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Abstract 

How does traffic processes in weighted networks impact on the dynamics of epidemic spreading have attracted increasing attention. 

It is of great importance to reduce the epidemic spreading velocity and increase the critical epidemic threshold of those real world 

networks. In this paper, the traffic driven epidemic spreading behaviour in BBV weighted networks is investigated. Formulas to 

describe the infected density and the epidemic threshold of weighted networks are derived and validated by simulations. The infected 

density and the epidemic threshold are found to undergo a corresponding change when packets are forwarded through different routes 

according to the different tuneable parameter. By simulations, the optimal route is explored which is better to control the epidemic 
spreading. 
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1 Introduction 

 

Since the seminal study of small-world networks by 

Watts and Strogatz [1] and on scale-free networks by 

Barabási and Albert [2], the complex networks have 

attracted the dramatically increasing interest in the past 

few years. A great deal of real networks can be viewed as 

complex networks while nodes representing individuals 

and edges representing the relationships between them. 

The previous studies on networks have been principally 

focused on those unweighted networks, edges between 

nodes are either present or not, represented as binary 

states. However, lots of social, biological, and 

communication systems such as the mobile networks [3], 

the scientific collaboration networks [4], the cellular 

metabolism [5], the world-wide airport network [6] and 

the Internet [7] have presented that real networks are 

specified not only by their topology but also by the 

weight of the edges. Lots of models [8-15] have been 

presented to describe those weighted networks, among 

which the BBV model [12], take into account the coupled 

dynamical evolution of topology and weights, is the most 

widely used. 

The past decade has witnessed lots of large-scale 

international epidemics among human, animal, and plant 

which caused an enormous amount of damage or loss. 

Those disease outbreaks in real systems can be viewed as 

epidemic spreading on complex networks while 

individuals are modelled as nodes and possible contacts 

between individuals are connected by edges. It is of great 

significance to inspect how to control the epidemic 

spreading taking place in complex networks. Many 

models have been proposed to investigate the feature of 

epidemic spreading such as SIS [16, 17], SIR [18], and SI 

[17, 19, 20] models. In these models, a node is classified 

in three states: susceptible (which will not infect others 

but may be infected), infected (which is infective) and 

recovered (which has recovered from the disease and has 

immunity). The propagation of epidemic from one node 

to another is assumed to be a reaction process, that is, an 

infected node can infect any of its neighbourhood nodes 

with a fixed probability ν at each time step and the 

recovering rate of infected ones is ψ. Hence the effective 

spreading rate λ is defined as λ=ν/ψ. Without lack of 

generality, ψ is set to 1, since it only affects at the 

definition of the time scale. 

Recently, it was found that a susceptible node is more 

likely to be infected if it receives more packets from 

infected neighbours [21]. And in many real systems, 

propagation of the epidemic will not occur unless there is 

a packet interaction on the network that can physically 

transfer the epidemic from one node to another. The 

probability that the epidemic spreads from infected to 

susceptible nodes mainly depends on the traffic flow. A 

novel approach, which called traffic driven epidemic 

spreading is introduced to investigate the outcome of the 

epidemic spreading process driven by traffic flow [21-

24]. However, these studies are focused on unweighted 

networks, the important issue of how the traffic-driven 

epidemic spreads in weighted networks has not been 

considered. 

In this paper, we probe the traffic driven epidemic 

spreading behaviour in BBV weighted networks to obtain 

the formulas of the infected density and the epidemic 
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threshold of weighted networks. While the packets are 

specified to transfer through the path based on the weight 

of the edges with a tuneable parameter α, the optimal 

route is explored which is better to control the epidemic 

spreading by simulations. 

This paper is organized as follows. In section 2 we 

describe the models and the formulas, followed by the 

experimental evaluations on BBV weighted networks and 

real world network in section 3. The conclusions are 

given in section 4. 

 

2 Models 

 

2.1 NETWORK MODEL 

 

In BBV weighted networks, the topological as well as 

weighted properties can be described by a weighted 

adjacency matrix W, whose elements wij denote the 

weight of the edge between node i and j. The generation 

of BBV weighted networks is based on two coupled 

mechanisms:[6, 11] 

(i) Growth. Starting from an initial number of N0 

nodes fully connected by edges with assigned weight w0, 

a new node will be added at each time step. The newly 

added node is connected to m different previously 

existing nodes with equal weight w0 for every edge and 

chooses preferentially nodes with large strength 

according to the probability i l

ln i

s s


  , where si is the 

node strength described as i ij

j

s w . 

(ii) Weight dynamics. The weight of each newly 

added edge is initially set to a given value w0 which is 

often set to 1 for simplicity. But the adding of edge 

connecting to node i will result in increasing the weight 

of the other edges linked to node i which is proportional 

to the edge weights. If the total increase is δ (we will 

focus on the simplest form: δi=δ), we can get 

ij

ij ij ij ij

i

w
w w w w

s
     . (1) 

This will yield the strength increase of node i as: 

0i is s w   . (2) 

The degree distribution of BBV network ( ) kP k k


  

and the strength distribution ( ) sP s s


  yield scale-free 

properties with the same exponent [6, 11, 12, 14]: 

4 3 1
2

2 1 2 1
k s


 

 


   

 
. (3) 

 

2.2 TRAFFIC MODEL 

 

Our traffic model can be described as follows: 

1) All the nodes can create packets with addresses of 

destination, receive packets from other nodes, and 

forward packets to their destinations. 

2) At each time step t, an information packet is 

generated at every node with probability β with randomly 

chosen sources and destinations. 

3) At each time step t, each node forwards all packets 

in its queue one step according to the specified route at 

the same time. In our model, each node has unbounded 

packet delivery capability for simplicity which means 

traffic congestion will not occur. 

4) A packet, upon reaching its destination, is removed 

from the system. 

Denote 
i jP

 as the path between node i and j, which 

pass through the nodes sequence 

0 1 2 1( ), , , , , ( ),n nx i x x x x j   we define 

1

0

( , )
n

i j ij

i

F P w 






 . (4) 

In our routing strategy, we specify the route between i 

and j as the one makes ( , )i jF P 
 minimum under a 

tunable parameter α. When α is 0, the specified route is 

the same as the traditional the shortest path route [25]. 

 

2.3 EPIDEMIC MODEL 

 

While investigating the dynamical behaviours in the very 

early stage of epidemic outbreaks, this case corresponds 

to the simplified SI [20] model, for which infected nodes 

remain always infective and spread the infection to 

susceptible neighbours with spreading rate λ. 

With the average density of infected nodes of degree k 

defined as ik (t), in BBV weighted networks we have 

 
    * * * * 1 *

k

k k

di t
n b i t t

dt
    . (5) 

The right-hand side takes into account the probability 

that a node with k neighbours belongs to the susceptible 

class represented by (1-ik(t)) and gets the infection via 

packets travelling from infected nodes. The latter process 

is determined by the spreading probability λ, the number 

of packets that a node of degree k receives at each time 

step β*n*bk (n is the node number and bk is the so-called 

algorithmic betweenness [26]), and the probability ( )t  

that a packet travels through a link pointing to an infected 

node. 

Assume that the network is uncorrelated, ( )t  takes 

the form 

 
   

 

   k k k k

k k

k

k

b P k i t b P k i t

t
bb P k

  
 

 


. (6) 
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When the epidemic begins spreading, the density of 

infected nodes ik(t) is very small. With the initial 

condition 
0 0( )ti t i  , we gain 



















 1)1()(

2

2

0


t

e
b

b
iti . (7) 

And the epidemic outbreaks time scale of the BBV 

networks is 

)***/( 2  bnb  . (8) 

The classical SIR [18] model, which is often used for 

these in which the infected nodes will get recovered and 

will not return to the susceptible state again, and thus 

nodes run stochastically through the cycle susceptible → 

infected → recovered. It is generally used to study 

epidemics leading to endemic states with a stationary 

average density of infected nodes. With the effective 

spreading rate is defined as λ (which means the 

recovering rate ψ=1), we can obtain 


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



)(
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)(*)(*
)(

ti
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ttsbnti
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tdi

ttsbn
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tds

k
k

kkk
k

kk
k





. (9) 

In the second row of formula (9), -ik(t) means the 

infected nodes are recovered with ψ=1 and sk(t) means 

the average density of susceptible nodes of degree k 

which is replaced by (1-ik(t)) in formula (5). rk(t) means 

the average density of recovered nodes of degree k. The 

other symbols in formula (9) have the same meaning as in 

formula (5). 

By imposing dik(t)/dt=0 and ( ) ( ) ( ) 1k k ks t i t r t   , 

we get 






****1

****
)(

k

k
k

bn

bn
ti


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. (10) 

Substituting formula (6) into formula (10), we get 










k

k

k k

k

kPb

nb

nkPb

)(*

****1

****)(*
2





. (11) 

The value Θ = 0 is always a solution. In order to have 

a non-zero solution, the condition must be filled. 

2

0

* ( )* * * *
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1

* ( )

k
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k

k
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Therefore,  

2

0
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1 * * * *
1

k
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b P k nd

d b n

b

 
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
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1***)(**
1 2





k

k nkPb
b

 , (14) 

1****
1 2 


nb
b

 . (15) 

We can obtain the epidemic threshold of traffic driven 

SIR epidemic model in BBV weighted networks: 

nb

b
c

**2 





 . (16) 

 

3 Simulations and analysis 

 

In figure 1, we plot the infected density i(t) versus time t 

with different parameter α in a BBV weighted network 

with n=1000, δ=6, m=6 and ω0=1. (For every network, 20 

instances are generated and for each instance, we run 20 

simulations. The results are the average over all the 

simulations.) 
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FIGURE 1 i(t) VS t. BBV network with λ=0.01, β=1, n=1000, δ=6, m=6 

and ω0=1 

From figure 1, we can discover that the infected 

density i(t) varies with the tuneable parameter α. Figure 1 

shows that when the parameter t is the same, the infected 

density i(t) is the smallest in the case that the packets are 

forwarded through the route path with tuneable parameter 
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α=0, which means the velocity of epidemic spreading is 

the lowest. 

Then we check the impact of the spreading rate λ and 

the packet generation rate β on the infected density. 

Simulation results are shown in figure 2. 
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FIGURE 2 i(t) VS t. BBV network with n=1000, δ=6, m=6 and ω0=1. 

(a) λ=0.02, β=1 (b) λ=0.01, β=2 

As is shown in figure 2(a), when the spreading rate λ 

is doubled, the velocity of epidemic spreading is 

increased correspondingly which means the spreading 

velocity is apparently related to the characteristics of 

epidemic. In figure 2(b), the packet generation rate β is 

doubled which means there are more packets and more 

traffic flow in the network, the spreading velocity is 

greater consequently. Compare figure 2(a) with figure 

2(b), we can obtain that in a given network, when the 

product of the spreading rate and the packet generation 

rate is fixed, the velocity of epidemic spreading is almost 

constant. The accuracy of the formula (7) is proved to be 

correct. 

Then we check the impact of the BBV parameter δ on 

the velocity of epidemic spreading. We set δ=3 and 12 to 

obtain different simulation results in figure 3. 
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FIGURE 3 i(t) VS t. BBV network with λ=0.01, β=1, n=1000, m=6 and 

ω0=1. (a) δ=3 (b) δ=12 

From figure 3(a) and 3(b), we can figure that even 

though the BBV parameter δ is changed, the velocity of 

epidemic spreading with α=0 is the slowest. And the 

BBV parameter δ will have a great influence on the 

velocity of epidemic spreading. 

Then we check the influence of the newly added edge 

number m and the total node number n. Simulation results 

are shown in figure 4. 

From figure 4, we can come to the conclusion that 

both the newly added edge number m and the total node 

number n have a certain effect on the velocity of 

epidemic spreading. And the velocity of epidemic 

spreading with α=0 is also the slowest. 
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FIGURE 4 i(t) VS t. BBV network with λ=0.01, β=1, δ=6 and ω0=1. (a) n=1000, m=3 (b) n=2000, m=6 
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Then we extend to the SIR model. 20% of nodes are 

infected in the initial status and the spreading rate is 

increased step by step to check the infected density i(t) of 

the endemic state. 
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=0.055 to 0.065 step 0.001
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FIGURE 5 i(t) VS t. BBV network with β=1, n=1000, δ=6, m=6 and ω0=1. The results denote different spreading rate λ (from bottom to top) 

as labelled in the figures. (a) α=-1 (b) α=0 (c) α=1(d) α=0.2 

Figure 5(a), 5(b), 5(c) and 5(d) exhibit the epidemic 

threshold λc of a BBV weighted network under differ 

route paths. In figure 5(a), when the spreading rate λ is 

lower than 0.052, the infected nodes disappear gradually. 

And while it is up to 0.053, the infections can proliferate 

on the network. It is in good agreement with analytical 

finding of the formula (16), λc=0.0521. 

And the predication of formula (16) for α=0, α=1 and 

α=0.2 is 0.1220, 0.0608 and 0.1877 consequently. One 

can see clearly from figure 5(b), 5(c) and 5(d) that the 

simulation results also agree very well with the analytic 

results. 

To explore the exact optimal value of the tuneable 

parameter α, which can produce the largest epidemic 

threshold, we enlarge the tuneable parameter α step by 

step to achieve the corresponding epidemic threshold. 

Figure 6 demonstrates that the epidemic threshold 

varies with the tuneable parameter, that is to say, the 

different route path. Moreover, the epidemic threshold 

reaches the peak when α is around 0.2. It means it is the 

most effective way to restrain the traffic driven epidemic 

spreading when the packets are forwarded through the 

route path specified by α=0.2. 

To find the influence of the packet generation rate β 

on the epidemic threshold, we change β from 1 to 2 to get 

the simulation result as presented in figure 7. 
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FIGURE 6 λc VS α. BBV network with β=1, n=1000, δ=6, m=6 and 

ω0=1 
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FIGURE 7 λc VS α. BBV network with β=2, n=1000, δ=6, m=6 and 

ω0=1 
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FIGURE 8 λc VS α. BBV network with β=1, n=1000 and ω0=1. (a) m=6 

(b) δ=6 

When the packet generation rate is doubled, the 

epidemic threshold decreases by almost half which also 

agree well with the formula (16). The epidemic threshold 

also reaches the maximum value when α is around 0.2. 

Then we investigate how the BBV parameter δ, the 

newly added edge number m, the total node number n and 

the assigned weight w0 affect the epidemic threshold. The 

simulation results are depicted in figure 8 and figure 9. 

As shown in figure 8(a), the highest epidemic 

threshold is achieved at different tuneable parameter α 

because of different parameter δ. The smaller the 

parameter δ is, the flatter the curve of the epidemic 

threshold is. Actually, when δ is set to 0, it is an 

unweighted network where the epidemic threshold is 

fixed no matter how the tuneable parameter α changes. 

From formula (3) we can discover that both the degree 

distribution and the strength distribution of BBV network 

depend on the parameter δ. When the parameter δ is 

increased, the distributions become broader which result 

the maximum value of the epidemic threshold is obtained 

at different tuneable parameter α. 
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FIGURE 9 λc VS α. BBV network with β=1, δ=6 and m=6. (a) ω0=1 (b) n=1000 

From figure 8(b) and figure 9(a), we can notice that 

the newly added edge number m and the total node 

number n have a little effect on the impact of tuneable 

parameter α on the epidemic threshold. They only affect 

the absolute value of the epidemic threshold. As shown in 

figure 9(b), the assigned weight w0 also affect the 

tuneable parameter α to obtain the highest epidemic 

threshold. As presented in formula (2), when w0 is 

considerably high, the minor variation of the parameter δ 

may be passed over. In other words, all edges have 

almost the same weight. The smaller the parameter δ is, 

the flatter the curve of the epidemic threshold is. 

Actually, when δ is set to 0, it is an unweighted network 

where the epidemic threshold is fixed no matter how the 

tuneable parameter α changes. 

Finally, we choose the scientific collaboration 

network [27] which has a giant component of 5835 nodes 

to check whether our conclusions are tenable in real 

world network. Simulation result is shown in figure 10. 
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FIGURE 10 λc VS α. Real world network 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 179-185 Shao Fei, Cheng Binghua 

185 
 

From figure 10 we can discover that the epidemic 

threshold also varies with the tuneable parameter in the 

scientific collaboration network which has the maximum 

epidemic threshold when the tuneable parameter α is near 

0.2. It means our conclusions also work well in the real 

world network. 

 

4 Conclusions 

 

Considering the traffic driven epidemic spreading 

behaviour in BBV weighted networks, this paper has 

deduced the formulas to describe the infected density and 

the epidemic threshold of BBV weighted networks. The 

infected density and the epidemic threshold of BBV 

weighted networks are found to be proportional to the 

ratio between the first and the second moments of the 

node betweenness distribution as well as the scale free 

networks. The validity of the presented formulas is 

demonstrated by simulations. The infected density and 

the epidemic threshold vary accordingly when packets are 

forwarded through different routes according to the 

tuneable parameter. In most cases, the epidemic threshold 

reaches the maximum when the optimal value of the 

tuneable parameter is 0.2. It is worth mentioning that in 

some weighted networks the optimal values fluctuate 

around the mentioned value. At last, we use the scientific 

collaboration network to show the validity of our 

conclusions on real world networks. 
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