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Abstract 

Mechanical properties of ADI mainly depend on the austempering parameters, which include austenitizing temperature and time, 

austempering time and temperature, apart from chemical composition, alloyed elements and casting parameters. In this paper, an 

investigation has been conducted on the prediction model of mechanical properties of ADI between austenitizing temperature and 

time, austempering temperature and time as inputs and Vickers hardness of samples after austempering as the outputs based on 

artificial neural network. There are two types of data of the model: training data and testing data. The former data come from the 

published literature and 12 experimental data used for network testing. The research results of the model shows that the predicted 

values approach to the measured data in most of the testing samples and the maximum margin of error between experimental and 

predicted data is 4.682%. 
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1 Introduction 

 

In recent years, austempered ductile iron (ADI) has been 

attracted much attention due to its exceptional 

combination of strength, hardness, impact resistance and 

ductility [1, 2, 3]. The attractive properties are related to 

its unique microstructure known as ausferrite, which is a 

mixture of bainitic ferrite (α) and high carbon austenite 

(γHC) [4, 5, 6]. Hence, ADI has been applied in many 

areas, such as automobile, aerospace, agricultural 

machinery, railroads and so on. S.F. LIU et al [7] 

indicated that the Mn-Cu alloyed ADI standard sample 

could reach European standard EN1564-97/EN-Cl5-

1000-5 and could replace 20CrMnTi forged steel for 

manufacturing the EQ140 helical bevel gears. J.F. Dias 

[8] investigated reducing the austempering time increased 

the fatigue life and did not affect the mechanical 

properties or the rate of fatigue crack propagation, and 

could used for mechanical parts with stress riser details.  

Mechanical properties of ADI mainly depend on the 

austempering parameters, which include austenitizing 

temperature and time, austempering time and 

temperature, apart from chemical composition, alloyed 

elements and casting parameters. It has been investigated 

[9] that the morphology of bainite and the fraction of 

retained austenite depend largely on the austempering 

temperature, which is one of the most important factors to 

affect the mechanical properties of ADI. The 

microstructure of ADI is mixture of finer ferrite and 

retained austenite when austempered at lower 

temperatures (230～350℃) and these results in higher 

tensile strength and hardness but with lower ductility. On 

the other hand, it is compound of coarser or feathery 

ferrite and austenite when austempered at higher 

temperatures (350～400℃) and this leads to lower tensile 

strength and hardness but with higher ductility. 

It is known that the toughness of a material decreases 

as its strength increases. To improve the toughness of 

ADI meanwhile without reducing the strength, 

researchers presented a new and improved isothermal 

heat treatment to meet this demand. Susil K. Putatunda 

[10, 11] proposed a novel and innovative concept of two-

step austempering process, which was used to produce 

ADI with simultaneous high yield strength and fracture 

toughness. Generally, two-step austempering process 

acquired higher combination of hardness and ductility 

compare with the single-step. This is mainly due to that, 

the former process obtained finer microstructure than the 

latter [12]. 

Alloyed elements such as nickel, copper and boron 

are usually added to strengthen the mechanical properties 

of ADI. Alloying of ADI with Ni and Mo increased its 

fracture toughness but decreased its tensile strength and 

hardness in the heat treated condition [13]. The Cu-

alloyed ADI has better impact toughness and fracture 

toughness than does the unalloyed one because of copper 

increases the retained austenite content in ADI [14]. With 

higher boron content, the mechanical properties of CADI 

such as hardenability and toughness are found to 

decreases [15].  

A significant number of studies have been carried out 

on the mechanical properties of ADI, but few studies 

have examined the correlation between the mechanical 

properties of ADI and influencing factors, such as 
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austempering parameters, the percentage of chemical 

composition and alloyed element and so on. M.A.Yescas 

[16] has been estimated of the fraction of retained 

austenite in ADI as a function of their chemical 

composition (C, Mn, Si, Ni, Mo, Cu) and the 

austempering parameters. H.PourAsiabi [17] has been 

developed a multi-layer perceptron artificial neural 

network model, which used Mo%, Cu%, austempering 

time and temperature as inputs and the Vickers hardness 

of samples after austempering as the output. However, 

very little is currently available in literature on the 

mechanical properties of unalloyed ADI with low 

manganese content. 

However, very little information is currently available 

in literature on the mechanical properties of unalloyed 

ADI with austempering parameters. Specifically, the non-

linear correlation of austenitizing temperature and time, 

austempering temperature and time as the inputs variable 

and the hardness of unalloyed ADI as the output are not 

clearly established. The main purpose of this work is to 

investigate the mechanical property prediction model 

between austenitizing temperature and time, 

austempering temperature and time as inputs and Vickers 

hardness of samples after austempering as the output 

based on artificial neural network. 

 

2 Experimental details 

 

The chemical composition of as-cast ductile iron in 

weight percent is reported in Table 1. The microstructure 

of as-cast ductile iron, which used in austempering 

experiment is shown in Fig. 1. The rate of graphite 

spheroidization is above 90% (level 3) and the diameter 

of the graphite nodule reach level-6. As-cast ductile iron 

is a mixture of pearlite, ferrite (about 40%) and graphite 

nodule.  

 
TABLE 1 Chemical composition of as-cast ductile iron (wt%) 

C Si Mn P S Mg Re Al Ti 

3.65 2.78 0.32 0.026 0.009 0.042 0.025 0.015 0.002 

 

 
FIGURE 1 Microstructures of as-cast ductile iron 

Austempering process was conducted by first 

austenitizing the as-cast ductile iron by heating to 900℃ 

in an induction furnace and holding the temperature at 

that level for 2h. Then quickly quenched in a salt bath 

down to the austempering temperature at 400℃, 350℃, 

300℃ and 250℃, in which a holding time was chosen as 

1h, 2h and 3h, respectively, for each austempering 

temperature. Finally, the samples were immediately 

cooled in air to room temperature. 12 samples with 

different heat treating cycles were obtained and the 

detailed austempering parameters used for this study is 

shown in Fig. 2. 
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FIGURE 2 Austempering parameters schematic 

The hardness of the samples after the austempering 

process was evaluated using by HB-3000 Brinell 

hardness tester, under 3000 kgf loading according to 

GB/T 231.1-2009. Three times were taken for each 

specimen and then the results were averaged. 

 

3 Artificial neural network 

 

Artificial neural network (ANN) is a mathematical model 

that can learn and generalize the things learned, 

especially suitable for non-linear properties from input to 

output [18]. Therefore, there is growing interest for 

development of intelligent dynamic systems based on 

practical data. Back propagation (BP), which is one of the 

most famous training algorithms for multilayer 

perceptions, is a gradient descent technique to minimise 

the error for particular training pattern [19]. 

The neuron is the basic part of artificial neural 

network. In general, each input is multiplied by its related 

weight and add together, plus the threshold value and 

then cross through activation functions to produce the 

outputs [20]. Fig. 3 shows the data processing in a neural 

network cell and the output of the neuron as Eq.1. 
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FIGURE 3 The data processing in a neural network cell 

1

( )
R

i i

i

y f x w b


  , (1) 

where 
i

x  is normalized input variable, 
i

w  is the weight 

of that variable, b  is the threshold value, R  is the 

number of the input variables, f  is the activation 
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function of the cell and y  is the network output of the 

cell. 

Generally, the activation function is one of the most 

parts in neural network modeling, and the function is 

continues and derivative. Mean Square Error (MSE) as 

statistical criterion are utilized to evaluate results 

accuracy according to following equation: 

2

1

1
( )

n

j j

j

MSE t o
n 

  , (2) 

where 
j

t  and 
j

o  is target and predicted values 

respectively, n  is the number of the network outputs [21, 

22]. 

A typical BP-ANN model include three layers: input 

layer, one hidden layer and output layer. Full connection 

occurs among neurons belonging to each layer, while no 

connections exist among neurons belonging to the same 

layer. The weight of each layers can be adjust through 

network training. Generally, there are two types of data of 

the model: training data and testing data. 121 groups of 

data [1, 8, 9, 11, 12, 23, 24, 25, 26, 27, 28, 29, 30, 31, 

32], which come from the published document, are 

designed for model training in this research. 12 

experimental data used for network testing. To remove 

the order of magnitude from different input and output 

parameters, the data are disposed by using normalized 

method, which is set data between [0 1] (Eq. 3). After 

network testing is done, the outputs were reverse 

normalized (Eq. 4).  

min

max min

k
k

x x
x

x x





, (3) 

min max min( )k kx x x x x   , (4) 

where 
minx  is the minimum value of each column, 

maxx  is 

the maximum value of each column. 

The schematic structure of this designed neural 

network is shown in Fig. 4. A BP-ANN model was used 

with austenitizing temperature and time, austempering 

temperature and time as inputs and the Rockwell 

hardness of ADI as the output of the model. The number 

of hidden layer selected 11 neurons on the basis of the 

previous empiric formulas. The activation function of the 

hidden layer uses a hyperbolic tangent sigmoid (tansig), 

while the output layer uses a linear (purelin) transfer 

function. 
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FIGURE 4 The schematic structure of this designed neural network 

 

4 Results and discussion 
 

The variation of hardness as a function of austempering 

temperature for austempering time 60, 120 and 180 min 

is shown in Fig. 5. It can be found that increase 

austempering temperature leads to a linear decrease in 

hardness at all times. It is mainly due to that the 

microstructure of ADI is mixture of finer ferrite and 

retained austenite when austempered under 350 ℃, and 

this results in higher tensile strength and hardness but 

lower ductility. On the other hand, it has a compound of 

coarser ferrite and austenite when austempered over 350 

℃, and this reduces to the yield and hardness strengths 

but with higher ductility. 
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FIGURE 5 Influence of austempering temperatures on hardness at 

different austempering time 

It is clearly observed that the hardness of ADI slightly 

change at different austempering time under the same 

temperature. Untransformed supercooling austenite, 

which under compressive stress gradually lose change 

activity and then transform into retained austenite when 

the austempering time more than 60 minute. On the other 

hand, the rate of bainite transformation increasingly slow 

and basically finished as the time over 60 minute [33]. It 

is apparently state that the austempering temperature has 

greatly impact on the hardness of ADI and the time has 

little or no effect on it. 

The mean square error (MSE) value during network 

training is shown in Fig.6. It is evidenced that the training 

step have significant effect on the error of the network, in 

which MSE firstly decreases with the training step 

ranging from 0 to 300 epochs, and then it keep constant 

with further increasing training step. It is obviously 

found, that the order of magnitudes of the error 

approached to 10-3, which indicates the desired network 

error achieved after training. 

 
FIGURE 6 The variation of mean squared error (MSE) with number of 

epochs 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(3) 72-76 Guo Xuhong 

75 
Mathematical and Computer Modelling 

 

The detailed mathematical equation of the neural 

network model is available after the network training and 

the formula of the model is as follows (Eq. 5): 

2 2 1 1 1 2[ ( ) ]T f w f w P b b   , (5) 

where P  is input variable, T  is output variable, 
1

f  is the 

activation function from input layer to hidden layer, 
2

f  is 

the activation function from hidden layer to output layer, 

1
w  is the weight matrix form input layer to hidden layer, 

2w  is the weight matrix form hidden layer to output layer, 

1
b  is the threshold matrix from input layer to hidden 

layer, 
2

b  is the threshold matrix from hidden layer to 

output layer. The detailed values of the parameters are as 

follows: 

28.38 42.34 1.08 2.21

1.22 2.06 4.03 0.06

63.16 100.30 7.83 27.19

1.24 2.14 3.46 0.11

0.44 1.79 5.69 0.11

1 2.97 6.48 7.25 0.99

7.04 24.68 1.09 2.23

2.08 5.33 0.56 105.96

19.25 33.10 23.00 0.88
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FIGURE 7 Comparison of experimental data and predicted data for 

testing number after training 

After network training, 12 experimental data used for 

network testing and get the predicted results. Then the 

outputs of the samples converted to the value of Brinell 

hardness by the way of reverse normalized. The testing 

results after transformation are shown in Fig. 7. The 

horizontal axle shows testing number, while the vertical 

axle illustrates the hardness of ADI of measured value 

and predicted value. In the previous diagram, the hollow 

squares and solid points represent the experimental data 

and prediction data, respectively. It can be obviously see 

that the predicted values approach to the measured data in 

most of the testing samples and indicated that the desired 

accuracy of the network model can be achieved. 

Therefore, the model based on artificial neural network 

can be applied in actual production with good accuracy. 

Table 2 are listed the absolute error of experimental and 

predicted value of the testing samples. It can be clearly 

see from the table that the maximum margin of error is 

4.682%. 

 
TABLE 2 Absolute errors of experimental data and predicted data for 

testing samples  

 
Experimental data 

(HBW) 

Predicted data 

(HBW) 

Absolute 

errors (%) 

1 432 412.905 4.420 
2 436 439.636 -0.834 

3 437 454.745 -4.061 

4 400 417.652 -4.413 
5 403 390.215 3.173 

6 406 395.656 2.548 

7 345 340.374 1.341 
8 361 367.252 -1.732 

9 357 364.698 -2.156 

10 285 289.265 -1.497 

11 277 289.970 -4.682 

12 265 260.247 1.794 

 

5 Conclusions 

 

From the study, the following conclusions can be drawn: 

1. Increasing austempering temperature leads to a 

linear decreasing in hardness at the austempering times. 

The hardness of ADI slightly changed at different 

austempering time under the same temperature. 

2. The detailed mathematical equation of the neural 

network model is available after the network training and 

the formula of the model is 
2 2 1 1 1 2[ ( ) ]T f w f w P b b   . 

The detailed values of the parameters refer to the paper. 

3. The predicted values approach to the measured data 

in most of the testing samples and indicated that the 

desired accuracy of the network model can be achieved. 

Therefore, the model based on artificial neural network 

can be applied in actual production with good accuracy. 

4. The maximum margin of error between 

experimental and predicted data is 4. 
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