

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

91
Mathematical and Computer Modelling

An efficient and flexible modelling approach for multi-DSP
system

Zheng-Mao Zhou, Shun-Hong Zhong, Ming Cai*

School of Computer Science of Technology, Zhejiang University, Hangzhou of Zhejiang, China

Received 1 July 2014, www.tsi.lv

Abstract

With the development of the information technology, single digital signal processor (DSP) cannot meet the requirements of massive

data processing. Multi-DSP parallel processing mode has been commonly used in real-time information processing system. New

technology is also making it much easier to integrate multiple DSPs into a single silicon chip. However, designers of a new multi-DSP

system and software are confronted with problems such as short product life-time. Meanwhile, product verification is indispensable

before launching into the market. In this paper, a multi-DSP simulation platform is developed to solve these problems. The designed

multi-DSP platform is based on an ISS-SystemC structure and has three common interconnect interfaces. An AMBA bus-shared

memory model is designed for the expansion of the simulation system. A thread-agent method is proposed to optimize the performance

of SystemC thread and the experiment results show that the multi-DSP parallel processing mode can improve the processing

performance of the system significantly.

Keywords: simulation platform, multi-DSP, ISS-SystemC, SystemC optimization

1 Introduction

With the rapid development of information technology,

Digital Signal Processor (DSP), with its unique structure

and fast data processing capabilities, has been widely used

in mobile communication, radar signal processing, real-

time image processing and other fields. However, with the

increasing amount of data processing, a single DSP system

cannot meet the requirements of large-scale computation.

Multi-DSP parallel processing system with characteristics

of real-time, high accuracy and large data throughput has

already been applied to complex large-scale data

processing systems [1]. As designers of new multi-DSP

parallel system and software are increasingly faced with

short product life-time. The resulting time-to-market

constraints are contradicting the continually growing

system complexity. Nevertheless an extensive design-

space exploration and product verification is indispensable

for a successful market launch [2]. In this case, simulation

tools are essential both for designers and researchers in

computer architecture, due to their ability of studying and

validating new designs without the cost of actually

building the hardware.

For this purpose, a Hardware/Software co-simulation

is very useful for the validation of both hardware and

software components in multi-DSP parallel system. Co-

simulation can also evaluate the performance of the whole

system at an earlier stage before building a prototype.

However, there are usually gaps between software

components and hardware components in traditional

mixed co-simulators. It is not until the emergence of

SystemC that the hardware and software are bumped

* Corresponding author e-mail: zhouprogram@zju.edu.cn

together, which makes the co-simulations of software and

hardware seamlessly. SystemC is one of the most popular

system-level modelling languages as it provides a common

language for both the hardware and software designers

[3].The single simulation engine (SystemC) ensures the

design of the co-simulation to be easier and more efficient.

As is shown in Figure 1, a novel ISS-SystemC

framework is proposed for designing multi-DSP systems.

An open source ISS (C6Xsim) [4] of DSP is used to

abstract the model of the real programmable device where

the software should run and SystemC is used for

transparent integration of ISSs with other peripherals. The

ISS is designed as a c++ class with an ISS-wrapper

interface and each DSP core is an instance of this class. As

the interconnect between DSPs is very flexible, we

designed several peripheral interfaces (EMIF, HPI,

McBSP) for the expansion of the platform with SystemC.

The ISS-wrapper is used as an intermediate transformation

layer for mutual transformation between the read (write)

requests from ISS and SystemC transactions, which can be

deal with interface module. The SystemC Module in

Figure 1 consists of communication mediums (Shared

Memory, FIFO), AMBA Bus and Decoding Controller,

etc. Each DSP core is connected to this component through

a peripheral interface for communicating with each other.

The main contributions of this paper consist of the

following two aspects:

1) We provide a flexible and scalable multi-DSP model

for C62x- series processor at a cycle-accurate level of

abstractions, which could meet the needs of debug,

functional verification of the multi-DSP system, thus

helping shorten the system development cycle, improve

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

92
Mathematical and Computer Modelling

product quality and reliability, and reduce development

costs.

2) A serial scheduling mechanism is used in the

SystemC-kernel to reduce the design complexity of the

system [5], which allows only one sc_thread running at the

same time in system. We proposed an OS-thread agent

approach to avoid the shortcomings of sc_thread serial

execution. This method makes all the DSP cores to run in

parallel when there is no communication between any two

DSP cores, which can accelerate the simulation speed

greatly, especially in the modern multi-core host machine.

The paper is organized as follows: Section 2 introduces

the related work and Section 3 introduces the

implementation of multi-DSP simulation platform. Section

4 introduces the system expansion and performance

optimization, followed by experiment verification. Section

6 gives the conclusion of the paper.

SystemC Module

ISS(DSP Core)

ISS-wrapper

ISS(DSP Core)

ISS-wrapper

EMIF
Module

HPI
Module

McBSP
Module

EMIF
Module

HPI
Module

McBSP
Module

ISS(DSP Core)

ISS-wrapper

EMIF
Module

HPI
Module

McBSP
Module

ISS(DSP Core)

ISS-wrapper

EMIF
Module

HPI
Module

McBSP
Module

FIGURE 1 ISS-SystemC Framework.

2 Related work

In this section, we begin with a brief introduction of the

open source IIS of DSP (C6Xsim). Then we discuss the

IIS-SystemC framework. Finally, the flexible interconnect

of c62x- series DSP is presented.

2.1 C6XSIM

C6Xsim [4], designed by Vinodh Cuppu in the University

of Maryland, is an open source VLIW processor

simulation tool. It offers a complete cycle accurate,

execution driven simulation environment of Texas

Instruments TMS320C62x series of very long instruction

words DSP processors. This ISS accurately simulates

various stages of the pipeline and gathers statistics to a

considerable degree of accuracy of execution. So it can be

used for microarchitecture development, performance

analysis and application analysis on DSP processors. In

our system, we have added additional functionality to the

original C6Xsim to enable the interconnection between the

DSPs.

2.2 ISS-SYSTEMC FRAMEWORK

The IIS-SystemC is a popular HW/SW co-simulation

framework, which has been used by many academic

institutes. [6] is based on qemu-SystemC structure and the

experiment results show co-simulation at the cycle-

accurate (CA) level is much faster than the conventional

ones. [7] developed a complete multi-ARM simulation

system based on SWARM-SystemC framework [8] and

they found that the effectiveness of a particular system

configuration strongly depends on the application domain

and generated traffic profiles. [9] proposed a transaction

level modelling (TLM) approach for designing an

OpenRISC-SystemC co-simulation framework and [10]

designed multiple interconnected processors with

distributed memory in the SimpleScalar-SystemC

framework. [11] proposed an ISS-SystemC co-simulation

framework in which HW models can be modified on the

fly while keeping the SW parts unchanged. This means

that a new ISS can be added to the system with no complex

changes.

2.3 INTERCONNECT OF C62X-SERIES DSP

As we know that the cascaded modes of multiple DSPs and

high-speed data transfer between them are significant in

multi-DSP parallel processing systems. Therefore, the

high-speed data or special interfaces are generally used as

the cascaded interfaces among multi-DSP systems to meet

the requirement of data transfer rate. The Texas

Instruments provides three high-speed interfaces for the

interconnect of C62X-series DSPs [12]. Table 1 shows the

characteristics of these interfaces. The external memory

interface (EMIF) is the interface between the external

storage and C6X DSP. This interface is a generic mass data

transmission channel and the transmission speed can reach

16 Gbit/s in general. The host port interface (HPI) is an

interface between master and DSP. The master cannot only

access all storage space of the DSP directly, but also the

chip memory mapped peripherals. This interface is mainly

used to control and configure the slave DSP. The multi-

channel buffered serial port (McBSP) is usually used to

connect the serial peripheral and the transmission speed is

only 0.125Gbit/s.

TABLE 1 Interface of C62x-series DSP

Name
Speed

(Gbit/s)

Number of

Signal Lines

Typical Interconnect

Structure

EMIF 16 36 shared memory

HPI 0.8 40 master-slaver
McBSP 0.125 6 peer-peer

Figure 2 shows the typical interconnect of C62xx-

series DSPs with the referred interfaces in our simulation

platform. Figure 2a shows the DSP interconnect based on

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

93
Mathematical and Computer Modelling

a shared memory. This interconnect structure is usually

used for large amount of data exchanges between DSPs,

which could be handled according to the high-speed

transmission characteristics of EMIF. Figure 2-b shows a

typical master-slave interconnect structure based on HPI

and it requires no additional storage medium. As the centre

of the topology, the master-DSP is usually used for the

control centre of the whole system and each slave-DSP

receives data (control commands and configuration data)

from the master-DSP. Figure 2-c shows the peer-to-peer

topology structure, which is mainly used for small amount

of data communication between the two DSPs.

DSP

Shared Memory

Bus Arbiter

DSP DSP
DSP

DSP

Decoding Controller

DSP DSP DSP

DSP EMIF

HPI

McBSP

a b c

FIGURE 2 Topology of DSP interconnect

3 Multi-DSP simulation platform

Integrating multiple Instruction Set Simulations (ISSs) of

DSP into a unified system simulation framework has

several non-trivial challenges. In this section, we will

introduce each of the major modules of the simulation

system. First we add several components to the original

open source cycle accurate ISS in order to meet the basic

I/O requirements. As SystemC is selected as system model

language, a SystemC wrapper is necessary for the

conversion between read (write) requests and SystemC

transactions. Then three special interfaces are provided for

the interconnect of DSPs in accordance with current

popular DSP interconnect structure. Finally, an AMBA

Bus-Shared Memory Model used in our simulation system

is introduced.

3.1 PROCESSING MODULE

As shown in Figure 3, we add three components (Interrupt

Controller, Timer Manger and I/O Manager) to the original

ISS in order to enable interconnection between the DSPs,

which also ensures a full-fledged real-time operating

system (RTOS) to run on it. The Interrupt Control

component is used for the management of external

interrupts, which are mainly from the I/O modules. The

clock interrupt is triggered by the Timer, which provides

support for a RTOS running on the simulator. The I/O

Manager module is used for mapping the I/O address and

providing a uniform I/O management interface.

Local

BusInterrupt
Control

C62xx
Core Timer

I/O
Manager

FIGURE 3 Processing module architecture

3.2 SYSTEMC WRAPPER

There are significant differences between the ISS and the

interconnect structure, as the ISS is developed with the c

program language while the interconnect structure consists

of SystemC modules. An approach to make up the

difference is to completely embed the ISS within the

SystemC module. In other words, we design a class not

only with the instruction set simulation function and but

also with the function of transforming normal c function

call request into the SystemC transaction level request.

As shown in Figure 4,we design two classes, namely

the SystemC module DSP_Wrapper and the processing

module DSP_Core. The DSP_Wrapper contains an

instance of DSP_Core and launches the ISS simulation.

The two member functions (tran_acc_in and

tran_acc_out) are used for the synchronization with the

environment (Bus, peripherals and other DSP Core). The

member function, specail_mem_access in DSP_Core

shows that access to specific memory (I/O ports or I/O

control registers, etc.) can be detected. The access is

suspended not until the DSP_Wrapper receives the

corresponding response signal and then sets the member

variable s_mem_end as true.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

94
Mathematical and Computer Modelling

FIGURE 4 DSP_wrapper architecture

3.3 INTERFACE DESIGN

3.3.1 External memory interface

External memory interface (EMIF) is the only channel to

access external memory in the C62x-series DSP and the

transmission speed generally can reach 16 Gbit/s. The

main pins and control registers are designed as shown in

Tables 2 and 3. A typical access (read) to shared memory

with EMIF is as follows:

 Set EM_Add as the corresponding address and

EM_Read as true;

 Set the EM_Hold as true, then wait until EM_HoldA

as true;

 Read the EM_Data value after one clock;

 Set the EM_Hold as false to release bus when the

access finishes.

TABLE 2 Pins of external memory interface

Name Data Type Introduction

EM_Enable sc_in<uint> enable EMIF

EM_Add sc_out<uint> address pins
EM_Data sc_inout<uint> data pins

EM_Read sc_in<bool> indicate read

EM_Write sc_in<bool> indicate write
EM_Ready sc_inout<bool> indicate ready

EM_Hold sc_out<bool> bus request

EM_HoldA sc_in<bool> bus response
EM_Int sc_out<bool> interrupt

EM_Clk sc_inout_clk clock

TABLE 3 Control register of external memory interface

Name Data Type Introduction

GlbCtl uint global control register

SdCtl uint sdram control register
SdExt uint sdram external register

3.3.2 Host port interface

The host port interface (HPI) is a special parallel interface,

existing in most of the TI DSP chip. The master-slave

interconnect structure with HPI can significantly reduce

the complexity of the system with no need for extra chips.

The master-slave multi-DSP system is very popular in

flight control system in which the reliability is the primary

consideration [13]. The main pins and control registers are

designed as shown in Table 4 and Table 5 respectively. A

typical access to slave memory process is as follows:

 Set HPI_Cntl1 and HPI_Cntl2 as false, false;

 Write special value to the HPIC register to prepare for

the access slave;

 Set HPI_Cntl1 and HPI_Cntl2 as false, true and write

address to HPIA;

 Set HPI_Cntl1 and HPI_Cntl2 as true, false (or true,

true) and then read data from HPID.

 In the previous step, if the values of HPI_Cntl1 and

HPI_Cntl2 are set as true and false respectively, the

value of HPIA will automatically increase one.

TABLE 4 Pins of host port interface

Name Data Type Introduction

HPI_Data sc_inout<ushort> data pins

HPI_Cntl1 sc_in<bool> control pin1
HPI_Cntl2 sc_in<bool> control pin2

HPI_Hwil sc_in<bool> indicate transform

HPI_Ready sc_out<bool> indicate ready
HPI_Int sc_out<bool> interrupt

HPI_Clk sc_inout_clk clock

TABLE 5 Control registers of host port interface

Name Data Type Introduction

HPIA uint HPI address register
HPIC uint HPI control register

HPID uint HPI data register

FILE DSP_Wrapper.cpp

#include<systemc.h>

#include "DSP_Core.h"

SC_MODULE(DSP_Wrapper)

{

............

sc_in_clk clk;

sc_in

sc_out

sc_inout......

DSP_Core dsp_core;

/* start instruction set simulation*/

void start_simulation();

/* SystemC transation inpuy*/

void tran_acc_in();

/* SystemC transation output*/

void tran_acc_out();

............

………

SC_STOR(DSP_Wrapper)

{

SC_THREAD(start_simulation);

sensitive_pos<<clk;

SC_CTHREAD(tran_acc_in,clk.p

os());

SC_METHOD(tran_acc_out);

senstive<<dsp_core.s_mem_end;

}

}

………

………

FILE DSP_Core.h

Class DSP_Core

{

public:

unit mem_aceess(.......);

/*special memory access*/

/*(such as I/O,control register)*/

unit special_mem_access(......);

/*special memory access start*/

sc_signal<bool>s_mem_start;

/*special memory access end*/

sc_signal<bool> s_mem_end;

uint s_add_s;//special address start

uint s_add_e;//special address end

...........................

}

FILE DSP_Core.cpp

#include<systemc.h>

#include "DSP_Core.h"

unit DSP_Core::mem_access(uint add)

{

if(add>=sl_add_s&&add<=s_add_e)

{

return special_memory_access(add);

}

else

…………….

}

unit DSP_Core::specail_mem_access()

{

.............

s_mem_start.write(true);

while(s_mem_end ==false)

 wait();

.............

}

………………..

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

95
Mathematical and Computer Modelling

3.3.3 Multi-channel buffered serial port

The Multi-channel buffered serial port is one of the

fundamental interfaces in the C62x series DSP. It is

usually used for connecting a serial interface peripheral,

such as serial AD and serial peripheral interface. It can also

be used for the interconnection between the DSPs when

there is only a small amount of data exchanged. The simple

McBSP-to-McBSP structure can reduce the cost of system

design significantly. Figure 6 and Figure 7 show the main

pins and control registers of the multi-channel buffered

serial port. A typical byte reception process is as follows:

 Set SPCR register as a special value to configure the

receiving protocol;

 RSR gets a bit from the MS_DR pin every one clock

until one byte transfer is completed;

 Check the received byte according the check code. If

the byte is correct, then set the value of DRR as the

received byte and set MS_CLR as true to generate an

interrupt.

TABLE 6 Pins of multi-channel buffered serial port

Name Data Type Introduction

MS_DX sc_out<bool > send pin

MS_DR sc_inout<bool> receive pin
MS_CLX sc_inout_clk send clock

MS_CLR sc_inout_clk receive clock

MS_Xint sc_out<bool> send interrupt
MS_Rint sc_out<bool> receive interrupt

TABLE 7 Control register of multi-channel buffered serial port

Name Data Type Introduction

DRR uchar receive register

DXR uchar send register

RSR ushort receive shift register
XSR ushort send shift register

SPCR uint control register

3.4 AMBA BUS-SHARED MEMORY MODEL

The bus-shared memory model is currently a very popular

method of multi-machine interconnect [14]. The masters

communicate with each other through the shared memory.

In our simulation system, the ISS (DSP core) is the master

of the bus and a shared memory is the slave of the bus. In

the following parts, the bus model and the shared memory

will be introduced in details respectively.

3.4.1 AMBA Bus

The AMBA Bus is applied in our simulation platform as

the AMBA is a widely used standard in system on a chip

(SoC) [7]. The AMBA Bus contains two standards: an

advanced high-performance system bus (AHB) and a

peripheral bus (APB) for minimal power consumption and

connection with low-performance peripherals. We have

developed a SystemC module only for the former one,

given the situation of a large number of data exchange

between the DSPs. As each ISS (DSP Core) in the

simulation system is in peer relationships. Each bus

request from the master is given the same priority. A

traditional arbitration strategy (round-robin policy) is

implemented in our AMBA Bus model to realize load

balancing.

A Bus transaction is triggered by a bus request signal

when one master (DSP) wants to access the shared

memory. The arbiter receives the request and then

determines whether to authorize the request or put the

request into the waiting queue according to the current

state of the bus. Then the master waits until the bus

ownership is granted by the arbiter. At the same time, the

address and control lines are driven and the data bus

ownership is also granted after one clock cycle. Last, the

data transformation starts when a ready signal is asserted

by the slave (shared memory), indicating all the

preparations have been completed and the single data

transformation can be completed after the next rising edge

of the clock. Besides this single transfer, specified-length

bursts and unspecified-length bursts are also supported in

our designed the AHB protocol.

3.4.2 Shared memory

The Shared Memory is connected to the AMBA Bus as a

slave. It consists of multiple instantiations of a basic

SystemC memory module and each module space is 1MB.

It communicates with the masters through the AMBA bus

with a typical request-ready asynchronous protocol

[7].The memory read process is as follows: the address

lines are assigned and then the memory module checks

whether the address is within the scope of the current

address space or not. If the address is effective, then a

ready signal is asserted by the memory module. After one

clock cycle, the value of data address lines is assigned as

the content of the corresponding address in memory by the

memory module.

4 System expansion and performance optimization

4.1 SYSTEM EXPANSION

As shown in Figure 2, the interconnect structure between

the DSPs is very flexible. In many complex scenarios, the

interconnect structure is a hybrid structure which consists

of two or more interconnect structures in Figure 2 [15].

Each topology involves various parameters, such as the

number of DSPs, the number of shared memory, size of

each shared memory, any two DSP connection mode, etc.

The hybrid topology and configurable system parameters

are able to meet the needs of a variety of Multi-DSP

systems simulation.

4.1.1 Hybrid topology

Mixed DSP interconnect structure involves multiple

external connection interfaces and their communication

with the DSP Core. In section 3.3, three external

connection interfaces are designed for the DSPs

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

96
Mathematical and Computer Modelling

interconnect. We just need to map the ports of the three

interfaces into different memory address space and to

ensure the three interface module can simultaneously keep

pace with the DSP Core module. Then the hybrid DSP

interconnect structure can be supported in our simulation

platform.

4.1.2 System configuration

The system configuration describes the DSP

interconnection topology. For an ordinary user, figurative

descriptions can be understood easily. Therefore, a

graphical configuration interface is a very good choice.

Figure 4 shows a WYSIWYG DSP interconnection

parameter configuration interface.

FIGURE 4 Visual configuration of simulation system

4.2 SIMULATION PERFORMANCE OPTIMIZATION

4.2.1 Performance Bottleneck Analysis

Table 5 shows the time cost of quick sort with 20000

random numbers in our simulation system. All the DSP are

connected with shared memory as shown in Figure 2-a and

a parallel algorithm is used in the multi-DSP system. The

host machine is shown in section 5.1.

TABLE 8 Execution time of quick sort

Quick Sort Time(ms)

single DSP 153824
two DSP 205234

four DSP 285234

As we can see that the execution time of quick sorting

rapidly increases with the incremented number of DSPs.

This indicates that although the host is a multi-core (eight

core) system and supports multiple threads run in parallel,

multi-DSP parallel processing does not increase but

reduces the system performance instead. As each DSP core

is designed independently in a SystemC thread of

execution in our system, we suspect that these SystemC

threads may not be executed in parallel and [3, 16] confirm

our guess. The SystemC kernel adopts fiber mechanism

and QuickThread to encapsulate SystemC threads in the

Windows and Linux respectively. Therefore, the SystemC

thread is not an OS thread but a lightweight thread. The

switches of these lightweight threads do not take place in

the OS kernel layer. Therefore, they have very high

performance; however they are executed serially as these

lightweight threads are equivalent to one OS thread. So

multi-DSP parallel system cannot accelerate the sorting

process. The synchronization between the DSP cores and

peripheral modules can also significantly affect the

performance of the multi-DSP system and the

synchronization overhead will increase with the number of

DSPs in our system. Therefore, the overhead of sorting

increases with the number of the DSP in our system, rather

than decrease.

4.2.2 Performance optimization implementation

OS Thread

DSP Core

OS Thread OS Thread

SystemC Module

Semaphore Semaphore Semaphore

SystemC Thread

DSP Core

SystemC Thread

DSP Core

SystemC Thread

FIGURE 5 SystemC thread parallel optimization

SystemC is one of the most popular system-level

modelling languages as it provides a simulation

framework, which facilitates design and verification of

SoC at different levels. However, the single threaded

simulation kernel inherent to SystemC cannot meet

requirements of multiple DSP parallel running. We present

a method of thread agent to ensure multiple DSPs run in

parallel on current popular multi-core machine to speed up

the simulation of the whole system.

Figure 5 shows the method of thread agent to avoid

SystemC threads’ serial execution. Each DSP core creates

an OS thread to simulate the instruction execution. As

described in section 3, the ISS-SystemC framework is used

in our system and the synchronization between DSPs is

done through SystemC event mechanism. However, the

synchronization is not in every clock cycle but only when

the exchange of data between DSPs or access to the

peripherals occurs. We create an OS thread in the SystemC

thread to simulate the instruction execution .An OS

semaphore is used for the synchronization between the OS

thread and SystemC thread when the exchange of data

between DSPs and access to the peripherals occurs. All OS

Threads can run in parallel on the multi-core machine

when there is no communication between the DSPs.

Therefore, the simulation speed of the entire system could

be improved greatly.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

97
Mathematical and Computer Modelling

5 Experiment verification

5.1 EXPERIMENT ENVIRONMENT

1) Host Machine

 CPU: FX-8350 (4.0GHz), eight cores CPU

 RAM: 8GB (DDR1600)

 Hard Disk: 1TB

 OS: Windows 7 ultimate

2) Development Environment

 Test case compiler: Code Composer Studio 3.3

 Simulation system Compiler: Microsoft Visual

Studio 2010

 SystemC version: 2.2.0

5.2 TEST CASE

We make changes on some benchmarks [17] provided by

TI, to ensure the benchmarks can run on the multi-DSP

parallel system. The modified benchmarks contain Fast

Fourier Transformation (FFT), Matrix Multiplication and

Quick Sort.

5.2.1 Fast Fourier transformation

Fourier transform, a basic digital signal processing

operations, is widely used for presentation and analysis of

discrete time-domain signal. Define a discrete finite time

sequence 0(),x n n N , and the discrete Fourier

transform is:

21

0

() , 0,1,..., 1,
N j

nk N
N NX k x n w k N w e

 .

The algorithm complexity of commonly used Discrete

Fourier Transformation (DFT) is 2()O n .In our system,

Fast Fourier Transformation (FFT) is used in the multi-

DSP simulation system. The DFT sequence is divided into

shorter DFT sequences and each shorter DFT sequence is

dealt in one DSP. This allows parallel processing of

Fourier transform and the algorithm complexity reduces to

(log)n

mO n .

5.2.2 Matrix multiplication

Matrix multiplication is one of the DSP regular processing

operations. Define C = A × B, A and B are N-dimensional

matrix. Then , 1
(1 ,1)

M

i j ik kjk
C A B i M j M

 and

the algorithm complexity is
3()O n .In our system, we have

adopted Cannon algorithm of matrix grid division.

Assumptions with m2 DSPs in parallel system, each DSP

is assigned to
n

m
 of the data for dealing. The processing

speed of the whole system can be improved obviously and

the algorithm complexity is about
2() /o n m .

5.2.3 Quick sort

Quick sort, as a kind of efficient sorting method, is often

used to deal with large-scale data sorting. Define that the

amount of data to be sorted is n and the number of DSP is

m. The algorithm complexity of the sorting data for each

DSP is 2log
n

m
n

m
 and the algorithm complexity of all the

data is 2 2log log
n

mm
n

n
m

 .

5.3 EXPERIMENT RESULTS AND ANALYSIS

Figure 6-8 show relative execution time of three test cases

(FFT, Matrix Multiplication and Quick Sort). Each test

case runs on simulation systems with three kinds of

topology and Table 9 shows the characteristics of these

three topologies. SHM and U-SHM indicate the optimized

system and the un-optimized system respectively. Finally

we discuss the communication overhead and parallel

acceleration according to the experiments results.

TABLE 9 Three kinds of topologies

Interconnection

Method
Characteristics

SHM
The entire DSPs are connected with one Shared
Memory as shown in Figure 2-a

HPI
The entire slave DSPs are connected to Host

DSP with HPI as shown in Figure 2-b

Mixed
All the DSPs are connected with mixed

interconnection methods as shown in Figure 4

FIGURE 6 Relative execution time of FFT

FIGURE 7 Relative execution time of matrix multiplication

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

98
Mathematical and Computer Modelling

FIGURE 8 Relative execution time of quick sort

5.3.1 Communication overhead analysis

As we can see from section 4.2, the synchronization

overhead will increase with the increase of the number of

DSP in our system. The results of the three test cases in no

performance optimization condition exactly reflect this

characteristic. And the communication overhead varies

with different interconnect structures. Figure 6-8 show the

relative execution time of simulation system with shared

memory structure is longer than other simulation systems

when the number of DSP reaches four. And the trend is

more obvious when the number of DSP exceeds four. This

is because the multi-DSP system shared memory structure

is restricted to access the only one shared memory. With

the increasing of the number of DSP, the bus request time

will be longer. The scales of communication are almost the

same when the number of DSP is the same in our multi-

DSP systems. Therefore, the communication overhead of

the system with shared memory structure is greater than

other systems.

5.3.2 Multiple DSP parallel acceleration

As we can see from Figure 6-8, the relative execution time

of simulation system which performance optimization is

used in significantly gets shorter as the number of DSP

increases from one to eight. This indicates that multi-DSP

simulation system can speed up the system of processing

data when the number of DSP is less than the cores of

machine which simulation system runs on. This is because

each DSP binds to one SystemC thread and the parallel

optimization ensures all the SystemC threads take full

advantage of threads provided by the operating system to

run in parallel. The amount of data processing is fixed, the

number of DSP increasing results in an increase in the

overhead of communication between DSPs. So the relative

execution time does not reduce exponentially with

doubling the number of DSP. When the number of DSP

increases to eight or more, the relative execution time does

not shorten but extend with the increase of the number of

DSP. This is because the host machine has only eight cores,

which leads to a maximum of eight OS threads running in

parallel on the operating system. Although the number of

DSP exceeds eight, there are only eight DSPs parallel

running on the operating system at the same time .And

additional communication will lead to longer processing

time.

The above analysis shows communication overhead

varies with different topologies and our multi-DSP

simulation system can obliviously accelerate the

processing of large amounts of data. Creating OS thread in

the SystemC thread to complete the time-consuming

processing can significantly improve the efficiency of

serial running of SystemC threads.

6 Conclusion and future work

We provide a flexible and scalable multi-DSP model for

C62x-series DSP at cycle-accurate level of abstractions.

An ISS-SystemC framework which provides a hardware

and software collaborative development environment is

used in our system. Three kinds of interconnection

interfaces are designed for a flexible interconnection

structure. A kind of optimization for SystemC threads is

also used to accelerate the speed of the system simulation

and the experiment results verify that the simulation

platform is very efficient. Future extensions of our work

include two aspects:

1) The ISS can be designed to be more perfect and

close to the real DSP. For example, direct memory access

(DMA) and cache modules need to be added.

2) Each SystemC thread creates an OS thread to

simulate each DSP’s instruction execution, which ensures

that multiple DSPs run in parallel on multicore machines

in situation of no communication between multiple DSPs.

However, the simulation of each DSP’s communication is

implemented by one SystemC thread, which results serial

simulation of all the DSPs’ communications. Providing

parallelizing SystemC kernel will be an efficient choice to

improve the performance of the simulation platform.

Acknowledgments

This work has been supported by China National Natural

Science Foundation (No.51175462) and National Defense

Research Projects.

References

[1] Huang F, Qiao C, Wang Y, Wang G 2007 Computer Engineering

33(23) 200-33 (in Chinese)

[2] Braun G, Nohl A, Hoffmann A, Schliebusch O, Leupers R, Meyr H

2004 IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 23(12) 1625-39

[3] Pasricha S 2002 Transaction level modeling of SoC with SystemC
2.0 Synopsys Users Group Conference SNUG 2002 India 2002

[4] Cuppu V 1999 Cycle Accurate Simulator for TMS320C62x, 8 way

VLIW DSP Processor

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(8) 91-99 Zhou Zheng-Mao, Zhong Shun-Hong, Cai Ming

99
Mathematical and Computer Modelling

http://www.cs.cmu.edu/afs/cs/academic/class/15745-

s07/www/c6xref/c6xsim.pdf
[5] Buchmann R, Greiner A 2007 A Fully Static Scheduling Approach

for Fast Cycle Accurate SystemC Simulation of MPSoCs Proc. Int.
Conf. Microelectron (ICM 2007) Cairo Egypt 101-4

[6] Chao M C, Yeh T C, Tseng G F 2011 IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 30(4)
593-606

[7] Benini L, Bertozzi D, Bogliolo A, Menichelli F, Olivieri M Journal

of VLSI Signal Process 41(2) 169-82
[8] Dales M SWARM-Software arm: http://www.cl.cam.ac.uk/˜mwd24

/phd/swarm.html.

[9] Boukhechem S, Bourennane E B 2008 TLM Platform Based On
SystemC For STARSoC Design Space Exploration Proc. NASA/ESA

Conf AHS 22-5

[10] Boyer F, Yang L, Aboulhamid E, Charest L, Nicolescu G 2003
Multiple Simplescalar Processors with Introspection under SystemC

Proceedings of the 46th IEEE International Midwest Symposium on

Circuits and Systems 1400-4

[11] Fummi F, Perbellini G, Loghi M, Poncino M 2006 ISS-Centric

Modular HW/SW Co-Simulation GLSVLSI’06: Proceedings of the
16th ACM Great Lakes symposium on VLSI 31-6

[12] TMS320C6000 Instruction Set Simulator Technical Reference
Manual: http://www.ti.com/lit/ug/spru600i/spru600i.pdf

[13] Bao C, Wang L H, Zhang L, Zhang S N 2010 Science Technology

and Engineering 10(33) 8287-92 (in Chinese)
[14] Zou Z Q 2006 Computer Engineering 32(16) 232-5 (in Chinese)

[15] Xu T F, Zhang B, Ni G Q 2005 Transactions of Beijing Institute of

Technology 25(11) 990-2 (in Chinese)
[16] Ezudheen P, Chandran P, Chandra J, Simon P B, Ravi D 2009

Parallelizing SystemC Kernel for Fast Hardware Simulation on SMP

Machines PADS' 09: Proceedings of the 2009 ACM/IEEE/SCS 23rd
Workshop on Principles of Advanced and Distributed Simulation 80-

7 Washington DC USA

[17] Texas Instruments benchmarks:
http://www.ti.com/lsds/ti/dsp/c6000_dsp/c674x/benchmarks.page

Authors

Zheng-Mao Zhou, born in 1988, Hubei, China

Current position, grades: doctoral candidate of Zhejiang University.
University studies: B.S. degree in Computer Science from Huazhong University Science and Technology in 2010.
Scientific interest: digital signal processing, real-time operating system, software reliability.
Publications: 2.

Shun-Hong Zhong, born in 1986, Zhejiang, China

University studies: B.S. degree, M.S. degrees both in Computer Science from Zhejiang University, China, in 2009, 2012, respectively.
Scientific interest: digital signal processing.

Ming Cai, born in 1974, Zhejiang, China

Current position, grades: Associate professor at Zhejiang University.
University studies: M.S. and Ph.D. degrees both in Computer Science at Zhejiang University, China, in 1999 and 2002, respectively.
Scientific interest: digital signal processing, real-time operating system, web service, manufacturing resource discovery.
Publications: 15.

