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Abstract 

In order to effectively reduce the feedback overhead of channel state information (CSI), a channel state information feedback 

algorithm based on compressed sensing was proposed for Large-scale MIMO system. Firstly considering the sparsity of spatial-

frequency domain for the large-scale MIMO channel, the channel information was compressed in space domain firstly and in 

frequency domain subsequently, the receiver acquired the measurement vector based on compressed sensing algorithm; then 

feedback. CSI observations to the transmitter according to the proposed adaptive feedback protocol, at last the transmitter 

reconstructed CSI based on the Basis Pursuit (BP) algorithm. It is show in stimulation results that the proposed algorithm can acquire 

similar BER performance with perfect channel information feedback. The proposed algorithm, which feedbacks the compressed 

channel information, not only can significantly reduce the feedback overhead, but also ensure that large-scale MIMO performance 

gain.  
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1 Introduction 

 

As applications of wireless networks become more and 

more diverse and users in wireless network increase very 

rapidly, wireless data grows up dramatically. Enhancing 

network capacity is still a challenge in the future of 

wireless communications. The multiple antenna 

technology has been an important way to improve 

network capacity. Large-scale MIMO, also known as 

Massive MIMO, configures a large number (from tens to 

thousands) of antennas in base station. It can not only 

greatly improve the system capacity but also reduce 

transmit power for the large-scale array gain. So Large-

scale MIMO has become a hot topic in the research of 5G 

wireless communication technology [1]. 

However it is an important issue that how the 

transmitter acquires the instantaneous and accurate 

channel state information (CSI). In the time division 

duplex (TDD) system, the transmitter obtained CSI using 

the channel reciprocity [2]; in the frequency division 

duplex (FDD) system, the transmitter obtained CSI by the 

feedback from the receiver. As the number of antennas 

increases, the amount of channel state information 

feedback also grows linearly. Popular CSI feedback 

schemes, such as vector quantization and codebook-based 

approaches, may not appropriate for the large-scale 

MIMO. When the feedback overhead is reduced as to the 

limited bandwidth and time resource, the accuracy of the 

feedback will be difficult to ensure [1]. FDD mode is the 

major mode of current wireless communication systems 

and will also be one of working modes in the future 

wireless communications. Therefore, it is necessary to 

study CSI feedback mechanisms and algorithm in FDD 

system of Large-scale MIMO to reduce the feedback 

overhead significantly and ensure a large-scale antenna 

array gain. 

For the CSI feedback of large-scale MIMO on the 

FDD mode, the following documents provided a good 

basis for research. Literature [3] assumed the base station 

and the user shared a common set of training signals in 

advance, and then proposed open-loop and closed-loop 

training frameworks. In the open-loop training, the base 

station transmitted training signals in a round-robin 

manner, and the user equipment successively estimated 

the current channel using long-term channel statistics and 

the previously received training signals. In the closed-

loop training, users only received the training signals 

with best quality. Numerical results proved that this 

feedback method could obtain better performance for 

large-scale MIMO systems, especially when the SNR is 

low. Literature [4] proposed a non-coherent trellis coded 

quantization (NTCQ) feedback algorithm which 

combined channel coding with codebook design. 

Although the above algorithm can reduce the amount of 

feedback overhead, their computational complexity or 

encoding complexity linearly scales up with the number 

of antennas. 

Compressed sensing utilizes the sparsity of signals to 

reduce the number of sampling and breaks the limit of 

Nyquist sampling theorem. It can not only reduce the 

sampling number of signals but also achieve good 

performances for the immense improvement of the sparse 
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signal reconstruction [4, 5]. If signals are compressible or 

sparse in a transform domain, high-dimension signals can 

be projected onto a low-dimension space through the 

observation matrix which is uncorrelated with the 

transformation basis. And then the original signal can be 

reconstructed from a small number of projections which 

contains sufficient information of original signals. In this 

theoretical framework, the sampling rate is not 

determined by the signal bandwidth, but the structure and 

contents of information contained in signals. Recently, 

compressed sensing has been applied to signal processing 

and communications [7]. For the downlink transmission 

that services a large number of users, literature [8] 

proposed a method for channel estimation and user 

selection which established that full channel state 

information for each self-selecting user. Full channel 

state information can be obtained via compressed sensing 

without increasing the uplink feedback overhead. 

Literature [9] proposed a compressive sensing feedback 

method based on the opportunistic feedback protocol. 

The feedback resources were shared and were 

opportunistically accessed by high-quality users whose 

link quality exceeded a certain fixed threshold. Reference 

[10] proposed channel feedback reduction techniques 

based on compressive sensing, in which the transmitter 

can obtain channel information with acceptable accuracy 

under substantially reduced feedback overhead. At last 

simulation results showed that CS-based feedback can 

achieve near optimal rank-1 beamforming performance. 

Based on the above-described research, we put 

forward a compressed sensing feedback algorithm for 

Massive MIMO system. The channel information is 

compressed in space domain firstly and in frequency 

domain subsequently. Compressed channel information is 

feedback to the receiver according to a new adaptive 

feedback mechanism. The receiver acquires accurate CSI 

recovery using Basis Pursuit (BP) reconstruction 

algorithm. In especial, the adaptive feedback mechanism 

will modify the compressing rate based on the channel 

sparsity to improve the feedback efficiency and assure the 

feedback performance. At last, numerical results proved 

that the proposed CSI feedback algorithm can not only 

greatly reduce the feedback overhead, but get similar 

BER performance to the perfect CSI feedback.  

 

2 Compressed sensing theory 

 

The theory of compressed sensing (CS) mainly includes 

three steps: get the sparsifying transformation of original 

signals; acquire the measurement vector of sparsifying 

signals; and reconstruct original signals.  

 

2.1 SPARSIFYING TRANSFORMATION 

 

Original signal x  of length N  can be expressed by the 

following sparsifying transformation: 

S Ψx , (1) 

where S  is the sparse transformation of x , Ψ  is an 

NN   sparsifying-basis. In this case, original signals 

x  have K non-zero coefficients on this sparsifying-basis 

and x  are called as K -sparse. Discrete cosine transform 

(DCT) matrix, discrete fourier transform (DFT) matrix 

and wavelet transform (DWT) matrix are some typical 

sparsifying-basis. These transformations are usually 

orthogonal and (1) can be expressed as following too: 

Tx Ψ S , (2) 

where  T  represents matrix transpose. 

 

2.2 DESIGN THE MEASUREMENT MATRIX 

 

In the measurement of compressed sensing, it does not 

directly measure the K-sparse original signals x  itself. 

Instead, the signal x is projected with a set of 

measurement matrix Φ  onto CS measurement vector y : 

Φxy  . (3) 

We substitute (2) into an equation (3), the equation (3) 

can be rewritten as: 

T y ΦΨ S ΘS , (4) 

where y  is an 1M  CS measurement vector, and M  

satisfies )/(log2 KNKM  . Θ  is an NM   

sensing matrix. If original signals are K -sparse and Φ  

satisfies the Restricted Isometry Property (RIP) [7], K  

coefficients can be accurately reconstruct from M  

measurements. 

The related literature proved that independent and 

identically distributed Gaussian random measurement 

matrix can become universal compressed sensing 

measurement matrix. 

 

2.3 SIGNAL RECONSTRUCTION 

 

We can obtain the sparse coefficients S  via solving 

inverse problem of formula (4), then the K -sparse signal 

x  can be reconstructed from M  dimensional 

measurement vectors y . This can be formulated as the 

following 0l  norm (also called 0-norm, that is the number 

of non-zero elements in the vector) minimization problem: 

0

min
l

S . .s t  T
y ΦΨ S . (5) 

When the estimation of sparse transformation 
'

S  is 
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solved by (5), and then original signals x  can be 

reconstructed as 'x  via 
''

ΨSx  . Reconstruction 

algorithms contain Matching tracking algorithm (MP) 

Orthogonal Matching pursuit (OMP) algorithm and 

Linear Programming (LP), basic Pursuit (BP), etc.  

 

3 System Model 

 

In the Large-scale MIMO system, assume that the 

number of subcarriers is cN , the number of OFDM 

symbol is lN , the number of transmit antennas is 

1tN  , the number of receive antennas is 1rN , the 

received signal of users: 

         , , , , ,dt P t t t t     g H W f n , (6) 

where  ,t g  is the received signal of OFDM symbol t  

and subcarriers  , the dimension of g  is 

lcr NNN 1 . dP  is the transmission power of the 

base station,  ,tW  is the lcstst NNNN   

downlink precoding matrix,. stsN  is the number of 

spatial data streams of transmitted signals.  ,tf  is the 

lcsts NNN 1  transmitted signals.  t,n  is the 

additive white Gaussian noise (AWGN) with zero mean 

and variance 
2 . H  is lctr NNNN   dimension 

channel matrix, and  ,tH  is the tr NN   spatial 

channel matrix from the transmitter to the receiver of 

OFDM symbol t  and subcarriers  . 

 

4 Large-scale MIMO channel information feedback 

based on compressed sensing 

 

We assume that large-scale antenna array of the base 

station is in a same platform and arranged closely. The 

correlation of antennas is expected, the channel 

information can has a sparse representation in both the 

spatial and frequency domain according to the signal 

processing theory. Based on this assumption, CS 

(compressed sensing) techniques can be applied to 

compress the CSI feedback information. We can carry out 

the two-dimension compression in space and frequency 

domain, then feedback the measurement vector to the 

transmitter, instead of H . 

The detailed process should be explained as follows: 

Firstly compress channel matrix  ,tH  in the spatial 

domain and get its sparse transformation; secondly make 

a secondary compression in frequency domain, then find 

a suitable measurement matrix to obtain the measured 

value (this paper employs the random matrix obeying 

Gaussian distribution); finally reconstruction algorithm 

was introduced to reconstruct the original channel matrix 

from the measured values. So channel matrix  ,tH  

should be vectorized into an 1tr NN  vector firstly: 

     ,vec, tt Hh  . (7) 

After choosing the suitable sparsifying-basis in space 

domain and compress h , we can get  ,11 thΨS  . 

The channel matrix of frequency domain is ctr NNN  , 

while the elements of each column are the elements of 

1S  obtained from spatial domain compression. Then the 

channel matrix in frequency domain should be vectorized 

into an 1ctr NNN  vector, after the second 

compression, we can obtain sparse coefficients 

 thΨS 22  .  

Then H  is encoded into measurement vector which 

is used as the content of compressing feedback: 

222 ΘSSΦΨΦhy  . (8) 

Thus, the channel vector  th  with dimension 

1ctr NNN  is compressed into 1M  measurement 

vector y  through equation (8). M  is much smaller than 

ctr NNN  because the channel matrix is sparse in spatial-

frequency domain , while CSI recover can be achieved 

accurately at the transmitter. Feedback load reduced by 

the compression ctr NNNM / , transmitter and 

receiver can both get Φ  by pre-configured. The 

transmitter can recover the channel information 

accurately through reconstruction algorithm after 

receiving the feedback of y . The feedback flow chart is 

depicted in Figure 1. 

The estimated 

channel matrix H

Compressed sensing: 

Firstly, get the sparse 

coefficient S2 after 

compress the H in 

spatial and frequency 

dimensions, then get 

the measurement 

vector y

The receiver

Feedback 

measurements y

The transmitter
Reconstruct the signal by 

BP algorithm, then extract 

the signal parameters from 

CSI that reconstructed, and 

transmit the data based on 

these parameters

 
FIGURE1 The flow chart of the proposed CS-based channel feedback 

method 

 

4.1 SPARSE REPRESENTATION OF THE CHANNEL 

MATRIX 

 

The choice of sparsifying-basis Ψ  plays a key role in 

sparsifying and reconstructing the information. 

Generally, an ideal sparsifying-basis would be associated 

with a more sparse representation or approximated sparse 

representation for h . Due to the fact that Wavelet 

transform (DWT) has a strong ability to remove the 
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correlation, this paper uses wavelet transform to get the 

corresponding sparse representation of channel matrix 

Η  in its spatial-frequency domain. Then construct the 

orthogonal wavelet transform matrix Ψ  [11]: 

    12  PPPn Ψ , (9) 
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where GL，  are two matrices which are constructed by 

low-pass filter l  and high-pass filte g . Each row of 

them is a vector of length 
12/ nN : 

       0 , 1 , 2 2 , 2 1 ,0,0, 0l l l P l P       and 

       0 , 1 , 2 2 , 2 1 ,0,0, 0g g g P g P       that can 

be obtained by circumference 2 shifts separately. 

According to the Orthogonality of the filter, it can be 

proved that 
T T ΨΨ Ψ Ψ I . 

As mentioned above, the sparse representation of H  

could be generated after compression in both spatial 

domain and frequency domain: 

 thΨS 22  . (11) 

 

4.2 RECONSTRUCT THE CHANNEL MATRIX 

 

This paper applies the Basis Pursuit (BP) [12] to 

reconstruct the channel matrix, which can be formulated 

as the following 1l  norm minimization problem: 

12min S
S

 yΘS 2..ts . (12) 

Solving equation (12) can be equivalent to 

optimization of the linear programing problem [13], the 

standard form of which is as follows: 

2min SC
T

bAS 2 ..ts 0S , (13) 

where 2S  is called decision vector that can be used to 

find the reconstructed channel, C  is called the 

coefficient vector of the objective function. In this paper, 

the coefficient vector is specified as a unit vector, In 

addition, 2S  and C  are both column vector with 

dimension N; b is the M-dimension column vector called 

the constant vector of constraint equation; A  is an 

 NMNM   matrix called the coefficient matrix of 

constraint equations. 

The value of vector 2S  should be decomposed into 

two parts, positive and negative, in order to solve the 

above formula. Let 
2u  and 

2v  have the same dimension 

with 2S  and 

    Niiiii .....2,1,, ,2,2,2,2 


SvSu . Then, the 

vector 2S  can be rewriten as 

0,0, 22222  vuvuS . (14) 

And let  Θ-Θ，A  , 









2

2

2
v

u
S , yb  , the value 

of 2S  can be solved with the combination of formula 

(14), then the reconstructed channel matrix 


h  was got by 

2

T

2 SΨh  . 

 

4.3 ADAPTIVE FEEDBACK PROTOCOLS BASED 

ON SPARSITY OF THE CHANNEL MATRIX 

 

According to the feedback mechanism in large-scale 

MIMO systems described above, this paper proposed an 

adaptive feedback protocols based on CS which 

configures the feedback dynamically according to the 

sparsity of the channel state matrix to improve system 

efficiency. 

After compressed in both spatial and frequency 

domain, the channel matrix H  will be transformed into 

its sparse representation in wavelet domain after the joint 

compression in space and frequency domain, and wavelet 

sparsifying-basis satisfies Restricted Isometry 

Property(RIP), then the K coefficients can be accurately 

reconstructed from the M  measured values 

( )K M N  . Since the compression ratio, 

ctr NNNM / , is proportional to M , K  can be 

used as the threshold of its sparsity (Because the channel 

matrix is impossible sparsed absolutely, so we need to set 

smaller sparse coefficients to 0 to get approximated 

sparse). Only when the channel matrix is  K -sparse, 

the feedback scheme with a larger compression ratio 

should be employed, if the channel matrix is  K -sparse, 

a smaller compression ratio should be employed. We 

adjust the value of M  at the receiver, in accordance with 

the sparsity of instantaneous channel. In this case the 

feedback can be reduced by using a lower default value 

of M . In the simplest form, the compression ratio is 

switched between two possible levels. Note that the 

extension to adaptation among more than two levels is 

also possible, where the sparsity of channel range is 

partitioned into several regions, and each region 

corresponds to a specific compression ratio.   

Consider that M  changes between 1M  and 
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2M 1 2( )M M , and Φ  is an crt NNNM 2  random 

measurement matrix stored at both transmitter and 

receiver. When the lower compression ratio is used 

( 1MM  ), only the first 1M  rows of Φ  are useful for 

compression at the receiver and for reconstruction at the 

transmitter. If 2MM  , then the full matrix of Φ  is 

applied for computation. Thus, besides the CS 

measurements, the feedback should also include an 

indication of M  so that the transmitter is able to 

determine an appropriate portion of Φ  for CSI recovery. 

 

5 Performance analysis and simulation results 

 

In this section, we analysed and evaluated the 

performance of channel information feedback scheme 

based on compressed sensing by simulation. Simulation 

parameters are shown in Table 1. To more clearly 

evaluate the performance, we compared a fixed 

compression ratio feedback, an adaptive compression 

ratio feedback according to the sparsity and a perfect 

channel information feedback. Simulation results in 

Figure 2 show the bit error rate (BER) performance of 

SVD precoding. 

 
TABLE 1 simulation parameters of channel feedback algorithm based 
on CS 

Simulation 

parameters 
Values 

Wavelength 0.375m 

Antenna spacing 0.01m 

Carrier frequency 800MHz 

Subcarrier number 512 

Antenna 

Configuration 
BS:16 antennas UE:16 antennas 

Channel Model  

Simulation Data 20000bit 

Modulation and 

coding scheme 
QPSK,1/2 Convolutional coding 

Channel estimation Ideal Channel Estimation 

Precoding SVD 

Channel feedback 

Feedback cycle in time domain:5ms;CS-

based feedback in Spatial frequency domain, 
compared with perfect channel information 

feedback 

 

As the simulation results shown, the BER 

performance is better when the compression rate is 

adaptive to the sparsity channel compared with the 

compression ratio fixed at 40%, and it is very close to the 

BER of the perfect channel information feedback. The 

proposed algorithm not only can significantly reduce the 

feedback overhead, but obtain highly-accurate channel 

information recovery and ensure large-scale MIMO 

performance gain. The simulation results are shown in 

Figure (2): 

 
FIGURE 2 Comparison of BER performance 

 

6 Conclusions 

 

To reduce the CSI feedback overhead, we proposed a CS 

feedback algorithm for Large-scale MIMO systems. CSI 

Feedback can be compressed by sparsifying projections, 

feedback with an adaptive compression ratio and 

reconstructed to highly-accurate channel information. 

The compression ratio is dynamically adjusted based on 

the sparsity of instantaneous channel, so the proposed 

feedback algorithm can acquire a perfect balance between 

performance and feedback overhead. But in the real 

implementation process, many practical problems e.g. 

channel estimation errors, quantization noise, need more 

investigations in the future. 
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