
 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 116-121 Wu Xian, Huang Yan  

116 
Computer and Information Technologies 

 

Real-Time and interactive browsing of massive mesh models 

Xian Wu, Yan Huang* 

School of Computer Science and Technology, Shandong University, Jinan, China 

Received 1 March 2014, www.tsi.lv 

Abstract 

We present an efficient method for out-of-core construction and real-time interaction of massive mesh models. Our method uses face 

clustering on an octree grid to simplify and build a Level-of-Detail (LOD) tree for the model. Each octree node leads to a local LOD 

tree. All the top layers of the local LOD trees are combined together to make the basis of the global LOD tree. At runtime, the LOD 

tree is traversed top down to choose appropriate local LOD trees given the current viewpoint parameters. The system performance 

can be dramatically improved by using hierarchical culling techniques such as view-frustum culling and back-face culling. The 

efficiency and scalability of the approach is demonstrated with extensive experiments of massive models on current personal 

computer platforms. 
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1 Introduction 

 

3D mesh models are dominant in computer graphics. 

Applications employing meshes include movies, games, 

computer aided design, simulation, art and history etc. 

Today with the fast development of 3D acquisition, 

modelling and simulation technologies, we have much 

more complex and accurate mesh models. For instance, 

mesh models of gigabytes size are not uncommon 

nowadays. 

In the last several decades, the performance of CPU 

and GPU has improved tremendously. However, the 

memory bandwidth especially disk bandwidth grows 

much slower. Therefore the bottleneck lies on the fact 

that our processor has to wait for the data stored on disk. 

There is a wide range of simplification methods and 

multiresolution models have been proposed to solve this 

problem, but most of them fail to perform either scalable 

simplification or efficient viewpoint dependent 

visualization of massive models.  

Our contribution of this work is to find a solution for 

real-time and interactive browsing of massive models on 

personal computer platforms. In human visual system, the 

sensitivity to details is inversely proportional to the 

distance between the view point and the observed point. 

Thus we can construct a hierarchy of multiple resolution 

representations of the original model. At run-time, we 

dynamically and adaptively select the needed level-of-

detail (LOD). We build LOD trees through hierarchical 

face clustering. Our algorithm reveals an out-of-core 

nature, since we use an octree data structure to partition 

the model and build the local LOD tree for each octree 

node. Then we combine all the top layer of the local LOD 

trees and take it to build the global LOD tree. When in 

real-time browsing, we mainly interact with the global 

LOD tree and use it as an entry point to access the 

corresponding local LOD trees. Frustum culling and 

backface culling were used to accelerate the interaction 

speed. By combining a large set of technologies, our 

system shows good performance, better visual results, 

and a highly scalable architecture. 

 

2 Related work 

 

The research on interactive processing of complex 

models has over 30 years’ history [1, 2]. The traditional 

approaches focus on how to reduce data complexity, 

manage data organization and utilize the new hardware 

technology [3]. In recent years, due to the widespread use 

of massive data sets, no single method could provide 

satisfying solution. A number of state-of-the-art systems 

utilizing different sets of technologies have been 

proposed to tackle this issue. 

LOD based mesh visualization. LOD is useful 

because it is able to adjust the appropriate approximation 

given some viewing parameters [4]. For example, the 

Quick-VDR system [5, 6] represents the model as a 

clustered hierarchy of progressive meshes (CHPM) [7]. It 

uses the cluster hierarchy for coarse-grained selective 

refinement and progressive meshes for fine-grained local 

refinement. The Adaptive TetraPuzzles (ATP) system [8] 

uses a regular conformal hierarchy of tetrahedra to 

spatially partition the model. Each tetrahedral cell 

contains a precomputed simplified version of the original 

model, which is constructed off-line during a fine-to-

coarse parallel out-of-core simplification of the surface 

contained in diamonds.  

Real-time ray tracing. Some other systems diverge 

from the normal rasterization approach by incorporating a 

real-time ray tracing algorithm. By using spatial 
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indexing, ray queries can be determined in logarithmic 

time. The OpenRT real-time ray tracer [9, 10] uses a two-

level kd-tree hierarchy as spatial index. It also 

incorporates a custom memory management subsystem to 

deal with scenes larger than physical memory. 

The volumetric approach. All the above systems 

assume that the multiresolution models are triangle-based 

or point-based. But the Far Voxels [11] system adopts a 

volumetric approach which uses small volume clusters to 

represent local datasets. By using a coarser granularity in 

the LOD structure, the cost of data management, traversal 

and occlusion culling can be reduced dramatically. Tian 

proposes Adaptive Voxels system [12] based on the Far 

Voxels system to make use of a novel adaptive sampling 

method to generate LOD models. 

 
3 Mesh simplification 

 

Mesh simplification is the cornerstone of LOD tree 

construction. The decimation methods can be classified 

into two major categories: clustering and incremental 

decimation. Vertex clustering and face clustering are two 

major clustering methods. The incremental decimation 

can have operators such as vertex removal, edge collapse, 

half-edge collapse etc. We choose face clustering to do 

mesh simplification for several reasons. First, it is much 

more efficient to use a clustering algorithm than an 

incremental decimation one. Second, face clustering 

provides better visual results than vertex clustering. 

Third, it is natural to pick face region as the unit not only 

in LOD tree construction but also in the real-time and 

interactive browsing of the model. 

Suppose the initial mesh model contains N triangles. 

The overall framework of our algorithm is as follows: 

 
FIGURE 1 Face clustering algorithm 

We use a k-means based clustering to do the region 

growing process. When the K clusters are settled, we 

merge all the triangles inside one cluster into one super 

face. We call it super face because it is bounded by the 

boundary edges and is usually not flat. The effect of face 

clustering on an example mesh is demonstrated in Figure 

2. The original mesh, the clustering result and the face 

merging result are shown in Figure 2. Looking at Figure 

2c carefully, we find that two adjacent super faces 

normally shares more than one edge. This is a subtle 

aspect which can affect the overall performance of the 

whole system. Not significantly in this picture, but 

imagine if we have a model of millions of triangles and 

clusters it into thousands of super faces. Then we’ll see 

large super faces with lots of small edges jagged together. 

 
FIGURE 2 Face clustering example 

The way to solve this is to do edge merging. We 

merge those edges that are shared by two adjacent super 

faces to ensure that only on edge exists between two 

adjacent upper faces. The process is described as follows: 

After merging all the triangles, we mark each vertex 

which is shared by three or more than three super faces as 

an anchor vertex. Since we need at least three vertices to 

determine a face region, we require every super face to 

have at least three anchor vertices. If a super face does 

not meet this requirement, we just randomly pick a 

certain number of non-anchor vertices to be anchor 

vertices. Finally, the boundary edges of super faces are 

determined by those anchor vertices. Sequentially 

connecting those anchor vertices will lead to “boundary-

straightened” super faces (see Figure 3). 

 
FIGURE 3 Edge merging 

 

4 Multiresolution model 

 

In this paper, we build a Level-of-Detail tree based 

interactive browsing system of the massive mesh model. 

We propose a novel approach to LOD tree construction 

We use an octree structure to partition the original 

model to support out-of-core processing. Each local LOD 

tree corresponds to an octree partition region. We control 

the octree depth to make the memory usage of each local 

LOD tree construction under a predefined upper limit. 

We combine all the top layer of local LOD trees and take 

it as the bottom layer to construct the global LOD tree. 

We control the height of all the local LOD trees so that 

the construction of the global LOD tree can fit in 

memory. The overall structure of the LOD hierarchy is 

shown in Figure 4. 

By organizing our data in this way, we sort of make a 

distinction between model’s overall look and model’s 

local region display. We can use the global LOD tree to 

support interactive display of the whole model. When the 

user is interested in some particular area, the 

corresponding local LOD trees can be loaded into 

memory to explicitly show the focused region. The global 

LOD tree serves as an entry point to find and load the 
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local LOD trees. Thus the global LOD tree plays a central 

role in the whole interaction period. During the loading 

and recycling of the local LOD trees, we can use 

scheduling policies based on user viewpoint to optimize 

the overall performance. 

 
FIGURE 4 The structure of Local and Global LOD trees 

 

5 Construction and serialization of LOD trees 

 

5.1 OCTREE PARTITIONING 

 

We use an octree data structure to partition the original 

model. We distribute the vertices and triangles of the 

model according to the following rules: 

1) To vertex: we distribute it to its corresponding 

octree cell. 

2) To triangle: since each triangle has three vertices, 

there are generally three cases:  

- If three vertices all fall into the same cell, then the 

corresponding cell is the one contains this triangle.  

- If two of them fall into the same cell, then the 

corresponding cell is the one contains this triangle.  

- If the three vertices belong to three different cells, 

we use the first vertex’s containing cell to have the 

triangle. 

Figure 5 shows an example for the 2D analogy of 

octree partition. The red number gives each vertex it’s 

appearing order in the triangle, and the blue number 

inside each triangle represents the number of the cell 

containing this triangle. During the partitioning process, 

we also compute each triangle’s area, barycenter, normal 

and store them in disk files for later use. 

 
FIGURE 5 Example of 2D analogy for Octree partition 

 

 

5.2 LOCAL LOD TREE CONSTRUCTION 

 

Once we have done octree partitioning, we construct a 

local LOD tree for each octree node. Taking all the 

triangles of one octree node as input, we use K-means 

based face clustering algorithm to obtain a new simplified 

representation made up of K super faces to approximate 

the original one. Then we take those super faces as input 

and use face clustering again to get an even more 

simplified model. By continuingly doing so, we will get a 

hierarchy of multiresolution models. Each super face is 

derived by merging the sub faces it contains. We include 

this inheritance relationship to build a Level-of-Detail 

tree structure. 

 

5.3 GLOBAL LOD TREE CONSTRUCTION 

 

For each local LOD tree, we only keep the top layer in 

memory. The top layer is the simplified representation of 

the original model in the corresponding spacial region. 

After constructing local LOD trees for all the octree 

nodes, we combine all the top layers of those local LOD 

trees to form a complete simplified representation for the 

whole model. And we use this layer as the bottom layer 

to construct the global LOD tree. 

There exists some freedom in choosing the octree 

depth and the height of the local LOD tree. But each 

octree node must contain at most some maximum number 

of triangles to make sure that the memory is sufficient in 

local LOD tree construction. Also, the height of the local 

LOD tree must be high enough so that when all the local 

LOD trees’ top layers were combined together, there 

remains sufficient memory to build the global LOD tree. 

 

5.4 SERIALIZATION OF LOD TREES 

 

We need to design a format to represent a LOD tree, such 

that it can be stored in disk, loaded to memory and 

interpreted efficiently for real-time viewing. This is 

achieved through serialization. It is the process of 

converting an object into a writable format that can be 

persisted or transported. The complement of serialization 

is deserialization, which restores an object from a stream. 

In real-time browsing, we need to load the local LOD 

trees frequently, so finding an efficient way to do 

serialization/deserialization is critical.  

We use a DFS-based approach for its simplicity to 

storing the tree structure and it only requires one scan and 

a small extra stack to do deserialization. 

 

6 View-dependent rendering 

 

We will use the constructed LOD trees to support real-

time and interactive browsing of the massive mesh 

model. The browsing system first loads the global LOD 

tree. Each level of the global LOD tree represents a 

certain degree of approximation to the whole model. 

Given the current viewpoint, we use the model’s 

projected screen space area to choose the suitable level to 

render. Because the Global LOD tree is resident in 

memory, we can efficiently doing the traversal and 

rendering. When the user moves its viewpoint to some 

particular region of the model, the node of the Global 

LOD tree cannot provide sufficient accuracy. We have to 

load the corresponding local LOD tree which represents 
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the viewer’s interested region and select certain level 

according to the projected screen space area. 

Due to the limited size of field-of-view, when we are 

focused on some particular part of the model, the other 

parts of the model either are out of the sight or are far 

enough. In practice, we only need to load several Local 

LOD trees at the same time. So we can allocate a buffer 

to contain the currently loaded Local LOD trees. If the 

viewpoint moves and the buffer is full, we can remove 

old Local LOD trees and load new Local LOD trees. 

Because viewers always move their sight in a continuous 

way, we can optimally remove the Local LOD tree that is 

furthest to our current viewpoint. 

 
FIGURE 6 Data access framework 

Figure 6 shows the whole system’s data access 

framework. The global LOD tree is always in memory 

and acts as the entry point for accessing the local LOD 

trees. We have a buffer of size n to contain the currently 

loaded local LOD trees. A scheduler loads local LOD 

trees from the disk and removes local LOD trees from the 

memory if the buffer is full 

 

6.1 VISIBILITY CULLING 

 

Determining the visible parts of the scene is an important 

graphics problem. It is both inefficient and incorrect to 

render objects that are unseen. We have to remove those 

surfaces that are hidden from the viewer. Visibility 

culling [13] is the process of computing the visible subset 

of a scene. There are typically three culling techniques: 

view-frustum culling, back-face culling and occlusion 

culling. Occlusion culling is mainly used in scenes that 

contain many models. Because our focus here is on single 

massive mesh model, we only use view-frustum culling 

and back-face culling to accelerate our algorithm. 

 

6.2 VIEW-FRUSTUM CULLING 

 

Figure 7 shows a typical camera setup. Models or parts of 

models outside the frustum cannot be seen by the viewer. 

Because our LOD tree node represents a super face, we 

need to test whether this super face is outside the frustum. 

 
FIGURE 7 View-frustum 

In practice, we use the bounding box approach. When 

we build the LOD tree hierarchically, we also compute 

the combined bounding box for each node from its 

children bounding box. This process is quite efficient and 

visibility test of box against frustum is also easy. 

 

6.3 BACK-FACE CULLING 

 

For a solid opaque object, the back of it is hidden from 

the viewing ray. Culling primitives that lie on the backs 

of objects can almost reduce half of the scene geometry 

to be rendered. Here, we use a clustered backface culling 

algorithm based on the normal cone [14]. The normal 

cone is represented by a central cone normal and a cone 

angle. 

Like in Figure 8, we compute the normal cone for 

each tree node. To every current viewpoint, we also have 

a viewing normal cone. By comparing these two normal 

cones we can determine whether the node is back facing 

or not as show in Figure 9. To find an exact normal cone 

for a surface patch is a computational geometry problem 

and is rather slow. Instead, we use a bounding box 

approach which is fast and approximates well to the exact 

normal cone. The idea is that a bounding box of all the 

normal Ni is constructed. The cone normal is defined to 

be the vector from the origin to the centre of the 

bounding box. The direction from the origin to the eight 

corners of the bounding box will have eight angles with 

the cone normal. We take the largest one as the cone 

angle. 

 
FIGURE 8 The left subfigure shows one node containing 4 triangles, the 

right subfigure shows the corresponding normal cone 

 
FIGURE 9 The left subfigure shows the viewing normal cone, the right 

subfigure shows its relation with one node’s normal cone 

 

7 Experimental results 

 

7.1 PREPROCESSING 

 

All the experiments were done on a Lenovo PC with 

2.83GHz Intel Core 2 Quad CPU Q9500 processors, 4.0 

GB of RAM. We have tested a number of massive 

models. The Figure 10 shows the four models we used 

for testing our system 
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Lucy 

 
Sphere 

 
Armadillo 

 
Venus 

FIGURE 10 Four test models 

From Table 1 and Table 2, we can see that our tested 

models contain tens of millions of and even hundreds of 

millions of triangles. The model venus has size of over 

11GB. The octree partitioning process takes four and a 

half hours. The construction of LOD takes about six 

hours. The time used for pre-processing is acceptable 

since we only have to do it once. Once these LOD trees 

are built, we simple use these structures in later real-time 

browsing. 

Our algorithm uses face clustering to do mesh 

simplification. Below, we show some simplified 

representations of several models in their global LOD 

tree layers in Figure 11. 

From Figure 11, we can see that the simplification 

algorithm is effective even we simplify the model to only 

several hundreds of nodes. We compare our algorithm 

with the Adaptive Voxels system proposed by Tian [12]. 

Because our algorithm mainly deals with manifold 

surfaces, we test our system using different models. But 

we can still compare the two algorithms when the 

models’ sizes were at the same size level. 

 

 
1126 nodes 

 
1919 nodes 

 
2709 nodes 

 
861 nodes 

FIGURE 11 Some simplified representations of test models 

Table 3 gives the numerical comparisons of our 

method and the Adaptive Voxels method. Our tested 

model venus is roughly 77% of the size of the Boeing 

777 model. The pre-processing time used in our method 

is about 25% of the Adaptive Voxels method. The disk 

space usage is also much smaller in our method. Further, 

our algorithm is quite scalable and can be easily made 

parallel. The octree partitioning process and the local 

LOD tree construction can use parallel computing to 

largely accelerate the processing. But the Adaptive 

Voxels method uses BSP tree to construct the scene 

graph. The structure is intensely correlated, so it is not 

suitable for parallel computing. 

TABLE 1 Numeric results of pre-processing 

Model #Vertices #Triangles Size (GB) Maximum Memory (MB) 

Lucy 14,027,872 28,055,742 1.05 900 

Sphere 31,457,282 62,914,560 2.55 180 

Armadillo 44,280,834 88,561,664 3.48 700 
Venus 135,430,146 270,860,288 11.49 400 

 

TABLE 2 Numeric results of pre-processing 

Model 
Octree LocalLOD GlobalLOD 

Time(min) depth layers Time(min) layers Time(s) 

Lucy 27.82 2 3 43.63 4 0.35 
Sphere 61.96 3 3 84.93 4 7.19 

Armadillo 85.59 3 4 121.81 4 2.16 

Venus 273.24 4 5 370.40 4 1.01 

 
TABLE 3 Numerical comparisons 

 Model 
Faces 

(Million) 

Pre-processing 

Time (min) 
Size (GB) 

Adaptive 
Voxels 

Boeing 
777 

350 2,729 49.4 

Our 
Method 

Venus 270 643 28.2 

 

7.2 REAL-TIME AND INTERACTIVE BROWSING 

 

We devised a set of inspection paths to verify the real-

time performance of our system. We include the typical 

tasks such as rotation, translation and scale. We also 

consider rapid changes from overall scenes to some 
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specific model regions. The window size is 1024×1024, 

the pixel tolerance for each projected node size is 1 pixel. 

The numeric results are shown in Table 4. The column 4 

gives the system setup time. And the last two columns 

give the average frame per second without and with 

culling techniques. 

From Table 4 we can see that all the average numbers 

of FPS with culling are above 18. In reality, humans take 

actions normally three to five times per second. Our 

system satisfies the real-time interaction rates. The last 

two columns of Table 4 shows that, by using hierarchical 

culling techniques, the system can save almost two fifth 

of the time. The average FPS of the Adaptive Voxels 

system is 8. Our system shows a significant improvement 

in the real-time performance. Another advantage is that 

our system is particularly efficient at viewing the local 

regions of the model since we use an optimal scheduling 

policy to load and recycle the local LOD trees thus 

minimizing the data access time. 

 

TABLE 4 Numeric results for real-time rendering 

Model Resolution Pixel Error Setup Time Avg FPS (No Culling) Avg FPS (With Culling) 

Lucy 1024×1024 1 1.57 16 24 

Sphere 1024×1024 1 2.57 13 22 
Armadillo 1024×1024 1 3.12 13 21 

Venus 1024×1024 1 4.86 12 18 
 

8 Conclusions and future work 

 

In this paper, we build an LOD tree based real-time and 

interactive browsing system for massive mesh models. 

By using octree partition and face clustering, we 

construct the local LOD trees and the global LOD tree to 

provide an efficient out-of-core data access framework. 

We have tested on a set of massive mesh models and 

obtained good experimental results. 

In the future, improvements could be made to our 

system. For instance, our current system has not exploited 

the parallelism inherent in components of the algorithm, 

such as octree partitioning and local LOD tree 

construction. We can also use data compression 

techniques to further reduce the data to be stored in disk 

and to be loaded to memory. 
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