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Abstract 

An incomplete information table (a set) can be expressed as a family of complete information tables (sets). The family of complete 

information sets maybe constructs an interval set. A concept in incomplete information situation, called partially known concept, is 

said to be definable if its extension can be expressed as an interval set. The new definition of definability proposed in this paper, named 

interval definable, is different from its usual meaning in the rough sets theory where a concept is definable means that its extension is 

a definable set, which is the union of some equivalence classes. The new definition of definability not only provides a new interpretation 
of interval sets, but also endows more general meaning and deeper understanding of definability. 
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1 Introduction 

 

Definability, in rough sets theory [1, 2], is an important 

notion. In many studies, the notion of definability is 

introduced in two ways through equivalence classes and 

approximations [3], respectively. In general, definability 

and approximation can be defined each other. A set is said 

to be definable if it is the union of some equivalence 

classes. Alternatively, some authors considered the 

definability of a set based on its approximations. A set is 

said to be definable if its lower and upper approximations 

are equal [2, 4-7]. The two definitions of definability are 

equivalent. Yao [3] has investigated explicitly the notion 

of definability in the framework of rough sets theory and 

given a new interpretation. In the above mentioned studies, 

for an incomplete information table, the subsets of the 

incomplete information table are usually indefinable. In 

order to describe these subsets, many new theories are 

introduced such as rough sets theory, interval sets theory 

[8-10], etc. Interval sets, as a new set theory introduced, is 

used to describe partially known concept. In practice, 

partially known concept can be described by incomplete 

information table. By Lipski's model [11, 12], an 

incomplete information table can be expressed as a family 

of complete tables. This means that a subset of an 

incomplete information table can be expressed as a family 

of sets, which are the subsets of those complete tables, 

respectively. A family of sets maybe constructs an interval 

set. From this point of view, the notion of definability can 

be defined in a different way, namely, if an incomplete 

information table can be expressed as an interval set, then 

the information table is definable. As a more primitive 

notion, this paper not only provides a different viewpoint 

with the interpretation of interval sets, but also endows 

more general meaning and deeper understanding the 

notion of definability. 
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The rest of this paper is organized as follows. In section 

2, definability of concept in complete information is 

examined. The notion of meaning triangle [13] is 

introduced to interpret the relation between the intension 

and the extension of a concept. A logic language, which is 

used by Pawlak [2], is adopted for the representation of the 

intension of a concept. In section 3, a new definition of 

definability is given. A sub-language of the above 

mentioned logic language is defined to describe the 

incomplete information. Based on the logic language, a 

constructive method of interval sets is introduced, and it is 

proved that an incomplete information table can be 

expressed as an interval set, namely, is definable in sense 

of new definition of definability. Finally, some concluding 

remarks are given. 

 

2 Definability of concept in complete information 

 

In the classical view, every concept is understood as a unit 

of thought that consists of two parts, namely, the intension 

and the extension of the concept [14, 15]. The intension of 

a concept specifies the necessary and sufficient conditions 

for a thing being a member of a specific set. The extension 

of a concept is a list naming every object that is a member 

of a specific set. The name, intension, and extension of a 

concept, as three vertexes, construct a triangle just like 

meaning triangle proposed by Ogden and Richards [13]. 

The classical view of concepts enables us to study concepts 

in a logic setting in terms of intension and also in a set-

theoretic setting in terms of extension [16]. In a logic 

language, the intension of a concept can be denoted by a 

logic formula, and the extension is a set corresponding 

with the logic formula. By logic language, we can describe 

an information table and study the representation, 

interpretation and processing of information. 
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Definition 1 Let U be a finite and nonempty set, called 

the universe, an information table T can be expressed as a 

quadruple: 

( , ,{ | },{ | })a aT U AT V a AT f a AT   , (1) 

where AT is a finite set of attributes, aV  is a nonempty set 

of values for an attribute a AT , and :a af U V  is an 

information or a description function. It is assumed that the 

mapping 
af  is single-valued. In this case, an information 

table is called complete information table. 

One can define a logic language to express the 

intension of a concept as a equation of the language. We 

adopt the decision logic language L used and studied by 

Pawlak [2]. Equations of L are recursively constructed 

based on a set of atomic equations corresponding to some 

basic concepts. 

(i) a v  is an atomic equation, where a AT , 

.av V  

(ii) If p  and q  are equations in L, respectively, then 

, ,p p q p q    are also equations in L. 

Given an information table ( , , , )a aT U AT V f , 

( )af x v , written as ( )p a v  , is an equation. If object 

x U  satisfies p , then it can be denoted by |x p . For 

two equations p  and q , the semantics of the logic 

language can be defined as follows: 

(i) |x p , iif ( )af x v ; (ii) |x p q  , iff |x p  and 

|x q ; (iii) |x p q  , iff |x p  or |x q ; (iv) |x p  , 

iff not |x p ; (v) |x p q  , iff |x p   and |x q ; (vi) 

|x p q  , iff |x p q   and |x q p  . 

Definition 2: let p  be an equation of L. With respect 

to an information table ( , , , )a aT U AT V f , the set of all 

the objects that satisfy the equation p , denoted by ( )m p , 

is called meaning set of the logic equation. 

The meaning set of an equation is a subset of U , and 

can be denoted as follows: 

( ) { | | }m p x U x p   . (2) 

The meaning set ( )m p  includes all objects expressed 

by the formula p . From the point of view of concept, p  

represents the intension of a concept, and ( )m p  represents 

the extension of a concept. Thus, a pair ( , ( ))p m p  

represents a concept. Obviously, the following proposition 

holds [16]. 

Proposition 1: Let p  and q  be two atomic formulas 

of the logic language L in a complete information table, the 

logic connectives and set-theoretic operators can be 

expressed by each other as follows: 

(i) ( ) ( );

(ii) ( ) ( ) ( );

(iii) ( ) ( ) ( );

(iv) ( ) ( ) ( );

(v) ( ) ( ) ( ).

m p U m p

m p q m p m q

m p q m p m q

m p q m p m q

m p q m p q m q p

  

 

 

  

   

 (3) 

With the introduction of language L, we can discuss the 

definability of sets with a formal description of concepts. 

Definition 3 Let ( , , , )a aT U AT V f  be an information 

table. A subset of X U , representing the extension of a 

concept, is called a definable set if and only if there is a 

formula p  of L such that: 

( )X m p . (4) 

Otherwise, it is indefinable. 

A definable set is something that can be described 

precisely by using the properties of definable set. 

Definition 4 Let ( , , , )a aT U AT V f  be an information 

table. 2U
 is the power set of U . p  is a formula of L. The 

set, consisted of all definable sets, is called the systems of 

definable sets. It can be denoted by: 

( , ) { 2 | ( ), }UDEF U L X X m p p L    . (5) 

A concept, the pair ( , ( ))p m p  in an information table 

T , where p L , is definable if its extension ( )m p  is 

definable. Table 1 is an example of a complete information 

table. 

 
TABLE 1 An complete information table 

 a1 a2 

x1 0 0 

x2 0 0 

x3 1 1 

x4 0 1 

The example of logic equations and their meaning sets 

can be computed as follows: 

1 1 2 4( 0) { , , }m a x x x  , 

2 1 2( 0) { , }m a x x  ; 

1 2 1 2 1 2(( 0) ( 0)) ( 0) ( 0) { , }m a a m a m a x x       . 

 

3 Definability of concept in incomplete information 

 

3.1 INCOMPLETE INFORMATION TABLE 

 

For various reasons, the information contained in an 

information table is usually incomplete. There are many 

situations about incomplete information, but in our 

discussion, incompleteness means that instead of having a 

single value of an attribute, we have a subset of the 

attribute domain, which represents our knowledge that the 

actual value, though unknown, is one of the values in this 

subset [11]. This extends the idea of Codd's null value [17], 
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corresponding to the case where this subset is the whole 

attribute domain. Mathematically, an incomplete 

information table can be defined as follows. 

Definition 5 Let ( , , , )a aT U AT V f  be an information 

table. If each object x U  is mapped into a nonempty 

subset of 
aV  such that ( )a aF x V   , where :aF U   

2 { }aV
  , then the information table is called incomplete 

information table. 

An example of incomplete information table is given 

as follows: 
 

TABLE 2 An incomplete information table 

 a1 a2 

x1 {0} {0} 

x2 {0} {1} 

x3 {0,1} {1} 

x4 {1,2} {1} 

 

3.2 REPRESENTATION OF INCOMPLETE 

INFORMATION 
 

For an incomplete information table, Lipski proposed a 

reasonable semantic interpretation that an incomplete 

information table can be represented by multiple complete 

information tables, namely, an incomplete information 

table is equivalent to a family of complete information 

tables.  

Definition 6: Let ( , ,{ | },aT U AT V a AT    

{ | })af a AT   be a complete information table and 

( , ,{ | },{ | })a aT U AT V a AT F a AT   , be an incomplete 

information table. For each x U , a AT , if ( )af x  has 

single element and ( ) ( )a af x F x  , then we say that 
1T  is 

a completion of T . The set, consisted of all the 

completions of an incomplete information table T , is 

equivalent to the information table T , written as: 

( ) { | }CT T T T is a completion of T  . (6) 

All the completions of Table 2 are listed in Table 3. 

 
TABLE 3 Completions of incomplete information TABLE 2 

T1 T2 T3 T4 

 a1 a2  a1 a2  a1 a2 a2 a1 a2 

x1 0 0 x1 0 0 x1 0 0 x1 0 0 

x2 0 0 x2 0 0 x2 0 0 x2 0 0 
x3 0 0 x3 0 1 x3 1 1 x3 1 1 

x4 1 1 x4 2 0 x4 1 1 x4 2 1 

 

According to Lipski's model, we can solve many 

problems about incomplete information table by solving 

those problems in the family of complete information 

tables. 

 

3.3 DEFINABILITY OF CONCEPT IN INCOMPLETE 

INFORMATION 

 

Given an equation p  of L, there is a semantic 

interpretation about p  in each completion of an 

incomplete information table. In the family of semantic 

interpretations about p , there are two sets can well define 

the semantic of the given formula which is called lower 

bound and upper bound, respectively. 

*
( )

*

( )

{ | ( ), }

{ | ( ), }

T T

T CT T

T T

T CT T

p x U T CT T x p p

p x U T CT T x p p

 



 



     

     
, (7) 

where 
T

p

 denotes the set of semantic of the formula p  

in complete information table T  . Apparently, for 

arbitrary formula p  of L, 
*

*
p p  always holds. 

According to the definition of interval sets [8], it can be 

proved that 
*

*
,p p  construct an interval set, written as:  

* *

* *
[ , ] { | }p p A U p A p    . (8) 

Formally, the semantic interval set of an atomic 

formula a v  of L in an incomplete information table can 

be computed as follows: 

*

*

{ | ( ) { }};

{ | ( )}

a

a

a v x U F x v

a v x U v F x

   

   
. (9) 

For complicate logic formula, semantic interval sets 

have the properties as follows: 

Theorem 1 Let p and q be two atomic formulas of the 

logic language L in an incomplete information table, the 

following equations hold. 

* * *

* * *

* * *

* * *

;

;

;

.

p q p q

p q p q

p q p q

p q p q

 

 

 

 

 (10) 

Proof: we only prove 
* * *

p q p q  . Suppose 

1 1( )p a v   and 
2 2( )q a v  . First, we prove 

*
p q 

* *
p q . Suppose 

*
x p q  , this means x 

satisfies formulas p and q at the same time. According to 

Equation (9), 
1 1{ | ( ) { }}ax x U F x v    and 

2 2{ | ( ) { }}ax x U F x v    hold. Thus we have 
*

x p  

and 
*

x q , namely 
* *

x p q . Therefore,

* * *
p q p q  . Secondly, we prove 

*
p q  

* *
p q . Suppose 

* *
x p q , namely 

*
x p  

and
*

x q . According to Equation (9), we have 

{ |,x x U   
1 1( ) { }}aF x v  and 

2 2{ | ( ) { }}.ax x U F x v    This means 

1 21 2{ | ( ) { } ( ) { }},a ax x U F x v F x v      i.e., 
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*
x p q  . Then we have 

* * *
p q p q  . 

Therefore, 
*

p q 
* *

p q . 

The properties above mentioned show that the 

operations of semantic interval sets may be used to 

interpret the logic operations. But the properties given in 

Theorem 1 cannot work directly for the task because there 

is inequality sign (inclusion). The existence of equality is 

due to that the atomic formulas involved in the 

complicated formula have the same attributes. For 

example, if 
1( 0)p a  , 

1( 1)q a  , 

1 1(( 0) ( 1))p q a a      then in Table 2, the semantic set 

of these formulas can be computed as follows: 

1 1 2 1* * * *
0 { , }, 1 ,p a x x q a       

1 1 1 2 3* *
0 1 { , , }p q a a x x x      . So, we can 

get 
* * *

p q p q  , where the equation 
* *

p q

can be interpreted as “known to be 
1 0a   or known to be 

1 1a  ”, but the equation 
*

p q  is interpreted as “known 

to be 
1 0a   or 1”. If we assume that p  and q  have no 

common attributes, then the formulas of Theorem 1 would 

be all equations. Therefore, we can define a type of logic 

language 
0L , which is a subset of L, investigated by Lipski 

[11], as the description language of incomplete 

information. 

(i) a v  is an atomic equation, where a AT , 

.av V  

(ii) If p  and q  are equations in 
0L , respectively, so as 

,p q p q   are also equations in 
0L . 

Definition 7: Let ( , ,{ | },aT U AT V a AT   

{ | })aF a AT  be an incomplete information table, p  be 

a formula of 
0L . For X U , we say that X  is interval-

definable if there is an interval set ( )M p  such that: 

( )X M p , (11) 

where
*

*( ) [ ( ), ( )]M p m p m p , 

* *

**
( ), ( )p m p p m p  . 

A concept in incomplete information is interval-

definable if its extension is an interval-definable set, 

written as ( , ( ))p M p . p  is the description formula 

corresponding with the interval set ( )M p . For a concept 

( , ( ))p M p , if 
* *

**
( ) ( )p m p p m p   , then the 

concept is a precise concept, and the definability of the 

concept is same as usual definition. It means that the 

information about this concept is complete. All the 

interval-definable concepts construct a family, which is a 

family of interval-definable sets in an incomplete 

information table, or the universe U . We can give the 

following definition to describe this sets family. 

Definition 8: Let ( , ,{ | },aT U AT V a AT   

{ | })aF a AT  be an incomplete information table. 2U
 is 

the power set of U . p  is a formula of 
0L . The set, 

consisted of all interval-definable sets, is called the 

interval-definable concept system. It can be denoted by: 

0 0( , ) { 2 | ( ), }UIDEF U L X X M p p L    . (12) 

Two concepts included in the interval-definable 

concept system, which are inequality, include different 

information, or they have different uncertainty. In order to 

study the properties of interval-definable concepts, the 

knowledge ordering [9] is introduced to describe the 

difference of two concepts. 

 

3.4 PROPERTIES OF INTERVAL-DEINABLE 

CONCEPTS 

 

Let A and B be two interval-definable concepts in the 

system 
0( , )IDEF U L . Assume that 

0[ , ] ( , )IDEF U L   . 

Suppose that [ , ]l uA A A  and [ , ]l uB B B . We have 

more knowledge about the concept A than the concept B, 

as we are more sure about the former than the latter, if 

A B . This suggests that the standard set inclusion 

provides a knowledge ordering on interval sets. 

Definition 9 A knowledge ordering 
k

 [9] on interval 

sets can be defined by: 

[ , ] [ , ] [ , ] [ , ]

.

l u k l u l u l u

l l u u

B B A A A A B B

B A A B

  

  
. (13) 

In some sense, the knowledge ordering reflects the fact 

that A is tighter than B. Generally, we use the standard set 

inclusion   as a knowledge ordering. 

The set intersection of two interval sets is an interval 

set, namely, for [ , ]l uA A A  and [ , ]l uB B B , 

[ , ], ,

[ , ] , .

l l u u l l u uA B A B when A B A B
A B

otherwise


  

 
 (14) 

The following properties hold for the relation   on 

interval-definable concept system: 

Theorem 2 For  0, , , ,A B C D IDEF U L , the 

following equations hold. 

;A B A B A A B A B B        , (15) 

A Band C D A C B D      , (16) 

,A B A A B B    . (17) 

Proof We only prove A B A B A    . Suppose

[ , ]l uA A A  and [ , ]l uB B B . According to the definition 

of knowledge ordering, [ , ] [ , ]l u l uA A B B   

l l u uB A A B   . On the other hand, A B A    

[ , ] [ , ]l l u u l uA B A B A A   . This means that 
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,l l lA B A   
u u uA B A  . In the sense of general set-

theoretic operations, this is equivalent to 

, ,l l u uB A A B   thus we have 
l l u uB A A B   . 

Therefore, A B A B A     holds. 

The relation   on  0,IDEF U L  is a reflexive and 

transitive relation. It is an ordering relation for defining the 

semi-lattice operation  . With respect to the knowledge 

ordering  , we can say that the interval-definable concept 

system  0,IDEF U L is a semi-lattice  0, , )IDEF U L  , 

or  0( , , )IDEF U L  . 

 

4 Concluding remarks 

 

The notion of definability in complete information table is 

examined. For studying the incomplete information table, 

a new definition of definability, named interval-definable, 

is proposed. The foundation of this notion is that an 

incomplete information table can be represented by an 

interval set and expressed as a family of complete 

information tables. Based on the definition of interval-

definable, the interval-definable concept system is defined. 

By introducing a knowledge ordering, the properties of 

interval-definable concept system are investigated. The 

conclusion indicates that the interval-definable concept 

system is a semi-lattice with respect to the operation  , 

or relation  . By studying definability in incomplete 

information table and interval sets, we hope that we can 

gain more insights into the representation and processing 

of imprecise or partially known concepts, and into the 

approximations of indefinable or complex concepts. More 

development and applications of interval sets in 

incomplete information will be studied in the near future. 
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