

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

145
Computer and Information Technologies

The research of data conflict in digital camp management and
control system based on IOT

Xingchen Li1*, Shenglin Li2, Heng Zhang2, Hui Cai1
1Graduate school, Logistical Engineering University of P.L.A, Chongqing, China

2Department of Information Engineering, Logistical Engineering University of P.L.A, Chongqing, China

Received 1 May 2014, www.cmnt.lv

Abstract

A core technology in IOT (Internet of Thing) is data processing and there may be a mismatch between data collection and data interface.

Aiming at data conflicts in the DCMCS (Digital Camp Management Control System), this paper defines data conflicts with formal

description and divides the data conflicts of the DCMCS into six types. For each type of the data conflicts, a resolution strategy is

designed to solve it. Then the paper designs the DCRS (Data Conflict Resolution System) to detect and resolve the data conflicts

automatically and quickly. The solutions provide technical support for data interaction, which have been successfully verified in the

DCMCS.

Keywords: formal description, data conflict, resolution strategy, DCRS

1 Introduction

As an important goal of modern barracks to transform

information, the DCMCS (Digital Camp Management

Control System) refers to utilize sensing technology,

network communications and automatic control

technology to build IOT with barracks facilities and

equipment, getting the operational status of devices in real

time and controlling them accurately. In the process of

collecting data, there may be a mismatch between data

acquisition and the upper data interface due to sensor

noise, external interference, device aging or deviation of

application itself and resultant data conflicts. Therefore, it

is important to research data conflicts in the DCMCS and

resolution method.

2 Backgrounds

A core technology in IOT is data processing. Data

processing in IOT can be divided into data recognition and

data interaction [1]. DCMCS data conflict is the data

exchange errors arising from mismatches between data

interface and device identification, data types, data

structures, data accuracy and acquisition space. That is,

when output data of sensing devices cannot meet the

restrictions of the data input interface, it will produce data

conflict. For example, sensor D1 outputs float-type data

and integer-type is required by the interface D2, so it will

generate data type conflict.

Current research of data Processing in IOT is about

heterogeneous data storage and abnormal data detection.

In terms of storage and query processing of sensor

sampling data, distributed storage method [2-4] means that

sample data are stored directly in each sensor node or in

*Corresponding author e-mail: since0701@163.com

the sink node, and are obtained through remote access

query processing. If query processing involves different

sensor networks, it needs to be converted by the

middleware to achieve interoperability operation between

heterogeneous sensor networks [5, 6]. With respect to

centralized processing of sensor data, the most direct way

is to use cloud data management and related technologies.

Currently a majority of cloud data management systems

are the "key-value" database such as Bigtable [7], Dynamo

[8], Hbase [9] and so on. "Key-value" database can

efficiently handle queries based on the primary key, but

fails to support networked data storage, spatial and

temporal logic query and attribute constraints inquiries.

Parallel database technology [10, 11] supports the

processing of structured data by organizing multiple

relational databases into a massive database cluster, but the

method cannot retrieve quickly the required data based on

the identity of the sensor. Common methods of anomaly

data detection are statistics, feature selection, neural

networks, data mining and wavelet singularity detection.

The main idea based on statistics [12] is to assume that data

sets obey certain distribution or probability model and that

serious deviation from the distribution curve object are

recorded as outliers by calculating the probability of the

object in the distribution model. Outlier based on distance

was first proposed by the Knor and Ng [13], who viewed

the records as points in data space. Outlier is defined as the

distance between the point and most points of data sets,

which are larger than the value of a certain point.

Literature reveals that credibility or a statistical model

would normally be added in the uncertain data of sensors

to detect abnormal data. Data conflicts due to a mismatch

between sensor data acquisition and the interface need to

be researched further. In view of this, the paper proposes a

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

146
Computer and Information Technologies

data conflict detection method based on formal

description, and then puts forward a conflict resolution

program to quickly determine and digest data conflict in

the environment of mass data.

3 Formal description of data conflict

Formal description is the method of describing the system

properties with the mathematical basis formal symbol for

the specification, design and validation of computer

systems. It can accurately and succinctly describe

phenomena, objects or action results and is ideal for

modelling tools. Samples, data conflicts, data interfaces

and interface matching principles are described and

defined in this section. The accurately formal description

of data conflicts can provide good support for the digestion

of data conflict and provide a basis for the development of

the DCRS.

The DCMCS needs to read the device identification

and sampling data, including sampling value, and spatial

and temporal information, such as sampling time and

sampling location, which reflect the characteristics of the

target object. Sample sequence can be composed of a

number of samples of the device. Due to the heterogeneity

of collection data, a uniform representation is needed for

samples which sensing devices collected with unique

identity, time, location, sample values and units of

measurement.

Definition 1 (The Definition of Sample-Value): In the

DCMCS, Sample-Value is expressed as

, , , ,S ID T L V U , where ID is the unique

identification of sampling device; T is the acquisition time;

L represents the sampling location. For a stationary device,

sampling location is the place that the sensor is installed

and for mobile devices, it means the places where collect

action takes place; V is the value of sensor data collection;

U is the measure unit of data value.
iS shows the sample

data of ith device.

After data collection, the sensor needs to exchange the

data with the data management system through data

interface to process data collected from the sensors.

Definition 2: (The Definition of Data Interface) In the

DCMCS, the data interface of the data management system

is expressed in a ternary suit , ,A I G D ,

 1 2, , ()nI I I I n N indicate the function set of the

data interface. (,1)iI i N i n show the ith interface of

the data interface; 1 2, , ()nG G G G n N indicate

the functional function set of the data interface,
iG show

the set of functional function corresponding with interface

iI ; 1 2, , ()nD D D D n N indicate the set of input

and output data of the data interface, and iD show the set

of input and output data corresponding with interface iI .

Definition 3: (The Definition of Input/Output of Data

Interface) In the data interaction, the data interface

,in outI I I , 1 2, , ()in

mI P P P m N indicate the

input of data interface. 1 2, , ()out

nI P P P n N

indicate the output of data interface, and

, , ,P M F J R show the parameters of input/output

and restriction conditions of those parameters, where M

indicate the types of input/output parameters, F indicate

the structure of input/output parameters, J indicate the

precision of input/output data, R indicate the value range

of input/output data. ()iP i n indicates the ith parameter

and its restriction conditions of input/output interface I.

Definition 4: (The Definition of Data Interface

Matching) Interface , ,i i i iA I G D , where

,in out
i i iI I I , the input of interface

, , ,in in in in in in
i i i i i iI P M F J R , the output of sensor

, , ,out out out out out out
i i i i i iI P M F J R , if

()()out in

i iP P i n , output data outI matches input data

inI , denoted as out inI I .

Definition 5: (The Definition of Data Conflict) Define

1, int
, ()

0, inti

i

A

i

A Normal eraction
H i N

A Abnormal eraction

. In the

DCMCS iA , if out in

i iP P , out inI I is not established,

we call it ‘data conflict’ and 0()
iAH i N at this time.

4 Types of data conflict

Data conflicts of the DCMCS based on IOT are mainly

caused by the identity of the sensor, the fact that the output

data does not match the constraints of the interface and so

forth. Data conflicts can be summarized as the following

six types: ID conflict, data type conflict, data structure

conflict, data precision conflict, data overflow conflict and

acquisition space conflict, as shown in Figure 1.

Type of Data Conflict

ID

conflict

data

type conflict

data structure

conflict

data accuracy

conflict

data overflow

conflict

acquisition space

conflict

FIGURE 1 The type of data conflict

ID conflict: The IOT of digital camps has a lot of

sensor nodes and it needs to encode these sensing devices

and give them unique ID for identification. During the

dynamic process of adding or deleting devices, it may

encode different sensors with the same ID. The system

cannot locate the unique sensing device and then generates

data conflict. In a single round of data collection process,

, ,i i i iA I G D , , ,j j j jA I G D , where

, , , ,i i i i i iD ID T L V U , , , , ,j j j j j jD ID T L V U . If iID =

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

147
Computer and Information Technologies

jID , we call it ID conflict and denote as (,).IDConf IDi IDj

ID conflict occurs when samples that have the same ID try

to join sample sequences, causing the collect data not be

received normally by the data interface.

Data type conflict: As it cannot transfer impliedly in

data interaction, data type conflict will occur if the data

types of input and output are inconsistent and lead to errors

in data exchange. , ,i i i iA I G D , where

,in out
i i iI I I , , , ,in in in in in in

i i i i i iI P M F J C ,

, , ,out out out out out out
i i i i i iI P M F J C , if in out

i iM M ,

then in out
i iP P , that means out inI I is not established

and makes 0
iAH . We call the data conflict as data type

conflict and denoted as (1, 2)typeConf DType DType .

Data structure conflict: Data structure is a kind of type

set and it is a plurality of attributes including the number

of parameters and data types. DStruct1 and DStruct2 could

be the structure types defined by system or itself, which

represent the output data structure and the input data

structure. If there is an inconsistent type in DStruct1 and

DStruct2, data structure conflict appears. The interface

cannot recognize or accept the data collected.

, ,i i i iA I G D , where ,in out
i i iI I I ,

, , ,in in in in in in
i i i i i iI P M F J C ,

, , ,out out out out out out
i i i i i iI P M F J C , if in out

i iF F , then
in out

i iP P , that means out inI I is not established and

makes 0
iAH . We call it data structure conflict, denoted

as (1, 2)structConf DStruct DStruct .

Data accuracy conflict: Data accuracy will directly

affect the result of data calculation. If the precision of input

data and output data is inconsistent, for example the output

data of sensor is float while the interface needs integer

data, a data conflict generates and the interface cannot get

correct data. , ,i i i iA I G D , where ,in out
i i iI I I ,

, , ,in in in in in in
i i i i i iI P M F J C ,

, , ,out out out out out out
i i i i i iI P M F J C , if in out

i iJ J , then
in out

i iP P , that means out inI I is not established and

makes 0
iAH . We call the data conflict as accuracy

conflict, denoted as (1, 2)AccurConf DAccur DAccur .

Data overflow conflict: In the data exchange process,

sensor collecting data exceeding the defined range of data

interface and generating value range conflict is a kind of

normal phenomenon. For example, the original collecting

data of pressure sensor is 42560 and the data interface is

defined as 0-42559 corresponding to a pressure of 0-1Mpa,

then data conflict occur. , ,i i i iA I G D , where

,in out
i i iI I I , , , ,in in in in in in

i i i i i iI P M F J C ,

, , ,out out out out out out
i i i i i iI P M F J C ,

, , , ,i i i i i iD ID T L V U , if i iV R , then in out
i iP P , that

means out inI I is not established and makes 0
iAH .

We call the data conflict as data overflow conflict, denoted

as (1, 2)rangeConf DRange DRange .

Acquisition space conflict: Due to the spatial and

temporal characteristics of the data collected, sensors can

only collect data in one place at the same time. In a single

round of the data collection process, , ,Ai Ii Gi Di ,

, ,j j j jA I G D , where , , , ,i i i i i iD ID T L V U ,

, , , ,j j j j j jD ID T L V U . If i jL L , we call the data

conflict as acquisition space conflict, denoted as

(1, 2)LocConf Loc Loc .

5 Strategies to resolve data conflict

On basis of formal description, we divide data conflicts

into six categories: ID conflict, data type conflicts, data

structure conflict, data accuracy conflict, data overflow

conflict and acquisition space conflict. Hence, there are

also six strategies to resolve data conflicts, as shown in this

section.

Digestion strategies for ID conflict: When an ID

conflict occurs, rename the sensor according to the naming

rule that the acquisition time goes behind the other sensor,

in order to make the identity different. The implementation

procedures are, first, to determine the identity of the two

sensors. If they are inconsistent, data can be directly

released; otherwise compare the acquisition time of

samples T1 and T2. If T1> T2, then rename ID1 according to

the naming rule; if T1< T2, then rename ID2. The realization

function is: private SensorData ReID(SensorData data1)

Figure 2:

1 public class SensorData
2 {

3 private string _id;

4 public string Id
5 {

6 get { return _id; }

7 set { _id = value; }
8 }

9 private DateTime _measuringTime

10 public DateTime MeasuringTime
11 {

12 get { return _measuringTime; }

13 set { _measuringTime = value; }
14 }

15 }

16 private SensorData ReID(SensorData data1)
17 {

18 int count = 0;

19 SensorData ReSensorData = new SensorData();
20 ReSensorData = data1;

21 foreach (SensorData data in sensorDatas)

22 {
23 if (data.Id.Equals(data1.Id))

24 count++;

25 if (count > 1 && (data.MeasuringTime >
data1.MeasuringTime))

26 ReSensorData = data;

27 }
28 return ReSensorData;

29}

FIGURE 2 The source code of digestion strategies for ID conflict

Digestion Strategies for data type conflict: Converting

the data type of the sensor output to make it convert with

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

148
Computer and Information Technologies

the input of interface. The implementation procedures are,

first, to judge the consistency of output data type DType1

and interface data type DType2. If they are consistent, data

can be directly released; otherwise, it needs to transfer the

type of sensor output data Dtype1 according to the type of

interface data. So that it can meet the constraints of the

interface, like Integer transfer to String or String transfer

to Integer, since the data interfaces are public and can be

realized with middleware, database management systems

and other forms. The realization function is: private

SensorData ReDataType(SensorData data1) Figure 3:

1 public class SensorData

2 {
3 private string _dataType;

4 public string DataType

5 {
6 get { return _dataType; }

7 set { _dataType = value; }

8 }

9 private string _dataValue;

10 public string DataValue

11 {
12 get { return _dataValue; }

13 set { _dataValue = value; }

15 }
16 }

17 private SensorData ReDataType

(SensorData data1)
18 {

19 SensorData ReSensorData = new SensorData();

20 Boolean success = true;
21 try

22 {

23 switch (data1.DataType)
24 {

25 case "int":

26 Convert.ToInt32(data1.DataValue); break;
27 case "float":

28 double.Parse(data1.DataValue); break;

29 case "date":
30 Convert.ToDateTime(data1.DataValue); break;

31 default: break;

32 }
33 }

34 catch

35 {
36 success = false;

37 }

38 if (success)
39 return ReSensorData;

40 else

41 {
42 return chooseOtherDataValue(data1.Id);

43 }
44 }

FIGURE 3 The source code of digestion strategies for data type conflict

Digestion Strategies for data structure conflict:

Converting structure of the sensor output data in order to

make it convert with the structure of interface input data.

The implementation procedures are, first, to compare the

structure of the sensor output data Dstructure1 with the

structure of interface input data Dstructure2; analyse the

consistency of the structures of two samples, including the

number of acquisition parameters, data type and other

attributes. Then transfer Dstructure1 consistent with

Dstructure2 which is not mismatched to make it meet the

constraints of the interface. The realization function is:

private SensorData ReDataStruct(SensorData data1)

Figure 4:

1 public class SensorData
2 {

3 private string _dataStruct;

4 public string DataStruct
5 {

6 get { return _dataStruct; }

7 set { _dataStruct = value; }
8 }

9 private string _address;

10 public string Address
11 {

12 get { return _address; }

13 set { _address = value; }
14 }

15 }

16 private SnsorData ReDataStruct(SensorData data1)
17 {

18 if (!data1.DataStruct.Split('-')[1].Equals("1"))

19 {

20 IList<int> count=new List<int>();

21 foreach (SensorData data in sensorDatas)

22 {
23 string[] numbers = data1.DataStruct.Split('-');

24 if (data.Address.Equals(data1.Address))

25 {
26 count.Add(int.Parse(numbers[0]));

27 }

28 }
29 count.Add(int.Parse(data1.DataStruct.

Split('-')[0]));
30 bool repeat=true;

31 if (count.Count == int.Parse(data1.DataStruct.Split('-')[1]))

32 {
33 for (int i = 0; i < count.Count - 1; i++)

34 {

35 for (int j = 0; j < count.Count - 1; j++)
36 {

37 if (count[i] == count[j] && i != j)

38 repeat = true;
39 }

40 }

41 if(repeat)
42 {

43 return chooseOtherDataValue(data1.Id);

44 }
45 else return data1;

46 }

47 else
48 {

49 return chooseOtherDataValue(data1.Id);

50 }
51 }

52 else

53 return data1;
54 }

FIGURE 4 The source code of digestion strategies for data structure

conflict

Digestion Strategies for data accuracy conflict: The

digestion strategies for data accuracy conflict are to unite

the accuracy of sensor output data and the accuracy of

interface input data with the same constraints. The

implementation procedures are to calibrate DAccuracy1

according to the accuracy of interface DAccuracy2. For

values larger than accuracy, use the rounded method and

for those smaller than accuracy, use the padding method at

the end of zero. The realization function is: private

SensorData ReDataAccuracy(SensorData data1) Figure 5:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

149
Computer and Information Technologies

1 public class SensorData

2 {
3 private string _dataAccuracy;

4 public string DataAccuracy

5 {
6 get { return _dataAccuracy; }

7 set { _dataAccuracy = value; }

8 }
9 private string _dataValue;

10 public string DataValue

11 {
12 get { return _dataValue; }

13 set { _dataValue = value; }

14 }
15 }

16 private SensorData ReDataAccuracy(SensorData data1)

17 {
18 if (data1.DataAccuracy.Equals(""))

19 return data1;

20 else
21 {

22 if (data1.DataAccuracy.Contains('.'))

23 {
24 int accuracy =

25 Convert.ToInt32(data1.

DataAccuracy.Split('.')[0]);
26 if (data1.DataValue.Length <= accuracy)

27 {

28 int accuracy1 = Convert.ToInt32(data1.
DataAccuracy.Split('.')[1]);

29 if (data1.DataValue.Length <= accuracy1)
30 {

31 return data1;

32 }
33 else

34 {

35 return chooseOtherDataValue(data1.Id);
36 }

37 }

38 else
39 {

40 return chooseOtherDataValue(data1.Id);

41 }
42 }

43 else

44 {
45 int accuracy = 31Convert.ToInt32(data1.

DataAccuracy);

46 if (data1.DataValue.Length <= accuracy)
47 {

48 return data1;

49 }
50 else

51 {

52 return chooseOtherDataValue(data1.Id);
53 }

54 }

55 }
56 }

FIGURE 5 The source code of digestion strategies for data accuracy

conflict

Digestion Strategies for data overflow conflict: The

digestion strategies for data overflow conflict are to limit

the value range of input/output DRange1 and DRange2 to

exclude the overflow data. The implementation procedures

are that the value range of input/output is

1 2DRange DRange . If 1 2DRange DRange ∅, the

sample can’t interact with the interface. System alarms to

remind invalid data and the sensor output value range

needs to be defined so that it does not exceed the value

range. The realization function is: private SensorData

ReDataRange(SensorData data1) Figure 6:

1 public class SensorData
2 {

3 private string _dataValue;
4 public string DataValue

5 {

6 get { return _dataValue; }
7 set { _dataValue = value; }

8 }

9 private string _minData;
10 public string MinData

11 {

12 get { return _minData; }
13 set { _minData = value; }

14 }

15 private string _maxData;
16 public string MaxData

17 {

18 get { return _maxData; }

19 set { _maxData = value; }

20 }

21 }
22 private SensorData ReDataRange(SensorData data1)

23 {

24 if (data1.DataType.Equals("int") ||
data1.DataType.Equals("float"))

25 {

26 if (double.Parse(data1.DataValue) >=
double.Parse(data1.MinData) &&

double.Parse(data1.DataValue) <=

double.Parse(data1.MaxData))
27 {

28 return data1;

29 }
30 else

31 {

32 alert();
33 return chooseOtherDataValue(data1.Id);

34 }

35 }
36 else return data1;

37 }

FIGURE 6 The source code of digestion strategies for data overflow
conflict

Digestion Strategies for acquisition space conflict: The

digestion strategies for acquisition space conflict are to

correct the data acquisition location. The implementation

procedures are to determine the type of the sensor when an

acquisition space conflict occurs. If it is a mobile device,

then release the data; For a fixed device, modify the error

collection address according to the device installation table

that records the installation site. Its function is: private

SensorDataReDataLocation (SensorData data1) and

private SensorData chooseOtherDataValue(string id)

Figure 7:

1 public class SensorData
2 {

3 private int _deviceType;

4 public int DeviceType
5 {

6 get { return _deviceType; }

7 set { _deviceType = value; }
8 }

9 private string _location;

10 public string Location
11 {

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

150
Computer and Information Technologies

12 get { return _location; }

13 set { _location = value; }
14 }

15 }

16 private SensorData ReDataLocation
(SensorData data1)

17 {

18 if (data1.DeviceType.Equals(0))
19 {

20 if(data1.Location.Equal

(getLocation(data1.Id)))
21 {

22 return data1;

23 }
24 else

25 {

26 return chooseOtherDataValue(data1.Id);
27 }

28 }

29 else return data1;
30 }

31 private SensorData choose

OtherDataValue(string id)
32 {

33 return new SensorData();

34 }

FIGURE 7 The source code of digestion strategies for acquisition space

conflict

6 Realization of data conflict resolution system

On the basis of the formal description of data conflict and

strategies to solve data conflict, the paper designs the Data

Conflict Resolution System in this section to detect and

solve the data conflict automatically and quickly. DCRS

aims at adopting relevant strategies for each sort of data

conflict to realize the goal of resolving conflicts while at

the same time increasing system stability and reliability. If

the input and output of data interface does not match, the

DCRS calls the conflict resolution to deal with invalid

data. Its framework flow is showed in Figure 8.

FIGURE 8 The framework flow of DCRS

In the framework flow of the DCRS, conflict type

library has six data conflicts and resolution strategies

library has resolution function corresponding to the

conflicts. Firstly, the DCRS detects data conflicts in the

input and output of the interface. If the samples match the

constraints of the interface, the DCRS releases data into

database; otherwise，the DCRS identifies the type of the

data conflict according to the formal description of the

conflict type library, and then calls the appropriate

function to resolve conflicts. After that, the DCRS releases

the data into database.

The DCRS adopts Microsoft. NET platform for

developing and data conflict digestion algorithm uses the

technology of C# language. Visual Studio. NET is

Microsoft's second-generation development tool for

building and deploying powerful and secure software. The

database system of the DCRS uses Oracle 10g, the

relational database management system with features of

large data capacity, persistent storage time, convenient

data sharing, and high reliability. The database system is

used to store the conflict type and dynamic data generated

during the system operation. The main interface of the

DCRS is shown in Figure 9.

FIGURE 9 The main interface of DCRS

There are a variety of criteria to evaluate algorithm

performance, and what kind of standard is adopted is

mainly depended on the system requirements. In the

DCMS real-time is the most important factor, and

therefore the processing time overhead and memory space

overhead can be used to evaluate the performance of the

data conflict resolution algorithm. Processing time

overhead is the time that digestion algorithm takes to

process the data conflict. Transaction will be worthless to

the system if it is completed after the zero-value point and

is a waste of system resources. Memory space overhead is

the memory occupied by the algorithm when it digests the

data conflicts and is used to store the information

generated in the process. Algorithm that is rational

designed should effectively utilize system resources to

process the data conflict without taking up too many

resources. The PC that the DCRS runs on with CPU clock

at 2.5GHz and 4GB memory is used to test the algorithm

performance. The performance test uses one hundred

thousand data collected by the water meters and electric

meters in the DCMCS. There are 181 abnormal data when

Conflict

Types

Library

Resolution

Strategies

Library

The Formal

Description of

Data Conflict

Judge the Type

of Conflict

Adopt Relevant

Resolution Function

Conflict

Resolution Result

Acquisition

Data of

Sensors

Acquisition

Data of

Sensors

iA 1H
Database

iA 0H

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

151
Computer and Information Technologies

the test finishes and it costs 2505ms to resolute data

conflicts. Among the data conflicts, there are 7 ID conflicts

that need 31.5ms to process, 4.5ms for each conflict. There

are 35 data type conflicts that need 318.5ms to process,

9.1ms each. There are 28 data structure conflicts that need

336ms to process, 12ms each. There are 53 data accuracy

conflicts that need 726.1ms to process, 13.7ms each. There

are 46 data overflow conflicts that need 230ms to process,

5ms each. There are 12 acquisition space conflict that need

75.6ms to process, 5.3ms each. The processing time

overhead for the six types of conflict digestion algorithm

is showed in Figure 10.

FIGURE 10 The processing time overhead for the six types of conflict

digestion algorithm

The memory space overhead for the six types of

conflict digestion algorithm is shown in Figure 11. It can

be seen from the test that the digestion algorithm can meet

the real-time data processing system requirements.

FIGURE 11 The memory space overhead for the six types of conflict

digestion algorithm

7 Conclusions

In the DCMCS, there are data conflicts caused by a lack of

uniform standards for interaction between the device of

IOT and the upper data interface. To address this problem,

the paper analyses formal description of data conflict,

proposes strategies to resolve conflict, designs resolution

flow and exploits the DCRS. The solutions have been

successfully verified in the DCMCS, realizing

intellectualized resolution of data conflict and providing

technical support and insightful guarantee for data

interaction.

Acknowledgment

Fund project: the army logistics key scientific research

program funded projects of PLA(BS211R099).

References

[1] Hu Y L, Sun Y F, Yin B C 2012 Information sensing and interaction

technology in Internet of Thing China Journal of Computers 35(6)

1147-63 (in Chinese)
[2] Tsiftes N, Dunkels A 2011 A database in every sensor Proceedings

of the 9th ACM Conference on Embedded Networked Sensor
Systems Seattle USA 316-29

[3] Chen X, He X, Guo H, Wang Y 2011 Design and Evaluation of an

Online Anomaly Detector for Distributed Storage Systems Journal
of Software 6(12) 2379-90 (in Chinese)

[4] Madden S, Franklin M J, Hellerstein J M, Hong W, Tiny 2005 DB:

An acquisitional query processing system for sensor networks ACM
Transactions on Database Systems 30(1) 122-73

[5] Gurgen L, Roncancio C, Labbé C 2008 SStreaMWare: A service

oriented middleware for heterogeneous sensor data management
Proceedings of the 5th International Conference on Pervasive

Services (ICPS'08) Sorrento Italy 121-30

[6] Kim M, Lee J W, Ryou J C 2008 COSMOS: A middleware for
integrated data processing over heterogeneous sensor networks.

ETRI Journal, 30(5) 696-706

[7] Chang F, Dean J, Ghemawat S 2006 Bigtable: A distributed storage
system for structured data Proceedings of the 7th Symposium on

Operating Systems Design and Implementation (OSDI'06) Seattle

USA 205-8

[8] DeCandia G, Hastorun D, Jampani M 2007 Dynamo: Amazon's
highly available key-value store Proceedings of the 21st ACM

Symposium on Operating Systems Principles (SOSP'2007)
Washington USA 205-20

[9] Carstoiu D, Lepadatu E, Gaspar M 2010 Hbase: Non SQL database,

performances evaluation International Journal of Advancements in
Computing Technology 12(5) 42-52

[10] Zhou Y, Zhu Q, Zhang Y 2011 Spatial Data Dynamic Balancing

Distribution Method Based on the Minimum Spatial Proximity for
Parallel Spatial Database Journal of Software 6(7) 1337-44

[11] Poess M, Nambiar R O 2005 Large scale data warehouses on grid:

Oracle database 10g and HP proLiant systems Proceedings of the
31st International Conference on Very Large Data Bases

(VLDB'2005) Trondheim Norway 1055-66

[12] Zhang W S, Cao G H. 2004 IEEE Transactions on Wireless
Communication 3(5) 1689-701

[13] Chen H F, Mineno H, Mizuno T 20080 Adaptive data aggregation

scheme in clustered wireless sensor networks Computer
Communications 31(15) 3579-8

http://www.academypublisher.com/jsw/
http://ojs.academypublisher.com/index.php/jsw/issue/view/275

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(9) 145-152 Li Xingchen, Li Shenglin, Zhang Heng, Cai Hui

152
Computer and Information Technologies

Authors

Xingchen Li, born in 1986, Sichuan, China

Current position, grades: Ph.D student of the Department of Information Engineering, Logistical Engineering University of P.L.A.
University studies: B.S. and M.S. degrees from Logistical Engineering University of P.L.A in 2008 and 2011 respectively.
Scientific interest: data processing and decision support system.

Shenglin Li, born in 1964, Sichuan, China

Current position, grades: professor of the Department of Information Engineering, Logistical Engineering University of P.L.A.
University studies: Ph.D. degree in Logistical Engineering University of P.L.A China, in 2008.
Scientific interest: information management engineering and cloud computing.

Heng Zhang, born in 1981, Chongqing, China

Current position, grades: lecturer of the Department of Information Engineering, Logistical Engineering University of P.L.
University studies: B.S. and M.S. degrees from Logistical Engineering University of P.L.A in 2004 and 2008 respectively.
Scientific interest: knowledge engineering, modelling and control of complex systems.

Hui Cai, born in 1982, Chongqing, China

Current position, grades: Ph.D. student of the Department of Information Engineering, Logistical Engineering University of P.L.
University studies: M.S. degrees from Logistical Engineering University of P.L.A in 2010.
Scientific interest: knowledge engineering, modelling and control of complex systems.

