Generally, 

LSDSA achieves accuracy as good as TODIS as shown in 
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Fig. 15. Almost all line segments detected by TODIS in 

H01 are indicated by LSDSA in H02 as well, except the 

broken vertical line on the left. Similar results are shown 

in H11 and H12. LSDSA successfully detects the traces 

in the right corner of H10 and the edges of the circle on 

the top of the building. Note, the detected edges of the 

circle are indicated by two colours (the blue upper/lower 

curves). The two curves approximate two roughly straight 

line segments. It says that LSDSA can detect roughly 

straight line segments, and further example can be found 

in G32 of Fig. 14. The detection of LSDSA is clearly 

more accurate than TODIS inasmuch as the edges of 

windows in the top of the skyscraper are detected in H22 

but not in H21. The edges of the white circular lights on 

the top of the hallway are indicated in H32 and ignored 

by TODIS in H31. It suggests that LSDSA can detect the 

roughly straight line segments correctly. 

 

 
FIGURE 14 LSDSA compared with EDLines 

 

4.2 COMPUTATIONAL COMPLEXITY 

 

The computation cost of LSDSA is determined by 

Subroutine 1 for finding roughly straight lines. The time 

complexity of this part is O(l·s ) where l is the largest 

length of a line segment and s denotes the number of 

segments. Unlike TODIS with O(n2) where n represents 

one dimension of the image space, LSDSA consume less 

time obviously when original images are large. This is 

because the first subroutine only performs the tracing 

when the current pixel is non-zero and set all traced 

pixels to 0. 

 
FIGURE 15 LSDSA compared with TODIS 

 

Furthermore, we find a close relation between l and s. 

If the length of a line segment l is very large, then the 

number of segments s must decreases. Since the longer 

the segments are, the more space in the image they will 

occupy, and less space are left to the rest segments. It 

suggests that fewer segments can be released in this 

concise space. Conversely, if there are many segments, 

then their lengths tend to be short. Therefore, a balance 

exists between l and s.  

The complexity of Subroutine 2 is Max(O(s ), O(l·d )) 

where d is the number of the distorted line segments 

found in this subroutine by performing a searching of 

complexity O(s ). Since d can’t exceed s, the worst case of 

the second subroutine is O(l·s ) as same as the first 

subroutine. 

The third subroutine is of complexity O(s ). 

Theoretically, the time complexity of the proposed 

algorithm is O(l·s ), while the complexity of TODIS is at 

least O(n2) according to the analysis of the BU-Scan 

procedure [22], which contributes only a half of the 

computational cost of TODIS. Practically, we compare 

the time consumed by KHT, EDLines, LSDSA and 

TODIS under different conditions. The time consumed by 

algorithms do not consist the pre-processing as edge 

detection and post-processing as inverse Hough 

Transformation. 
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FIGURE 16 Time consumptions with respect to few lines 

Fig. 16 shows time spent on processing the image 

containing few lines when the resolution ranges from 0-

by-0 to 2000-by-2000 in pixel. Note the unit of x-axis is 

logarithm of the time, hence the crooked curve indicates a 

roughly straight line in a plane with non-logarithm axes. 

In Fig. 16, although TODIS consumes more time than 

other algorithms, its curve implies the ratio of resolution 

and time is linear (even the slop is very large). KHT, 

EDLines and LSDSA all share a similar pattern when 

resolution is lower than 1200 pixel in Fig. 16, but their 

curves lead to different destinations when the resolution 

reaches 2000 pixel. This implies their consumed time 

may be quite different when the input data becomes very 

large. In the level of 2000 pixel, LSDSA consumes less 

time than EDLines and TODIS. This illustrates the 

capability of LSDSA to reduce the dimension of input 

data. 

 
FIGURE 17 Time consumptions with respect to moderate lines 

Fig. 17 shows the time consumed to process image 

moderate lines when resolution is changing, As in Fig. 

16, TODIS apparently consumes more time than other 

algorithms, and EDLines and KHT share a similar 

pattern. The curve of LSDSA follows the pattern when 

resolution is higher than 1000 pixel, but still ends behind 

EDLines. 

FIGURE 18 Time consumptions with respect to many lines 

Fig. 18 illustrates the time when the processed image 

contains lots of lines. All algorithms even TODIS follows 

a similar pattern when resolution is lower than 600 pixel. 

As the resolution increases, EDLines and TODIS are 

exceeded by KHT and LSDSA. In level of 2000 pixel, 

there is a large gap between the group of algorithms with 

capability of reducing input dimension, i.e., KHT and 

LADSA, and the group of algorithm with no such 

capability, i.e., EDLines and TODIS. 

Generally, when the processed image is small, there 

are little difference among the time consumed by KHT, 

LSDSA, EDLines and TODIS. As the resolution 

increases, the number of lines contained by image 

becomes an important factor affecting the consumed 

time. If lines are few, the difference may still remain 

small even when resolution increases. If lines are many, 

there will be an obvious gap between the time consumed 

by algorithms with or without capability of reducing 

input dimension. Hence, the feature of LSDSA illustrated 

by Fig. 16 to Fig. 18 is the capability of fast processing 

images with high resolution and complicated content. 

 

5 Conclusions and Future Work 

 

In our proposed method, LSDSA employs a statistical 

tracing strategy to reduce the dimension of the input data 

and distinguish the distorted segments by analysing the 

distributions of direction values which are approximate 

quantified values of geometrical directions in image 

space. LSDSA collects statistical data of quantified 

directions, so it is able to achieve higher speed under the 

condition of good accuracy. We report the experiment 

results of LSDSA using test images and industrial 

images, and compare its performance with typical LSD 

algorithms such as KHT, EDLines and TODIS. It 

indicates that the accuracy of LSDSA is clearly better 

than KHT and EDLines, and it is as good as TODIS. But 

LSDSA consumes much lower computation cost than 

TODIS does.  

In order to further increase the accuracy of LSDSA, 

we plan to explore more refined direction values and 

large neighbourhood in the following research. At the 

same time, we will investigate how to simplify its 

processing procedure and proposed algorithm. 
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