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Abstract 

This paper presents a new kernel framework for hyperspectral images classification. In this paper, a new feature extraction algorithm 

based on wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using 

the feature of multi-resolution analysis, the new method can improve the nonlinear mapping capability of kernel non-negative matrix 

factorization. The new classification method of hyperspectral image data combined with the novel kernel non-negative matrix 

factorization and support vector machine (SVM). The simulations results show that, the method of WKNMF reflect the nonlinear 

characteristics of the hyperspectral image. Experimental results on Airborne Visible Infrared Imaging Spectrometer 220 bands data in 

Indian pine test site and HYDICE 210 bands hyperspectral imaging in Washington DC Mall are both show that the proposed method 

achieved more strong analysis capability than comparative algorithms. Compared with the PCA, non-negative matrix factorization 

and kernel PCA method, classification accuracy of WKNMF with SVM can be improved over 5%-10%. 
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1 Introduction 

 

It is well know that each material has its own specific 

electromagnetic radiation spectrum characteristic. Using 

hyperspectral sensors, it is possible to recognize materials 

and their physical states by measuring the spectrum of the 

electromagnetic energy they reflect or emit. The spectral 

data which consist of hundreds of bands are usually 

acquired by a remote platform, such as a satellite or an 

aircraft, and all bands are available at increasing spatial 

and spectral resolutions. After 20 years of development, 

hyperspectral technology has not only been widely used 

in military, but also has been successfully applied in 

ocean remote sensing, vegetation surveys, geological 

mapping, environmental monitoring and other civilian 

areas [1, 2].  

Due to the state of art of sensor technology developed 

recently, an increasing number of spectral bands have 

become available. Huge volumes of remote sensing 

images are continuously being acquired and archived. 

This tremendous amount of high spectral resolution 

imagery has dramatically increased the information 

source and increased the volume of imagery stored. For 

example, hyperspectral imagery captured by Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS, 

operated by NASA) includes 224 bands, which contains 

up to 140Mbytes [2, 3].  

However, the excessive hyperspectral data increase 

the difficulty of image processing and analysis. Such as 

supervised classification of hyperspectral images is a very 

challenging task due to the generally unfavourable ratio 

between the large number of spectral bands and the 

limited number of training samples available a priori, 

which results in the ‘Hughes phenomenon’. Without the 

supports of new scientific concepts and novel 

technological methods, the existing large volumes of data 

prohibit any systematic exploitation. This has led to great 

demands to develop new concepts and methods to deal 

with large data sets [2-4].  

Hyperspectral image classification has been a very 

active area of research in recent years [5]. Given a set of 

observations, the goal of classification is to assign a 

unique label to each pixel vector so that it is well-defined 

by a given class. 

There are several important challenges when 

performing hyperspectral image classification. 

Supervised classification faces challenges related with the 

unbalance between high dimensionality and limited 

availability of training samples, or the presence of mixed 

pixels in the data. Another relevant challenge is the need 

to integrate the spatial and spectral information to take 

advantage of the complementarities that both sources of 

information can provide [5]. 

Over the last years, many feature extraction 

techniques have been integrated in processing chains 

intended for reduce the dimensionality of the data, thus 

mitigating the Hughes phenomenon. These methods can 

be unsupervised or supervised. Classic unsupervised 

techniques include principal component analysis (PCA), 

or independent component analysis (ICA). Supervised 

approaches comprise discriminant analysis for feature 

extraction (DAFE), decision boundary feature extraction 
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(DBFE), and non-parametric weighted feature extraction 

(NWFE), among many others [4-7].  

Recently, it was shown by Lee and Seung that 

positivity or non-negativity of a linear expansion is a very 

powerful constraint that also seems to yield sparse 

representations [8, 9]. Their technique, called non-

negative matrix factorization (NMF), was shown to be a 

useful technique in approximating high dimensional data 

where the data are comprised of nonnegative 

components. However, NMF and many of its variants are 

essentially linear, and thus can’t disclose nonlinear 

structures hidden in the hyperspectral data. Besides, they 

can only deal with data with attribute values, while in 

many applications we do not know the detailed attribute 

values and only relationships are available. The NMF 

cannot be directly applied to such relation data. 

Furthermore, one requirement of NMF is that the values 

of data should be non-negative, while in many real world 

problems the non-negative constraints cannot be satisfied. 

Since the mid-1990s, nuclear method has been 

successfully applied in the future, there are many scholars 

have proposed Nonlinear feature extraction method based 

on kernel method [10-13]. 

In this paper, a novel study is proposed for the feature 

extraction of high volumes of remote sensing images by 

using wavelet kernel non-negative matrix factorization 

(WKNMF). We propose the WKNMF, which can 

overcome the above limitations of NMF. Classification 

experiments on AVIRIS and HYDICE data sets by 

combination of feature extraction method and support the 

vector machine (SVM). The proposed method is applied 

to experiment data sets, compared with the other 

algorithms the classification accuracy can be increased 

over 5%-10%. The outline of this paper is as follows. 

Section 2 presents the proposed feature extraction based 

on WKNMF. Experimental results are reported in section 

3. Finally, conclusions are given in section 4. 

 

2 Methodology  

 

2.1 NON-NEGATIVE MATRIX FACTORIZATION 

 

NMF imposes the non-negativity constraints in learning 

the basis images. Both the values of the basis images and 

the coefficients for reconstruction are all non-negative. 

The additive property ensures that the components are 

combined to form a whole in the non-negative way, 

which has been shown to be the part based representation 

of the original data. However, the additive parts learned 

by NMF are not necessarily localized [8, 9]. 

Given the non-negative n m  matrix V and the 

constant r, the non-negative matrix factorization 

algorithm finds a non-negative n r  matrix W and 

another non-negative r m  matrix H such that they 

minimize the following optimality problem: 

min ( , )f W H . 

Subject to 0, 0W H  , (1) 

This can be interpreted as follows: each column of 

matrix W contains a basis vector while each column of H 

contains the weights needed to approximate the 

corresponding column in V using the basis from W. So 

the product WH can be regarded as a compressed form of 

the data in V. The rank r is usually chosen 

min( , )r n m . ( , )f W H  is a loss function. In this 

paper, we set loss function as follow: 

2

1 1

1
( , ) ( ( ) )

2

n m

ij ij

i j

f W H V WH
 

  . (2) 

Solving the multiplicative iteration rule function as 

follows:  
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The convergence of the process is ensured. The 

initialization is performed using positive random initial 

conditions for matrices W and H. 

 

2.2 KERNEL NON-NEGATIVE MATRIX 

FACTORIZATION 

 

Given m objects 
1 2 3, , ,..., ,m     with attribute 

values represented as an n  by m  matrix 

1 2[ , ,..., ]m    , each column of which represent one 

of the m objects. Define the nonlinear map from original 

input space   to a higher or infinite dimensional feature 

space   as follows 

: ( )x x   . (4) 

From the m objects, denote 

1 2( ) [ ( ), ( ),..., ( )]m        . (5) 

Similar as NMF, KNMF finds two non-negative 

matrix factors W  and H  such that  

( ) W H   . (6) 

W  is the bases in feature space   and H  is its 

combining coefficients, each column of which denotes 

now the dimension-reduced representation for the 

corresponding object. It is worth noting that since ( )   

is unknown. It is impractical to directly factorize ( )  . 

From Equation (6), we obtain 

   ( ) ( ) ( )
T T

W H      . (7) 
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A kernel is a function in the input space and at the 

same time the inner product in the feature space through 

the kernel-induced nonlinear mapping. More specifically, 

a kernel is defined as 

 ( , ) ( ), ( ) ( ) ( )
T

k x y x y x y     . (8) 

From Equation (8), the left side of Equation (7) can be 

rewritten as:  

   

 

, 1

, 1

( ) ( ) ( ( )) ( )

( , ) ,

mT T

i j i j

m

i j i j
k K

     

 





  

 

. (9) 

Denote 

 ( )
T

Y W  . (10) 

From Equation (9) and (10), Equation (7) can be 

changed as:  

K YH . (11) 

Comparing Equation (11) with Equation (6), it can be 

found that the combining coefficient H  is the same. 

Since W  is a learned base of ( )  , similarly we call Y  

in Equation (11) as the bases of the kernel matrix K . 

Equation (11) provides a practical way for obtaining the 

dimension-reduced representation H  by performing 

NMF on kernels. 

For a new data point, the dimension-reduced 

representation is computed as follows 

   

        
+

+

( ) ( )

=

new new

T T
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H W
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Y K





 

   







   . (12) 

Here A  donates the generalized (Moore-Penrose) 

inverse of matrix A , and    ( )
T

new newK      is the 

kernel matrix between the m training instance and the 

new instance. Equation (11) and (12) construct the key 

components of KNMF when used for classification, it is 

easy to see that, the computing of KNMF need not to 

know the attribute values of objects, and only the kernel 

matrix K  and 
newK  are required.  

Obviously, KNMF is more general than NMF because 

the former can deal with not only attribute value data but 

also relational data. Another advantage of KNMF is that 

it is applicable to data with negative values since the 

kernel matrix in KNMF is always non-negative for some 

specific kernels. 

 

2.3 WAVELET KERNEL NON-NEGATIVE MATRIX 

FACTORIZATION  

 

The purpose of building kernel function is project 

hyperspectral observed data from low dimensional space 

to another high dimensional space. This WKNMF 

method uses the kernel function into the non-negative 

matrix factorization and improved it by replaced the 

traditional kernel function with the wavelet kernel 

function. By the feature of multi-resolution analysis, the 

nonlinear mapping capability of kernel non-negative 

matrix factorization method can be improved. 

Assuming ( )h x  is a wavelet function, parameter   

represent stretch and   represent pan. If there 

, ' Nx x R , then we get dot product form of wavelet 

kernel function: 

1

' '
( , ') ( ) ( )

N
i i i i

i

x x
K x x h h

 

 

 
 . (13) 

Meet the reasonable expression product approved 

under the condition of translation invariance, the 

Equation (13) can be rewritten as: 

1

'
( , ') ( )

N
i i

i

x x
K x x h




 . (14) 

In this paper Morlet wavelet function was selected as 

generating function, according to the theory of translation 

invariance wavelet function, kernel function constructed 

as: 

2( /2)( ) cos(1.75 ) xh x x e  . (15) 

From Equation (13), (14) and (15) a wavelet kernel 

function meets the requirements of Mercer kernel 

function build as: 

2

2

'
( )

2

1

( ')
( , ') (cos(1.75 ) )

i ix xN
i i

i

x x
K x x e 









 . (16) 

Use Equation (16) in kernel non-negative matrix 

factorization, we can get Wavelet kernel non-negative 

matrix factorization. 

 

2.4 SUPPORT VECTOR MACHINE CLASSIER 

INTRODUCTION 

 

In machine learning, SVM are supervised learning 

models with associated learning algorithms that analyse 

data and recognize patterns, used for classification and 

regression analysis. The basic SVM takes a set of input 

data and predicts, for each given input, which of two 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(7) 140-146 Bai Lin, Hui Meng 

143 
Computer and Information Technologies 

 

possible classes forms the output, making it a non-

probabilistic binary linear classier.  

Given a set of training examples, each marked as 

belonging to one of two categories, an SVM training 

algorithm builds a model that assigns new examples into 

one category or the other. The basic mathematical 

formula of SVM is: 

2

,

1
min ( , )

2
w b w b    

. . ( ) 1( 1, , )i is t y w x b i n     . (17) 

For more information about SVM see reference [14, 

15]. 

 

3 Experimental results  

 

3.1 EXPERIMENTAL ON AVIRIS DATA SET 

 

The experiments were carried out on hyperspectral 

images produced by the AVIRIS. In order to simplify the 

logistics of marking this example analysis available to 

others, only a small portion of data set was chosen for 

this experiment. It contains 145 lines by 145 pixels 

(21025 pixels) and 190 spectral bands selected from a 

June 1992 AVIRIS data set of a mixed 

agriculture/forestry landscape in the Indian Pine Test Site 

in Northwestern Indiana. 

For verification the feature extraction algorithm effect 

to hyperspectral data classification application, SVM 

classifier used in this paper. Given a set of training 

examples, each marked as belonging to one of two 

categories, an SVM training algorithm builds a model 

that assigns new examples into one category or the other. 

An SVM model is a representation of the examples as 

points in space, mapped so that the examples of the 

separate categories are divided by a clear gap that is as 

wide as possible. New examples are then mapped into 

that same space and predicted to belong to a category 

based on which side of the gap they fall on.  

We select corn-min, corn-notil, soybean-min, 

soybean-notil and woods from AVIRIS images for 

classification experiment. Each object classes include 

1434, 834, 968, 2468 and 1294 sample point respectively. 

The 3-bands (20, 80, 140 band) false colour synthesis 

image used in experiment and the ground truth are shown 

in Figure 1.  

 
 

FIGURE 1 False colour images and ground truth of AVIRIS 

Experiments using PCA, NMF, polynomial kernel 

KPCA (Poly-KPCK) comparison with WKNMF 

respectively, which Poly-KPCK coefficient kernel 

function is 5. To verify the classification capabilities of 

different feature extraction algorithm, we use Euclidean 

distance as the sum of the difference between the 

experimental data points in each band to take images of 

the same type of experimental data. 

Take the Euclidean distance difference of surface 

features points between the different categories as a 

distance between the classes.  The ratio of distance 

between the classes and distance within classes’ values 

can reflect the degree to distinguish between different 

data. The experimental result was shown in Figure 2. 

From the experimental results, we can see WKNMF can 

get lowest ratio value than other algorithms. The result 

proves the new feature extraction method in this paper 

can effectively improve the discrimination between 

hyperspectral images category. 

 
FIGURE 2 Ratio of distance between the classes and distance within classes 

In order to verify the classification performance of 

feature extraction algorithm, experiments using the SVM 

method as a classifier, respectively PCA, NMF, 

polynomial KPCK (Poly-KPCA coefficient kernel 

function is 5) as feature extraction was compared with 

WKNMF. We use the overall accuracy (OA), as the 

evaluation index in experiment results.  

Experiment randomly select 10% samples as training 

data on original hyperspectral data and the remaining 

90% of sample as test data. The classification experiment 
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was repeated 10 times, taking the statistical average for 

final results.  

Experiment with feature extraction algorithm, feature 

dimensions taken before 15 feature components as input, 

the energy of the total energy accounted for more than 

96%. The classification result was shown as Table 1. An 

impact of feature dimensionality to the SVM classier for 

hyperspectral remote sensing images was shown as 

Figure 3.  

 
TABLE 1 Classification results use 10% training sample data 

Methods corn-min corn-notil soybean-min soybean-notil woods Total (OA) Kappa 

PCA 85.22 46.21 50.14 96.05 98.81 78.96 0.763 

NMF 88.69 69.05 67.32 96.17 99.92 85.03 0.837 
Poly-KPCA 88.13 73.54 65.89 97.11 99.92 86.81 0.849 

WKNMF 92.93 82.12 76.88 96.61 99.81 91.91 0.893 
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FIGURE 3 Classification OAs with respect to reduced dimensionality in AVIRIS 

The overall classification accuracy of test samples 

show that the use of a few training samples, WKNMF 

method can achieve higher classification accuracy. The 

classification accuracy enhance effect is very obvious, 

especially in corn-notil and soybean-min. Compared with 

the other algorithms WKNMF can improve the overall 

classification accuracy over 10%. We can see form table 

1, variety of feature extraction algorithms not work very 

well in corn-notil and soybean-min, because of their 

spectral are similar and easily misclassification. Even 

under such adverse circumstances that the proposed 

method can still get higher classification accuracy than 

others. 

 

3.2 EXPERIMENTAL ON HYDICE DATA SET 

 

The Figure 4 shows a simulated colour IR view of an 

airborne hyperspectral data flightline over the 

Washington DC Mall provided with the permission of 

Spectral Information Technology Application Centre of 

Virginia who was responsible for its collection. The 

sensor system used in this case measured pixel response 

in 210 bands in the 0.4 to 2.4 µm region of the visible and 

infrared spectrum. Bands in the 0.9 and 1.4 µm region 

where the atmosphere is opaque have been omitted from 

the data set, leaving 191 bands. The data set contains 

1208 scan lines with 307 pixels in each scan line. It totals 

approximately 150 Megabytes. The image at left was 

made using bands 60, 27, and 17 for the red, green, and 

blue colours respectively. The HYDICE data set include 

Roofs, Street, Path (gravelled paths down the mall 

centre), Grass, Trees, Water, and Shadow.  

 
FIGURE 4 False colour images of HYDICE 

Experimental test data and training data are selected 

as shown in Table 2. 

 
TABLE 2 Experimental data 

HYDICE data set(Washington DC Mall) 

classification samples 

Class No. Class name Train Test 

1 Roofs 400 3434 

2 Street 168 248 
3 Path 36 139 

4 Grass 814 1114 

5 Trees 80 325 
6 Water 224 1000 

7 Shadow 11 86 
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In order to verify the classification performance of 

feature extraction algorithm, experiments using the SVM 

method as a classifier, respectively PCA, NMF, 

polynomial KPCK (Poly-KPCA coefficient kernel 

function is 5) as feature extraction was compared with 

WKNMF. We use the overall accuracy (OA), as the 

evaluation index in experiment results. The classification 

experiment was repeated 10 times, taking the statistical 

average for final results.  

Experiment with feature extraction algorithm, feature 

dimensions taken before 20 feature components as input, 

the energy of the total energy accounted for more than 

97%. The classification result was shown as Table 3. An 

impact of feature dimensionality to the SVM classier for 

hyperspectral remote sensing images was shown as 

Figure 5.  

TABLE 3 Classification results on HYDICE data set 

Class No. Class name 
Classification Algorithms 

SVM PCA+SVM MNF+SVM KPCA+SVM WKNMF +SVM 

1 Roofs 62.1% 64.8% 66.4% 70.7% 78.4% 

2 Street 98% 100% 94.8% 98.4% 98.6% 
3 Path 100% 100% 100% 100% 100% 

4 Grass 97.2% 98.1% 97.7% 100% 99.8% 
5 Trees 98.8% 98.8% 98.8% 95.4% 97.8% 

6 Water 99.9% 99.9% 99.9% 99.8% 99.8% 

7 Shadow 82.6% 79.1% 84.9% 89.5% 89.8% 
overall accuracy 78.6% 80.7% 81% 84.1% 89.5% 

Kappa 0.717 0.744 0.745 0.787 0.853 

 

 
(SVM) 

 
(PCA+SVM) 

 
(MNF+SVM) 

 
(KPCA+SVM) 

 
(WKNMF+SVM) 

FIGURE 5 Classification images of different algorithms on HYDICE data set 

The overall classification accuracy of test samples 

show that the use of a few training samples, WKNMF 

method can achieve higher classification accuracy on 

HYDICE data set. Compared with the other algorithms 

WKNMF can improve the overall classification accuracy 

over 5%-10%.  

 

4 Conclusions  

 

In this paper, we propose a feature extraction of 

hyperspectral images by using WKNMF. The idea of 

using WKNMF techniques to find a set of basic functions 

to represent image data where the basic functions enable 

the identification and classification of intrinsic "parts" 

that make up the object being imaged by multiple 

observations. Experimental results on AVIRIS 220 bands 

data set in the Indian pine test site and HYDICE data sets 

in Washington DC Mall are both show that the proposed 

method achieved more strong analysis capability than 

comparative algorithms. Compared with the PCA, NMF 

and Poly-KPCA method, classification accuracy can be 

increased over 5%-10%. The WKNMF balance algorithm 

efficiency and performance very well. 
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