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Abstract 

This paper presents a validation assessment method to measure the discrepancies between the model predictions and experimental 

observations under both aleatory and epistemic uncertainty. The model inputs considered in the paper are sparse point data or interval 

data, which leads to uncertain parameters for the distribution of the model inputs. A likelihood based method is used to represent the 

stochastic model inputs and it yields a single probability distribution which integrates the aleatory and epistemic uncertainty of model 

inputs. This representation of model inputs provides an advantage in computation efficiency for the conventional double loop 

sampling requirement in uncertainty propagation is collapsed into a single loop sampling. An area based validation metric is 

extended to compare the probabilistic model predictions obtained from uncertainty propagation with the empirical distribution 

function of the experimental observations, it reflects an objective quantification of the entire discrepancies between predictions and 

observations. The confidence interval for the validation metric, which just depends on the amount of experimental observations and 
confidence level is also developed. A numerical example is used to illustrate the proposed method. 
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1 Introduction 

 
Model based computer is applied in various engineering 

disciplines, examples range from nuclear reactor 

certification to understanding of the cosmos. The 

uncertainty and confidence in model prediction are 

attracting attention increasingly. Model validation has 

been advocated as a necessary procedure when the model 

is used for risk assessment with high consequence 

systems [1-3]. The fundamental concept of model 

validation has been intensively argued by professional 

committees [4-8], and the consensus among researchers is 

that a rigorous model validation should explicitly account 

for various uncertainties. The uncertainties can be 

broadly classified into aleatory and epistemic. For 

instance, a precise probability distribution indicates the 

aleatory uncertainty, and the probability distribution with 

uncertain parameters implies the existence of epistemic 

uncertainty. This paper concerns the question of how to 

measure the discrepancies between the model predictions 

and experimental observations under both aleatory and 

epistemic uncertainty. The question is usually called 

“validation assessment” [3], it is a basic process in model 

validation procedure, the performance of the model can 

be judged from the measurement. 

Several approaches have recently been suggested for 

validation assessment, including significance testing [9-

14], Bayesian method [9, 13, 14], mean based 

comparison [3, 15, 16] and area based method [17]. All of 

these approaches have drawbacks. For example, the 

significance testing to validation is primarily focused on 

identifying the evidence against a certain hypothesis, and 

the Bayesian method is mostly focused on the belief that 

the model is correct. They are rather different from the 

goal of validation assessment, which is interested in the 

objective quantification of model accuracy. Instead of 

making a “accept” or “reject” statement with hypothesis, 

the mean-based comparison method measures distance 

between the mean of model predictions and the estimated 

mean of experimental observations. The limitation of this 

method is that it only takes the central tendency of 

predictions and observations into account, while the 

distribution of predictions contain amount of detail which 

may be represented insufficiently with a comparison of 

means. With the aim of measuring the discrepancies of 

the entire distributions between predictions and 

observations, the area based method uses the area 

between the prediction distribution and the observation 

distribution as a validation metric, but it does not provide 

a confidence level of the metric due to the lack of 

sufficient observations. Besides, of the aforementioned 

drawbacks, there is a serious limitation about theses 

method that they are only suitable for validation 

assessment under aleatory uncertainty, and cannot be 

used directly when model inputs are quantities with 

epistemic uncertainty.  

Typical epistemic uncertainty regarding a model input 

can be a stochastic quantity with uncertain distribution 

parameters [18], this is usually due to sparse point data or 

interval data. Several methods such as evidence theory 

[19], second order probability method [20], fuzzy sets 

[21], etc. have been proposed for quantification of the 

epistemic uncertainty, but the results of these methods 

which are usually in forms of distribution bounds cannot 
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be used in validation assessment directly. This paper 

extends the area-based validation assessment method to 

account for epistemic uncertainty arising from sparse or 

interval data with model inputs. A likelihood based 

approach [22] is used to construct a single probability 

distribution for model inputs with uncertain distribution 

parameters. With the likelihood based representation of 

uncertainty, the model predictions can be characterized as 

a single probability distribution after uncertainty 

propagation, it facilitates the comparison between model 

predictions and probabilistic experimental observations 

that are the essential of area based validation metric. The 

confidence interval of the validation metric is provided 

by calculating the infimum and supremum of the 

discrepancy between the cumulative probability 

distribution function (CDF) of model predictions and the 

possible experimental empirical distribution functions 

(EDF) which are bounded by the Kolmogorov - Smirnov 

limit theorem.       

The paper is organized as follows. Section 2 describes 

the likelihood based method to represent the epistemic 

uncertainty with an unique probability distribution for 

model inputs. Section 3 derives the validation metric 

based on area method, accounting for both aleatory and 

epistemic uncertainty. Furthermore, this section presents 

a confidence interval for the validation metric, the 

interval is associated with the amount of experimental 

observations. Section 4 demonstrates the proposed 

method with a numerical example. Finally, Section 5 

offers some concluding remarks. 

 

2 Likelihood based representation of epistemic 

uncertainty 

 

Consider model input X that has a probability density 

function (PDF) fX(x|P) where P denotes the distribution 

parameters. With the distribution type is known, the PDF 

is conditioned on the choice of P. The likelihood function 

L(P) is defined as the probability of observing data x 

given P [22]. When the information regarding X is 

available with independent point data xi(i=1,2,∙∙∙,n), the 

likelihood for P can be calculated as Eq.(1) with a finite 

precision ε:  
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Here the independence assumption in Equation (1) is 

modest in statistical analysis. 

Since the likelihood in Equation (1) is actually 

integrated in an infinitely small interval instead of 

calculating at data points, it is straightforward to apply 

the definition to X in the form of interval. When the 

information regarding X is available with intervals [ai, bi] 

(i=1,2,∙∙∙,m), the likelihood for P of PDF fX(x|P) can be 

expressed as: 
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Accounting for both point values and intervals in the 

available data, the likelihood function of P can be 

represented as: 
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It is popularly known that the P can be estimated by 

maximizing the likelihood function. However, the 

validation assessment is interested in the usage of entire 

likelihood function to construct the PDF of P rather than 

maximizing the likelihood. Thereby, consider the joint 

probability density of distribution parameters P, denoted 

by fP(P), it can be calculated as Equation (4) using Bayes 

theorem with an uniform prior PDF fP’(P)=h (over the 

whole range of P). 
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After calculating the fP(P), the PDF for X can be 

constructed based on principles of conditional probability 

and total probability, as represented in Equation (5). 

   ( ) | dX Xf x f x f  PP P P . (5) 

Let Y denotes the model predictions, the PDF of Y 

represented by fY(y) can be obtained using uncertainty 

propagation analysis. The single PDF of X facilitates the 

uncertainty propagation for it requires just one level of 

Monte Carlo sampling to construct the fY(y). In contrast, 

the conventional uncertainty quantification methods such 

as second order probability method [20] require a two 

level Monte Carlo sampling: first, draw samples of P 

from fP(p), each of them determines a PDF of X: fX(x|P); 

second, several samples from each fX(x|P) are drawn to 

calculate a distribution of Y, the process generates a 

family of fY(y) for different P ultimately. The two level 

Monte Carlo sampling strategy is so computationally 

costly that it might not always be affordable in practical 

model application. Furthermore, the family of model 

output distributions leads to a difficulty in measuring 

discrepancies between model predictions and 

experimental observations. The fX(x) in Eq.(5) can be 

interpreted as the expected value of fX(x|P), which 

depends on the choice of P. The two level of uncertainties 

considered in second order probability method are 

integrated into the single PDF fX(x), and it can be 

evaluated numerically. Based on the single PDF for 
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model input, the fY(y) can be calculated using a 

straightforward Monte Carlo method. The resultant single 

PDF for model prediction brings an advantage in 

validation assessment. The following section implements 

the area based method [17] to measure the discrepancies 

between model predictions and experimental 

observations. With the likelihood based method 

explained in section 2, the area based method can account 

for both aleatory uncertainty and epistemic uncertainty in 

validation assessment. 

 

3 Validation assessment using area based method 

 

3.1 AREA METRIC 

 

The aforementioned model prediction can be 

characterized as a CDF, represented as FY(y). Consider 

the experimental observations are provided as a set of 

point data yi, (i=1,2,∙∙∙), the EDF for the data set is 

represented as S(y), it preserves almost all statistical 

information in the data set The area based method 

proposed by Ferson [18] uses the area between the FY(y) 

and the S(y) as the measurement of the discrepancies. The 

mathematical expression for the area metric can be 

written as Equation (6): 

 , ( ) ( )dY Yd F S F y S y y



  , (6) 

The d(FY , S) in Eq.(6) is essentially a special case of 

the Wasserstein distance. The important merit of the area 

metric is that d(FY ,S) measures the discrepancies between 

the entire distributions from predictions and observations. 

Since the epistemic uncertainty and aleatory uncertainty 

in the model inputs have already been quantified with the 

single PDF fX(x), the area based method which makes use 

of the fX(x) can be applicable in the validation assessment 

with both epistemic uncertainty and aleatory uncertainty. 

 

3.2 CONFIDENCE INTERVAL FOR THE AREA 

METRIC 

 

Consider the sample uncertainty in experimental 

observations, the Kolmogorov-Smirnov statistics can be 

used to bound the EDF of observations as Equation (7): 

( ) min(1,max(0, ( ) ))

( ) min(1,max(0, ( ) ))

S y S y D

S y S y D

 

 
, (7) 

Where S (y) and S(y) refer to the upper bound and lower 

bound of the experimental EDF respectively, and the D 

denotes the critical value for the Kolmogorov-Smirnov 

statistic [23], it just depends on the confidence level and 

the amount of experimental observations. After 

calculating the S (y) and S(y) with specified confidence 

level (1-α)×100%, the confidence interval for the area 

metric can be expressed as Equation (8): 
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  ,(8) 

where inf denotes the infimum, sup denotes the 

supremum, and the K represents the region encompassed 

by S (y) and S(y), it contains all possible EDFs of the 

experimental observations. The task of calculating the 

infimum or supremum taking the amount of experimental 

observations into account is sometimes challenging, 

intelligence optimization algorithms such as genetic 

algorithm can be used to handle this problem. The genetic 

algorithm randomly generates a population of possible 

experimental EDF constrained by Equation (7), then 

evaluates the fitness of each EDF using the area metric. 

For the infimum calculation task, a small area between 

possible EDF and model prediction CDF indicates high 

fitness for this EDF, whereas the supremum calculation 

task pursues large area as high fitness. The set of parents 

forming the next generation can be selected based on the 

fitness of individual EDF, where the high fitness 

members have more chances of being chosen. The 

mutation and crossover operation are applied to the 

parents to create next generation of possible experimental 

EDF. The selection, mutation and crossover are repeated 

until the maximum fitness in the population meets the 

criterion. 

The area metric provides a quantitative measurement 

of the discrepancies between model predictions and 

experimental observations. The choice of the threshold 

for the metric is another question in model validation, 

which is usually called “adequacy decision” [3]. The 

adequacy decision considers that whether the validation 

metric is “great” enough to draw a conclusion that the 

discrepancies are significant. This question is derived 

from the concept that the threshold should be separated 

from the validation metric [9, 16, 17]. If the area metric is 

presented below the chosen threshold, one can conclude 

that the model is adequate for the intended use. 

Furthermore, consider the sampling uncertainty of the 

experimental observations, the upper bound of the 

confidence interval for area metric can be used to 

compare with the threshold, it claims that whether the 

model is adequate with (1-α)×100% confidence. Usually, 

the threshold quite depends on the intended use of the 

model for different requirement of model accuracy. Note 

that the distribution of model predictions calculated on 

the basis of fX(x) is not parametrically available, and the 

value of d(FY ,S) is expressed in physical units rather than 

statistical units. It implies that the engineers or project 

managers may be more rational than the mathematicians 

who developed the validation assessment method to 

decide the choice of the threshold. As stated in section 1 

earlier, the paper concerns only the question of how to 

measure the discrepancies between the model predictions 

and experimental observations, the choice of the 

threshold for the metric is out of the research scope. 
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4 Numerical example studies 

 

A numerical example is presented in this section to 

illustrate the proposed validation assessment method. 

Consider a material layer slab with thickness L, 

volumetric heat capacity ρC and thermal conductivity k, it 

is exposed to a heat flux, the temperature (T) at a 

specified time (t) after exposure to the heat flux (q) needs 

to be predicted. The model for the temperature prediction 

can be written as: 

0
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where T0 is the initial ambient temperature, it is fixed at 

25oC, l is the location within the material. The 

controllable inputs (L, q) are assumed to be known 

exactly, i.e. L=0.0127m, q=1000W/m2, while the (ρC, k) 

are uncertain inputs. For the sake of illustration, suppose 

that the probability distribution of the volumetric heat 

capacity ρC and thermal conductivity k are described as 

normal by experts but with uncertain distribution 

parameters. The observations of ρC are available as three 

point data {4.52E+05J/m3oC, 4.10E+05J/m3oC, 4.02E+05 

J/m3oC}, and the data about k is available in the form of 

intervals as [0.0601W/moC, 0.0604W/moC], [0.0545 

W/moC, 0.0547W/moC]. Let the purpose of the model be 

to predict the temperature at the surface of the layer 

(l=0m) after exposure to the heat flux for 500 seconds 

(t=500s). Experiment in the circumstance consistent with 

the intended use of the model is carried out four times 

repeatedly, the observations are four point data as 

{210.6oC, 214.6oC, 186.9oC, 219.0oC}. It is required to 

measure the discrepancies between the model predictions 

and experimental observations.  

Consider that model inputs ρC and k are described 

with epistemic uncertainty, the likelihood based approach 

explained in section 2 is used to represent the two model 

inputs with single probability distribution respectively. 

Note that the normal distribution describing the model 

inputs ρC and k is parameterized by mean and standard 

deviation, so the likelihood in Equation (3) is integrated 

for the mean and the standard deviation together. The 

entire admissible ranges for the mean and the standard 

deviation are both (0, ) , for the sake of calculation, 

here we draw finite bounds for the two ranges. For 

instance, assume that the mean of ρC can vary in 

(2.5E+05, 5.5E+05). Based on the observations we 

believe the finite ranges are still wide enough to cover 

any possible value of the distribution parameters. By 

combining Equation (4) and (5), the distributions of the 

ρC and k are calculated as it is shown in Figure 1 and 

Figure 2. 
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FIGURE 1 Distribution of volumetric heat capacity ρC 
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FIGURE 2 Distribution of thermal conductivity k 

The distributions presented in Figure 1 and Figure 2 

include both epistemic uncertainty and aleatory 

uncertainty in ρC and k. Note that the integration in 

Equation (5) is calculated numerically for fP(P) is not 

parametrically available, so the resultant PDFs for ρC and 

k are not analytical. An Monte Carlo method is used to 

propagate the uncertainty of ρC and k through the thermal 

model in Equation (9), the PDF of the material layer 

surface temperature at t=500s is shown in Figure 3. 
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FIGURE 3 Distribution of model predictions 
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The area metric is used to measure the discrepancies 

between model predictions and experimental 

observations. Figure 4 illustrates this area with shaded 

region between smooth black curve and blue step 

function. The black curve is the CDF of the model 

predictions, and the blue step function is the EDF for 

experimental observations consisting of four point value. 

 
FIGURE 4 EDF of experimental observations against CDF of model 

predictions 

Using Equation (6), the area metric is obtained to be 

16.21oC. A genetic algorithm is employed to find the 

infimum and supremum defined in Equation (8) to get the 

confidence interval for the area metric. The exact value of 

the confidence interval with 95% confidence level is 

[4.13oC, 26.88oC]. The result of the validation assessment 

provides an objective quantification of the discrepancies 

between model predictions and experimental 

observations. As stated early, the threshold for the metric 

depends on the specific requirement of model accuracy. 

Here for the sake of illustration, assume the threshold for 

the discrepancies is 2oC. Since the lower bound of the 

metric’s confidence interval is beyond the threshold, we 

can conclude with 95% confidence that the accuracy of 

the model is insufficient, it indicates that the model needs 

to be improved. 

 

5 Conclusions 

 

This paper presents a framework for validation 

assessment when there is both aleatory and epistemic 

uncertainty in model inputs. The likelihood based method 

is applied to representation of stochastic quantities with 

uncertain distribution parameters which are due to sparse 

point data or interval data. The method’s result for an 

uncertain model input is a single probability distribution 

that facilitates the following uncertainty propagation and 

validation metric. It provides an obvious advantage in 

computation efficiency for the conventional double loop 

sampling strategy is collapsed into a single loop 

sampling. The probability distribution of model output 

obtained from uncertainty propagation is compared with 

the EDF of experimental observations using area based 

validation metric, it reflects an objective quantification of 

the entire discrepancies between predictions and 

observations. A confidence interval for the validation 

metric which just depends on the amount of experimental 

observations and confidence level is also developed. It is 

helpful for the decision making which follows the 

validation assessment. The numerical example 

demonstrates the validation assessment framework 

presented in this paper. 

The discussion of the framework in this paper is 

limited to the univariate case, which implies the model 

output to be a single response quantity following a 

statistical distribution. The validation assessment also 

looks for a metric, which have the flexibility of 

measuring the discrepancies between predictions and 

observations in a multivariate case. There are several 

types of multivariate case such as multiple location for 

model response or various response quantities at a single 

location. The validation metric for the multivariate case is 

required to provide an overall performance measurement 

for the model. There are still difficulties in aggregating 

individual metrics accounting for confidence level and 

correlation among multiple quantities. Future work in this 

direction will extend the validation assessment to 

multivariate case. 
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