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Abstract 

In order to pull the fractional-order theory to better application, the detailed of computer numerical simulation of the Adams-

Bashforth-Moulton Algorithm is proposed in this paper. Anti-synchronization of a class of fractional-order chaotic system with 

uncertain parameters is realized on this basis and the stability theorem of the system is presented at the same time. And thus it 

indicates that this method can be adapted to chaotic system with certain parameters and a class of chaotic system with not equal 

fractional-order. And corresponding implementation conditions is given as well. Besides, it is pointed out that the method, which 

unites the synchronization and anti-synchronization is also suitable for synchronization issues of the system. Finally, take classic 

Lorenz system for instance, track time domain and error map about drive system and response system of anti-synchronization are 

given. The results prove the effectiveness of the control method in the realization of anti-synchronization of a class of fractional-
order chaotic system with uncertain parameters and the feasibility of fractional order computer numerical simulation 
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1 Introduction 

 
Fractional calculus is known as a more common form of 

integer order, and it also has its own unique features - 

memory function, meanwhile, a growing number of 

scientific workers have been attracted to fight for it 

gradually [1-6]. As for fractional definitions and 

mathematical description, it has gained initial 

achievements, but how to make a more accurate 

numerical simulation analysis through computer is still in 

its infancy. It is can be predicted that computer numerical 

simulation of fractional order system will greatly promote 

the engineering applications of fractional order [7-9], 

meanwhile, it will certainly open up another important 

research area of computer applications, which will help 

us describe the objective world better. 

Chaos is a movement pattern of nonlinear system, 

whose feature is a special, unstable and class of random. 

The system in a chaotic movement is usually called 

chaotic system, which was first found by the U.S. 

meteorologist Lorzenz in his proposed meteorological 

equations. With further research, the discovery and 

understanding of chaotic feature began to shift to the 

control and use of it. In 1990, physicist Ott. Grebogi and 

Yorke at the university of Maryland successfully 

controlled chaos by parameter perturbation method (i.e. 

OGY method), which is an iconic achievement. Closely 

followed, Pecora and Carroll first raised a 

synchronization scheme of two similar chaotic systems 

with different initial conditions, which is called PC 

method. Since then, Control of Chaotic Synchronization 

has aroused widespread concern. So far, various control 

methods of Chaotic Synchronization have been proposed 

by domestic and foreign scholars, such as adaptive 

control method [10, 11], Backstopping control method 

[12], fuzzy control [13, 14], sliding mode control [15, 

16], etc. With the deepening of the research, the concept 

of synchronization has also been expanded, which 

includes anti-synchronization, generalized 

synchronization, projective synchronization, phase 

synchronization, trailing synchronization, etc. [17-19]. 

Among them, the anti-synchronization is a very 

interesting concept, which means a state that the drive 

system and response system achieve equal magnitude but 

opposite in sign. 

In real industrial practice, the noise is ubiquitous, and 

many system parameters of the system cannot be 

accurately measured, and even unknown. In order to 

better realize the engineering practical value of computer 

numerical simulation, it is very meaningful to consider 

the uncertainty of noise and parameter, and it has 

preliminary obtained some related research results [20-

22]. 

In summary, anti-synchronization of a class of 

fractional-order chaotic system with uncertain parameters 

is studied in this paper, and a stability theorem of the 

system is presented. Besides, this method is also suitable 

to chaotic system with certain parameters、drive and 

response systems with unequal Fractional Order and 

synchronization of a class of fractional-order chaotic 
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system. Finally, take classic Lorenz system as an 

example, the detailed iterative formula of computer 

numerical simulation of the Adams-Bashforth-Moulton 

Algorithm is proposed, and the results of computer 

numerical simulation are given. 

 

2 Description of fractional system 

 

Theorem 1 [23] a general fractional order linear system 

can be described as 

qD x Ax , (1) 

where  1 2, , , , ,i nq q q q q  and  0 1iq  . If and 

only if all eigenvalues 
i  of matrix A is satisfied 

with arg( ) / 2i q  , the system (1) is absolutely stable.     

In this paper, a class of fractional order chaotic 

systems with uncertain parameters is presented as:  

  ( )D x A A x f x    . (2) 

Its response system is  

  ( ) ( , )D y A A y f y U x y      , (3) 

where , nx y R  are all n-dimensional state vectors; f is a 

continuous vector function;  ,U x y  is the designed cont

roller;   and   are the fractional orders; A is the coeffic

ient matrix of the fractional order system; A  indicates u

ncertain parameters, which satisfies A M   . By th

e way, M is a constant. 

Our goal is to design a controller  ,U x y , which 

could make the system (2) and system (3) to achieve an 

equal and opposite anti-synchronization. 

 

3 Design of adaptive sliding mode controller 

 

In order to obtain the designed form of the controller, we 

first suppose is the error vector. Thus, its error system is 

       

     

,

, ,

D e A A e f y f x U x y

A A e F x y U x y

     

   
, (4) 

where      ,F x y f y f x  . 

Here, we chose a switch sliding surface as 

   1

0
( ) ( )

t

S t D e t A K e d     , where K is a 

designed parameter matrices. Usually, the two conditions 

( ) 0S t   and ( ) 0S t   are must satisfied simultaneously.  

Because ( ) 0S t  , we can get  

 ( ) ( ) ( ) 0S t D e t A K e t    . (5) 

Thus, taking Eq. (4) into (5), we can get 

         , , 0S t A K e t F x y U x y     . 

To meet the conditions of sliding mode, we set 

/
( ) ( ) ( ) ( )

m n
DS t p sign S r abs S sign S     

, in 

which 

1, 0

( ) 0, 0

1, 0

S

sign S S

S

 


 
 

, p>0, r>0 are both Controller 

gain. 

On the sliding surface, because ( ) ( ) 0Ds t s t  is 

satisfied, the controller is 

         , ,U x y K A e t F x y rS psignS     . (6) 

Theorem 2: When the controller (6) is applied to the 

system (3), the system (2) and system (3)can achieve the 

anti-synchronization. In other words, the error system is 

zero, and it reaches absolute stability. 

Proof: When the system is running on the sliding 

surface, namely ( ) 0S t  , the error system can be 

simplified as  D e A K e   .  

According to Theorem 1, as long as  A K  meets 

the condition arg( ) / 2i q  , the error system is stable 

absolutely. 

Therefore, the theorem 2 has been proved. 

Lemma 1: If the parameters of the fractional order 

system is determined, i.e 0A  , the controller is still 

valid, and also can control the drive and response system 

to achieve anti-synchronization. 

Lemma 2: If the order   of drive system and   of 

response system is not equal, then it needs to introduce a 

compensation controller 

       ,IU x y D x f x A A x      . So, the 

controller (6) is still valid. 

Lemma 3: If the error system is configured as 

e y x  , this means synchronization of the drive system 

and the response, and the controller is still valid. 
 

4 Numerical simulations 

 

We consider the Lorenz system as the drive system 
1

2

3

1 1 1

1 1 1 1 1

1 1 1 1

( )D x a y x

D y bx x z y

D z x y cz







  


  
  

 and response system 

1

2

3

2 2 2

2 2 2 2 2

2 2 2 2

( )D x a y x

D y bx x z y

D z x y cz







  


  
  

, where the parameters (a, b, c) 

= (10, 28, 8/3), 0.99   , and the initial value (x1, y1, 

z1) = (1, 0, 9), (x2, y2, z2) = (1, 1, 1). 

We set the parameters are p=0.2, r=6, m=3and n=2; 

Coefficient matrix of the system is 

10 10 0

28 1 0

0 0 8 / 3

A

 
 

  
  

; 
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parameter matrix 
20 20 0

28 0 0

0 0 1/ 3

K

 
 

  
  

. Thus, A + K are 

40 40 0

10 1 0

0 0 3

A K

 
 

    
  

, and its eigenvalues are 

 1 2 3, , ( 20.5+4.44 , 20.5 4.44 , 3)  i i        . 

According to Theorem 1, it satisfies 

 arg 2 0.99 2i i     , so the error system is 

absolutely stable, which means the drive system and 

response system achieve to synchronization. Therefore, 

the expression of the controller is 

   

 

 

1 2 1 1

1 2 2

3 3 3

30 30 5 0.2 ( )

38 5 0.2 ( )

1 5 0.2 ( )
3

u e e s sign s

u e s sign s

u e s sign s

     



   


   

. 

The fractional order nonlinear system equation can be 

solved by using Adams-Bashforth-Moulton algorithm. So, 

the iterative formula of solving fractional Lorenz system 

is  

 

 
 

  

 

1 0 1 1 1, , 1

0

1 0 1 1 1 1

2, , 1

0

1

1 0 1 1 3, , 1

0

10[ ] 10( )
2

(24 4 )
2

24 4

88
[ ]

2 3 3

n
p p

n n n j n j j

j

p p p p

n n n n n

n

j n j j j j

j

p n
jp p n

n n n j n j j

j

h
x x y x a y x

h
y y x z c x cy

a x z c x cy

zzh
z z x y a x y







 

 

 

   



    







   



 
     

  

     


    

  
      

  


















 


   

, 

in which 

1 0 1, , 1

0

1 0 2, , 1

0

1 0 3, , 1

0

1
10( )

( )

1
( (24 4 ) )

( )

81

( ) 3

n
p

n j n j j

j

n
p

n j n j j j j

j

n
jp

n j n j j

j

x x b y x

y y b x z c x cy

z
z z b x y

 

 

 

 



 



 




   




     

  
    
  







 

and 

1, , 1

2, , 1

3, , 1

(( 1) ( ) ,0

(( 1) ( ) , 0

(( 1) ( ) , 0

j n

j n

j n

h
b n j n j j n

h
b n j n j j n

h
b n j n j j n


 


 


 














      




      



      


, 

 

 

 

1, , 1 1 1

2, , 1 1 1

3, , 1 1 1

( )( 1) 0

( 2) ( ) 2 1 0

( )( 1) 0

( 2) ( ) 2 1 0

( )( 1) 0

( 2) ( ) 2 1 0

j n

j n

j n

n n n j
a

n j n j n j j n

n n n j
a

n j n j n j j n

n n n j
a

n j n j n j j n

 

 

 

 

 

 







  

  

  

     
 

         


     
 

         


    
          

. 

Programming numerical analysis with Matlab, we can 

get time-domain diagram as shown in Fig. 1 and error 

map as shown in Fig. 2, which demonstrates drive system 

and response system of Lorenz system achieve anti-

synchronization. From the Fig. 1 and Fig. 2, we know the 

system quickly achieve to anti-synchronization, and the 

corresponding anti-synchronization error is 0. 

  
(a) x1 and x2 (b) Y1 and y2 

  
(c) Z1 and z (d)Three -dimensional plot 

FIGURE 1 Time-domain of Lorenz drive system and response system achieving to anti-synchronization 
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(b)Three -dimensional plot 

FIGURE 2 Error map of Lorenz drive system and response system 

achieving to anti-synchronization 

 

 

 

 

 

 

5 Conclusions 

In this paper, anti-synchronization of a class of fractional-

order chaotic system with uncertain parameters is realized 

based on Sliding Mode Control Theory. Moreover, taken 

Lorenz system as an example, a detailed iterative formula 

of computer numerical simulation based on Adams-

Bashforth-Moulton Algorithm is proposed, and the 

simulation results are presented. We can draw the 

following conclusions: 

(1) This method has good robustness, and can well 

control a class of chaotic system with uncertain parameter 

to achieve anti-synchronization; 

(2) From the three Lemmas, we can also get that this 

method is also suitable to chaotic system with certain 

parameters, unequal fractional orders; 

(3) The feasibility of fractional order numerical 

simulation is also been proved. 
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