

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

131

An approach for reference model implementation by predicting
all possible output of design

Lirong Qiu*

School of Information Engineering, Minzu University of China, Beijing, China

Received 12 May 2014, www.tsi.lv

Abstract

In verification system, it is preferable to build reference model at transaction level which does not produce the output as the same

latency as the design itself. But due to the lack of accurately modelling design’s behaviour, there are some scenarios that design’s

output is different with reference model’s output due to the different processing delay of stimulus. Scoreboard can get lots of

comparison failure when it tries to do comparison between the output of reference model and design under such scenarios. In this

case, neither reference nor design is wrong from functionality, but output comparison failure will mix up with the true design issue

and bring trouble to the automatic check on design’s behaviour. Cycle based reference model does not have such problem. But it

usually takes great effort to implement cycle based reference models and maintain them. This paper provides its study on

implementation style of reference model. By predicting all possible output of design, this paper presents a method for reference

model to handle such stimulus competition scenarios at the transaction level. The paper also discusses the reference model’s reaction
effect on generator, which helps the test hit design’s corner case.

Keywords: System Verilog, reference model, scoreboard, competition stimulus, coverage driven verification

* Corresponding author e-mail: qiu_lirong@126.com

1 Introduction

Verification usually consumes about 70% of the IC

design’s effort [1]. A lot of verification methodologies

are proposed in recent years. Constrained-random

stimulus is one the most important principles in IC

verification methodologies [2].

 Random base stimulus can only be generated

automatically. For automatically generated stimulus,

reference model or a scoreboard will be used to predict

the results of the stimulus and compare these results with

output of design in an automated way. Figure 1 shows the

infrastructure of verification system with reference

model. As illustrated in the Figure 1, the reference model

and the design under verification are subjected to the

same stimulus and their output is compared for

discrepancies.

FIGURE 1 Common architecture of verification system

A reference model can be implemented at three levels

of precision [3].

Reference models can provide transaction–level

functionality.

Reference models can also be cycle accurate.

Reference models can provide rough justification by

checking the validity of the DUT behaviour given some

input and output. The DUT internals might be used for

justification.

1.1 THE ISSUE OF TRANSACTION LEVEL

REFERENCE MODEL

The transaction level functionality is the most commonly

used reference model, so reference models are usually

implemented with C, C++ and System C languages [1, 5].

It is thought that by using a common language the design

and verification can proceed smoothly from system-level

and architectural-specification down to detailed

implementation [7]. However due to the lack of

accurately modelling design’s behaviour, some scenarios

may make reference model and design have different

output. Neither reference nor design is wrong from

functionality under such circumstance, but output

comparison failure will mix up with the true design issue

and bring trouble to the automatic check on design’s

behaviour.

1.2 AN EXAMPLE WHICH HAS DIFFERENT

OUTPUT BASED ON THE DELAY OF STIMULUS

PROCESSING

Figure 2 shows the infrastructure of a simple design

under verification and as followed its normally

implemented reference model with C language. In this

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

132

example the design has 3 interfaces. Interface A is a port

for data input. The input is a kind of packet with header,

payload and CRC checksum. Interface B is a control

interface. Controlling commands for design are injected

by interface B. Interface C is for output. Design’s

behaviour is quite simple: it checks the input packets,

discards the packets with CRC error and saves the

payload of CRC correct packets into a local buffer. When

a flush command is received from interface B, design will

output the packets’ payload in its local buffer through

interface C. If local buffer is full, the input packets will

be discarded.

buffer

packet

receive

, check

and

save

command

parsing

in
te

rfa
ce

 A

in
te

rfa
ce

 C
buffer

reading

interface B

FIGURE 2 An example of design’s infrastructure

Reference model for the example design is shown:

#include <stdio>

#define BUF_LENGH xx

typedef struct tagPacket {

char header[4];

char payload[1000];

char crc[4];

unsigned int length;

} MyPacket;

MyPacket Buffer[BUF_LENGH];

unsigned int ValidPacketNum;

void flush(MyPacket* output, valid_length) {

 Output = Buffer;

 Valid_length = ValidPacketNum;

 ValidPacketNum = 0;

}

void packet_receive(MyPacket input) {

 Int i = 0;

 If(ValidPacketNum== BUF_LENGH){

 printf(“buffer is full, packet is discarded\n”);

 return;

 }

 If(!crc_check(input) {

 Printf(“ CRC error is found, packet is discared\n”);

 return;

 }

 for(i=0;i<4;i++)

 Buffer[ValidPacketNum].header[i]= input.header[i];

 for(i=0;i<input.length;i++)

 Buffer[ValidPacketNum].payload[i]= input.payload[i];

 for(i=0;i<4;i++)

 Buffer[ValidPacketNum].crc[i] = input.crc[i];

 Buffer[ValidPacketNum].length = input.length;

 ValidPacketNum++;

}

Reference model is formed by two functions and the

global variables which act as the local buffer and the

valid packet number saved in the buffer. One function is

to process the packets data and the other function is to

process the command. As reference model is

implemented at transaction level, it is not necessary to

emulate the exact function of design. The data saved in

the buffer can be packets type and it is not necessary to

get packet header and appended CRC removed. The

transaction level reference model is easy to be

implemented and integrated from system level down to

detailed implementation. Moreover, the simplification

makes transaction level model has less bug embedded

and can be entitle more confidence as a real golden model.

However, there is no timing delay for reference model

to run the function task such as packet receiving, packet

checking, command executing and buffer flushing. Due

to the lack of timing delay, reference model may predict a

different output as design does for the case that buffer is

full and a flush command is coming shortly after another

packet injection:

For reference model, the packet will be definitely

discarded as buffer is full and flush command is not

injected yet.

For design, the result depends on the delay of

processing the packet and flushing command. For

example, if design’s behaviour is like this: when flush

command is going on and the left byte is available for the

new valid incoming packet, the incoming packet will be

saved (not be flushed out. Chapter 4.3 will discuss the

case of this packet’s flushing out). Alternatively, it will

be discarded.

Therefore, for real design, we get two different results

based on stimuli’s different processing time. If result is

first one, it will be different with reference model’s

output. Under such circumstance we cannot say either

design or reference model is wrong, because they both

behave rightly according to the functionality. The most

outstanding character of such scenarios is that the stimuli

to be processed have competition. Who is the winner

decides the processed result. In this paper, we call such

scenarios as stimulus competition scenarios. In addition,

the bottom of this issue is that reference model cannot

process the packet or command in the same

synchronization step as design. It is usually called as

asynchronous issue between reference model and RTL.

Stimulus competition scenarios in a verification system

and asynchronous issue between reference models and

designs commonly exist. Moreover, scenario of buffer

flushing and packet processing under buffer full

condition is also an important corner case should be

covered by verification system. Although we do not care

if the packet is discarded or saved, we do care if design

will not hang up. This asynchronous issue must be

worked around for our test target.

In fact, to work around this asynchronous issue

between reference model and design, we have several

choices to do: Use reference model with accurate timing

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

133

delay. Alternatively, make dedicated tests to test such

scenarios and handle the output comparison specially.

However, of them is perfect and neither both of them

need more effort on reference model or test suites. This

paper provides its study on implementation style of

reference model. By predicting all possible output of

design, this paper presents a method, which entitles

reference model the ability of handling the timing

sensitive scenarios automatically at the transaction level

for testbench. The following of this paper includes:

How to implement reference model and handle

stimuli competition scenarios at transaction level are

discussed and an example is introduced based on the

implementation method.

Several factors are introduced to optimize this

method.

Moreover good test program need to provide more

automation to maximize the functional coverage from

each test case and reduce the time needed to create a test

case [4 and 6]. So it is better to let verification system can

handle such asynchronous issue automatically and hit

such corner case easily. Chapter 4.2 also discuss an

advantage about the method to implement reference

model.

2 The approach to handle stimulus competition

scenarios at transaction level

In previous chapter, we have pointed out that due to

asynchronous issue, stimulus competition scenarios may

make reference model and design have different output.

The main reason is transaction level reference usually

takes no simulation time to process a stimulus while RTL

design cannot. Cycle accurate level reference does not

have such issue, as it emulate each time cycle of design.

To keep the transaction level feature, a good work around

is that reference model emulate several important time

stages of stimulus’s processing instead of each time

cycle.

2.1 EMULATE STIMULUS’ PROCESSING AT

STIMULUS’ START AND END.

Cycle accurate reference model can totally emulate every

time step of stimulus’ processing. However, it is not what

we want, as the effort is almost like to re-write a RTL

design and such model is quite difficult to maintain when

real design suffers a little change. In fact, what the

reference needs is just to emulate some important time

points of stimulus’ processing. It is not necessary to care

about every state of stimulus’ processing at each cycle.

Two of the most important timing points in stimulus’

processing are stimulus’ start points and end points. At

beginning reference model is in known state, we set it

verified state VS. Once a stimulus is injected to reference

model, we can look the injection operation as the start

point of the stimulus and put it into a timing uncertain

stimulus set, we mark it as U_SET. This uncertain

stimulus set is bind to VS state. We mark this set it as

U_SETVS. In addition, with simulation going on, VS

state may evolve into several possible states due to

stimulus competition scenarios. We mark the possible

state as PS and manage all uncertain stimuli in an

independent set, U_SET_ALL. U_SET_ALL include all

stimuli, which are bind to different PS. We set all new

added stimuli in U_SET_ALL as processing state for

later use. Figure 3 shows the flow chart of managing

injected stimulus by U_SETs (Different U_SET is bind to

different PS or VS) and U_SET_ALL. To make it a more

common solution, we assume reference model’s starting

state is in several possible states (PS). Each possible state

(PSi) has a U_SET bonded on it and marked as U_SETPSi.

i=0

i<Number of

PS or VS?

stimulus X is injected

(start point)

put stimulus X to

U_SETPSi

update stimulus set

set it to be processing

Y

N

i++

U_SETPSiU_SETPSiU_SETPSi

U_SETPSiU_SETPSiU_SETPSi
stimulus 1

state

update

update

FIGURE 3 Manage input stimulus with U_SETPSi and U_SET_ALL

When an event of design is monitored by TB, we

make evaluation to see if any stimulus end point is

relative to this event. A good case is we are sure some

stimuli are definitely relative to this event. We mark these

stimuli as processed in U_SET_ALL. However, a more

complicated case is we just know some stimuli are

possibly relative to this event. We will handle this

complicated case directly. Reference model should try to

process the U_SETVS (or each U_SETPS). The process

step is as followed.

Step 1: figure out all possible sequences combination

in U_SETVS (or each U_SETPS)

Some combinations maybe illegal and should be

excluded: for example, if two stimuli come from same

interface, one must be injected later than the other. The

sequence combination can be managed by a stimulus

queue and the queue should be processed with its bind

state VS as reference model’s initial state. If reference

model is in several possible states, each U_SET, which is

bind to its possible state (PS) can make a bunch of queues.

We managed this bunch of queues with a queue set

marked as queue_setPS. For easy use of next step, we put

all these queues into a big queue set (queue_setall). Each

queue will be attached with a reference model’s initial

state PSinit,i. PSinit,i is equal to queue’s bind state (PSi or

VS) at start. We also attach Jveri-end and Jmin-end to each

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

134

queue and set the queue as processing state for later use.

The meaning of Jveri-end and Jmin-end will be explained later.

Figure 4 shows the flow chart of this step.

step1: queue_setall is generated

i=0

i<Number of

U_SETPSi

get all possible queues set

queue_seti for U_SETPSi ,

set initial model state PSinit for

each queue to be PSi

U_SETPSiqueue1,2
queue1,1

PSinit,1,1=PS1

U_SETPSiqueue1,2
queuei,1

PSinit,i,1=PSi

merge each queue_seti into one queue_setall:

mark each queue as processing state,

set each queue Jveri_end=0

queue_set1

queue_seti

if design has output,

mark output as un-compared
output state

go to step 2

U_SETPSiqueue1,2
queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1 PSini,1

Jveri_end,1, state

Jmin_end,1

end point is monitored

queue_setall
build

build

merge

FIGURE 4 Generate the queues for all possible stimulus sequence

combination

Step 2: Process all queues in queue_setall with their

attached state as reference model’s initial state.

For queue i, we process these stimuli one by one and

from start to end. As a stimulus may influence design’s

output, we can compare reference model’s output with

design’s to make sure if this stimulus’s end point happens

or has been processed by design. A variable Jveri-end,i is

used to record the position of latest stimulus whose end

point is verified to happen. In addition, we need a

variable TEMP_PS to record model’s state for next

stimulus’s processing. It is updated after a stimulus’s

processing. According to comparison result, we get two

routines depending on the comparing result: If reference

model’s output match with part or whole of design’s

output, evaluate this stimulus to see if current reference

model’s output is influenced by it. If the influence exists,

update Jveri-end,i to the stimulus’s position and update

reference model’s state PSinit,i to TEMP_PS. We also

update this stimulus’s state as processed in U_SET_ALL

for later use. Then continue the next stimulus processing.

One thing should be noted that to check if output is

influenced by current stimulus is a case-by-case problem

and should be carefully figured out during

implementation.

If reference model’s output does not match with any

of design’s output, stop this queue’s processing and start

next queue’s processing.

During one queue’s processing, we can check if

design’s output is all compared off. If it is, that will mean

design’s behaviour is right. If not and all queues are

processed, that means some error happens and we need to

check design or model in further. Figure 5 shows this

step’s flow chart.

process it with model at TEMP_PSi,j

get j
th
 stimulus from queuei :

stimulusj=queuei[j]

compare the output.

are they match

Is the compared output

influenced by stimulusj

mark stimulusi verified

update PSinit,i = TEMP_PSi,j and

Jveri_end,i = j

i=0

i<total Number of queue

U_SETPSiqueue1,2
queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1 PSini,1

Jveri_end,1, state

Jmin_end,i

queue_setall

Is design’s output

compared off

j<Number of stimulus in queuei

j=0, TEMP_PSi,j = PSinit,i
i++

set output state to

be compared

Y

N

step2: queue_setall is processed

N

Y

N

Y

go to

step 3

output state

U_SETPSiU_SETPSiU_SETPSi
stimulus 1

state

U_SET_ALL

check output state:

all output ever

compared off

Y

report error

Y

N

N

update

update

FIGURE 5 Process all queues in queue_setall to queue’s end

Step 3: Process all queues in queue_setall to real Jmin-

end.

In previous step, we can figure out which stimulus’s

end point happens and already mark it as processed state

in U_SET_ALL. Now we should process each queue

again and update their attached state forward until latest

stimulus which is marked as processed in this queue. For

queuei, the process can be start with Jveri-end,i +1 and

initialized state PSinit,i , as PSinit,i has been updated with

Jveri-end stimulus’s processing in previous step. According

to the state of each stimulus in whole uncertain stimulus

set U_SET_ALL, we can find out the latest stimulus

whose end point happens in queuei. We mark its position

as Jmin-end,i . It is a similar flow as step 2: after one

stimulus is processed, by comparing the output with

design’s, we get two routines depending on the

comparing result.

If reference model’s output match with part or whole

of design’s output, Update Jveri-end,i to the stimulus

position and update reference model’s state PSinit,i. Then

continue the next stimulus processing.

If reference model’s output doesn’t match with any of

design’s output, stop this queue’s processing and mark

this queue as discarded. And then start next queue’s

processing.

After all queues are processed, check the state of all

queues. If they are all in discarded state, some error

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

135

happens and we need to check design or model in further.

The flow chart is showed in Figure 6:

are all queue in queue_setall

discard state

process it with model at TEMP_PSi,j

get jth stimulus from queuei :

stimulusj=queuei[j]

compare the output.

are they match

update PSinit,i = TEMP_PSi,j and

Jveri_end,i = j, j++

i=0

i<total Number of queue in

processing state

j<Jmin-end,i

j=Jveri-end,i, TEMP_PSi,j = PSinit,i

Y

N

step3: process all queues to last

stimulus with end point happening

Mark queuei

as discarded

figure out Jmin-end,i for queuei U_SETPSiU_SETPSiU_SETPSi
stimulus 1

state

U_SET_ALL

Y

U_SETPSiqueue1,2
queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1,1

PSini,1=PS1

queue1 PSini,1

Jveri_end,1, state

Jmin_end,i

queue_setall

N

Y

N

i++

report error

Y

N go to

step 4

update

update

input

input

FIGURE 6 Process all queues in queue_setall to real Jmin-end

Step 4: merge the left queues.

After step 3, for queuei, reference model’s state is

updated to a new PSinit,i and there are some stimuli (index

from Jveri-end,i +1 to end) are left as new uncertain stimulus

set which is bind to PSinit,i, U_SETPSinit,i. We can compare

queuei with all other queues. If some of them are equal

(their left stimuli are equal and binding state PSinit,i are

equal too), they can be merge to one U_SETPSi. Then we

get several new possible states, PSi and new stimulus set

U_SET, which is bind to it and is ready for next around

processing.

2.2 AN APPLICATION FOR THE EXAMPLE DESIGN

IN CHAPTER 2

Following this method, it is not hard to figure out a

solution for the example mentioned chapter 2. Assuming

current verified state VS is buffer full, packet A is

coming and then a flush command B follows shortly after.

The uncertain stimulus set U_SETVS will have packet A

and command B. So does U_SET_ALL. Due to flush

command B, design will output packet payload in buffer

and mark flush command B’s end point. Therefore, we

can set flush command B as processed. To make the

competition stimulus scenario happen easily, we assume

buffer can store two packets’ payload.

Two possible sequences combination in U_SETVS

are got: flush command B -> packet A and packet A ->

flush command B. they build up queue_setall too.

For queue 1, after flush command B is executed,

reference model will output data in buffer. TEMP_PS is

buffer empty. PSinit,1 is updated to TEMP_PS, buffer

empty state. Then for packet A, it will be saved according

to TEMP_PS. However, design should not have packet

A’s payload as output. So Packet A is still in processing

state and Jveri-end,1 keeps to be 1. For queue 2, packet A is

discarded and reference model will output data in buffer

after flush command B. Flush command B can be verified.

PSinit,2 is updated to buffer empty state, Jveri-end,2 is set to 2.

By checking U_SET_ALL, we can figure out Jmin-end,1

is 1 and Jmin-end,2 is 2. So step 3 can be ignored. Now two

queue’s state is as followed: buffer empty and packet A is

left in queue; buffer empty and no stimuli. They cannot

be merged. Therefore, we get U_SETPS1 and U_SETPS2.

Then come packet C, packet D and flush command E,

which may compete with packet D. The new packet input

is also an event of end point of previous packet.

Therefore, packet A and packet C can be marked as

processed. Here we skip the end event of packet A and

packet C to ignore the procedure we do not care. For

U_SETPS1 we have two possible queues: packet A->

packet C ->packet D->flush command E and packet A->

packet C -> flush command E -> packet D. For

U_SETPS2 we have two possible queues too: packet C -

>packet D->flush command E and packet C -> flush

command E -> packet D. Now we can merge them into

one big queue_set.

Queue 1: packet A-> packet C ->packet D->flush

command E, PSinit,1 is buffer empty.

Queue 2: packet A-> packet C -> flush command E ->

packet D, PSinit,2 is buffer empty.

Queue 3: packet C -> packet D -> flush command E,

PSinit,3 is buffer empty.

Queue 4: packet C -> flush command E -> packet D,

PSinit,4 is buffer empty.

For queue 1, packet A, packet C will be saved; Packet

D is discarded due to buffer is full again; Packet A and

packet C will be flush out due to flush command E. Now

we can get sure state about packet A by comparison result

with design’s output. If two results match, packet A and

packet C are set to processed state. Queue 1 is updated to

the state that buffer is empty and no stimulus is left in

queue. If results don’t match, queue 1 will not be updated.

For queue 2, packet A, packet C will be saved and

then be flushed out. Packet D is saved. By comparison

result with design’s output. If two results match, packet A

and packet C are set to processed state. Queue 2 is

updated to buffer empty and packet D is left in queue. If

results do not match queue 2 will not be updated.

For queue 3, packet C and packet D are saved and

packet C will be flush out.

For queue 4, packet C and packet D are saved and

flushed out. As the output is different, we can make sure

if packet D is flush out or not.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

136

If packet A is not discarded in previous stimulus

competition scenario, queue 3 and 4 will be marked as

discarded state in step 3. Queue 1 and queue 2’s states are

quite like the states of two queues in previous

competition scenario. If packet A is discarded, queue 1

and queue 2 will be marked as discarded state in first

stimulus’s processing and comparing. Queue 3 and queue

4 will make a duel based packet D’s comparison. So only

one of them survives and bring reference model to a

determined state.

3 The consider factor in reference model’s

implementation

Sometimes there are too many stimuli in the U_SET,

which will make too many PS states. Based on these new

PS states, a new big U_SET may be got again. After

processing these new U_SET, more second stage of PSs

may be got. Chapter 3.2 has shown us an example, 4

queues and two PSs are got in second stimulus

competition scenario. To record and maintain these PSs

and U_SET is a complicated job. So better to do some

optimization or trade off during reference model’s

implementation in a verification system.

3.1 REDUCE THE AMBIGUOUS TIME

For stimulus competition scenarios which may generate

different result due to different time delay of stimulus’

processing, time between start point and end point of the

stimulus can be regarded as an ambiguous time. We do

not know design behaviour definitely. If the ambiguous

time is reduced, the number of stimuli in U_SET will be

reduced and the number final possible state PS after all

possible queues are processed will be reduced too. To do

this, we need to mark the stimulus start point as later as

possible and mark stimulus end point as early as possible.

For example, set stimulus start point when the stimulus

are totally injected to DUT if we are sure that design

output can only be affected after the whole stimulus are

totally taken in by design.

If internal signal of design is available to verification

engineer, checking the internal signal of design is another

good method. Although internal signal can be changed,

some important signals are usually preserved if

functionality of design is not modified a lot. Moreover

checking internal signal means we can let reference

model sync to design’s timing step and can reduce

ambiguous time to 0. This method is a trade-off. If too

many internal signals are monitored, to maintain these

signals will be another burden for testbench. A worst case

is sometimes RTL is encrypted if verification system is

developed by third part agent.

3.2 CONSTRAIN THE STIMULUS’S GENERATION

The PS or VS of reference model can be a good feedback

to generator. When competition stimulus scenario

happens and several possible results are got. By checking

the state of reference model, the generator can be forced

to generate stimulus, which can bring definitely

determined state to reference model. For example in

chapter 3.2, if generator finds that reference model is not

sure about buffer’s state as packet A may be discarded or

saved, another flush command can be injected. Then by

comparing flush output, packet A’s state will be

determined quite soon. However, with such constraint,

some scenarios cannot be produced. Therefore,

verification engineers should judge if lost scenarios are

important for the design’s function verification.

Another advantage of constraining stimulus’s

generation based on reference model’s state is the

expected corner case is easier to hit than normal

randomized generation. For the example design given in

chapter 2, buffer full can be a corner case. By checking

buffer state in reference model, we can constraint to

generate more packets and less flush command when

buffer is nearly full. Then buffer full condition can be

easily achieved.

3.3 SUBTRACT THE EVENT FOR STIMULUS’S

START POINT AND END POINT

Subtract the right event for stimulus’s start point and end

point is another important factor for the method presented

in this paper. In fact, from a broad concept, polling

design’s internal signal is a way to subtract the event of

stimulus’s start point and end point. However, by

analysing design behaviour, some event can be subtracted

just based on the input and output.

You will find that solution in chapter 3 will not work

if we modify the design’s behaviour like this: Interface C

must be in a stable speed if data flush is ongoing. Due to

buffer and speed of interface A, C are well defined, when

the buffer is only flushed a little, available byte cannot

afford the incoming packet, the packet will be discarded;

when the buffer is flushed too much, to flushing out

incoming packet may face the risk that left byte in buffer

is flushed out but incoming packet is not fully received.

Under such condition, design may not keep a stable

flushing speed for interface C. So incoming packet will

be just saved; when the buffer is flushed neither so less

nor so much, the incoming packet can be flushed out.

The answer for such design change is not hard: if we

subtract a stimulus like “enough byte is flushed out for

incoming packet” which is after the flush command and

adapt it to the solution, the problem can be solved again.

4 Summary

The method to implement reference model presented by

this paper is to find all possible states and results during

ambiguous time and figure out the final state and result

after comparison with design’s output. To do this,

reference model will record all stimuli whose end points

are not coming. By process all possible sequence for

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(5) 131-137 Qiu Lirong

137

these stimuli, design’s possible state and output will be

figured out. From 4.2 we also find an extra advantage to

record these states, which help with the test to cover the

specified corner case easily. This is another back up to

implement reference model by using this method.

Acknowledgments

Our work is supported by the National nature science

foundation of China (NO.61103161) and the Program for

New Century Excellent Talents in University (NO.

NCET-12-0579).

References

[1] Bergeron J 2006 Writing testbenches using system Verilog

Springer.

[2] Fitzpatrick T, Salz A, Rich D, Sutherland S 2006 System Verilog
for Verification Springer

[3] Rosenberg S, Meade K A 2010 A practical guide to Adopting the
universal verification methodology (UVM). Cadence Design

Systems.

[4] Haque F, Michelson J 2001 Art of Verification with VERA
Verification Central

[5] Jindal R, Jain K 2003 Verification of transaction-level SystemC

models using RTL testbenches. Formal Methods and Models for

Co-Design, 2003 MEMOCODE'03. Proceedings. First ACM and

IEEE International Conference on, IEEE (Mont Saint-Michel,

France, 24-26 June) 199-203
[6] Rowen C 2002 Reducing SoC simulation and development time

Computer 35(12) 29-34
[7] Clouard A, Mastrorocco G, Carbognani F, Perrin A, Ghenassia F

2002 Towards bridging the precision gap between SoC

transactional and cycle-accurate levels Proc. Design, Automation
and Test in Europe (DATE, Paris, France, 4-8 March, 2002)

[8] Carbognani F, Lennard C K, Ip C N, Cochrane A, Bates P 2003
Qualifying precision of abstract systemc models using the systemc

verification standard. Design, Automation and Test in Europe

Conference and Exhibition, 2003, IEEE (Munich, Germany, 3-7

March) 88-94

Author

Lirong Qiu, born on August 28, 1978, China

Current positions, grades: full professor of computer sciences at Information Engineering Department, Minzu University of China
University studies: M.Sc. in Computer Sciences (2004) and PhD in Information Sciences (2007) from Chinese Academy of Science.
Scientific interests: different aspects of natural language processing, artificial intelligence and distributed systems.

