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Abstract 

As one of the state-of-the-art tracking methods based on sparse coding, l1-tracker finds the target with the minimum reconstruction 

error from the target template subspace. But the high computational costs restrict its application in practical terms heavily. In this paper, 

we incorporate the discriminant information into original l1-tracker, and introduce it into the tracking framework, called FD2LT. In 

our framework, tracking is considered as a problem consisting of object location with dictionary learned in the last frame in generative 

tracking framework, training samples selection, and dictionary learning with fisher discriminant dictionary learning (FDDL). With our 

method, the dictionary is much smaller than that in original one, moreover, without loss of tracking performance (and even better in 

some scenarios). The discriminant power explored from the dictionary is used in generative tracking. Experimental results demonstrate 
the effectiveness and efficiency of the proposed tracking algorithm. 

Keywords: Fisher discrimination dictionary learning, generative and discriminant tracking, sparse coding, video object tracking 

 

1 Introduction 

 

Recently, computer vision is widely used in many fields. 

As one of the most exciting fields, target tracking looks for 

some specified objects pre-definited in video streams 

artificially. Targets change dynamically and uncertainly in 

video sequence, because of occlusion, noisy, varying and 

so on. Many tracking algorithms have been proposed, such 

as IVT, TLD, CovTrack, l1-tracker [1, 2]. 

Based on sparse coding (SC) [3], Mei proposed l1-

tracker [4], where many challenging problems presented in 

tracking are addressed seamlessly. However, 

computational cost of l1-tracker is quite expensive to 

achieve efficient tracking. Moreover, the discriminant 

ability of the dictionary is not explored. An alternative way 

is to construct the dictionary with rich representation 

ability and few atoms, which is called dictionary learning 

(DL) [5]. Many DL algorithms have been proposed in last 

several years. K-SVD [6] learns the dictionary from 

training sets, which is suitable for reconstruction, rather 

than discrimination. Mairal introduces discriminant 

constraint into K-SVD for classification [7], which is not 

convex; Tosic proposes a new method for learning the 

over-complete dictionary to represent the stereo images 

[8], but not for classification like K-SVD; Yang’s Fisher 

discriminant dictionary learning (FDDL) aims to learn a 

structured dictionary for face recognition, whose sub-

dictionaries have specific class labels[5]. Our method is 

motivated by Yang’s FDDL. The rest of this paper is 

organized as follows: sparse coding, l1-tracker and FDDL 

are introduced in section 2. In section 3, we analysis the 

shortcoming of FDDL, then improves and introduce it into 

tracking, called FD2LT. The convergence of FD2LT is 

demonstrated numerically. Experimental results with 
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FD2LT and some competitive algorithms are reported in 

section 4. Finally, we will conclude our work and propose 

future work. 

 

2 Related Work 

 

2.1 SPARSE CODING FORMULATION AND SPARSE 

CODING BASED TRACKING (L1-TRACKER) 

 

SC is an attractive signal reconstruction method, and the 

main task of which is to reconstruct a query signal 
1dy   over the over-complete dictionary d nD   

with a sparse coefficient vector 1nx  : 

2

1
minx F

y Dx x  . (1) 

where, ||.||F and ||.||1 are the Frobenius-norm and l1-norm, 

respectively. l1-tracker is proposed based on SC [4], as 

shown in Figure 1. Suppose that, the target for tracking has 

been located in #205 (where the red box indicated and l1-

tracker initialized in #206), and N candidate regions are 

generated with Bayesian inference around it. With n 

templates learned from the last frame and 2d trivial 

templates (d positive ones and d negative ones, d is the 

dimension of 1-D stretched image) in Figure 1b), Equation 

(1) can be solved like Figure 1c). Furthermore, with these 

trivial templates, Mei adds non-negative constraint (NNC) 

x≥0 into Equation (1). Reconstruction errors of all 

candidates with SC coefficients can be used to determine 

the weights for each candidate, the target in #206 can be 

located with the sum of weighted candidates, and the 

updating strategies of dictionaries can be seen in [4]. 
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a) Candidate regions b) Dictionary for l1-optimization 

 

c) SC of Candidates over dictionary 

FIGURE 1 Original l1-tracker 

 

2.2 FISHER DISCRIMINANT DICTIONARY 

LEARNING (FDDL) 

 

Mei’s experiments show that, l1-tracker has excellent 

performance when comparing with some state-of-the-art 

trackers [4]. But it is inefficiency, caused by the number 

of candidates (particles) N and the size of over-complete 

dictionary D, affords its application in real-time tracking 

severely. In original l1-tracker, in order to achieve robust 

tracking, N must be very large, while the dimension of 

dictionary D is d×(2d+n) in Equation (1). In our 

experiment setting, N=200, and D for l1-tracker is 

1600×3210. It is quite nature that, how to reduce the 

number of candidates and the size of dictionary without 

(or with a little) loss of tracking accuracy, are two 

important issues in l1-tracker. The former depends on the 

improvement of PF tracking framework [1], which is not 

mentioned in this paper; and the latter, specifically, how 

to construct dictionary which not only contains few 

atoms, but also has good ability of representation, is 

exactly the main task of our algorithm. 

FDDL is proposed for face recognition, which learns 

c structured dictionaries D=[D1,D2,…, Dc] for each class 

of facial images, instead of a whole shared dictionary for 

all images, where Di is the class-specified sub-dictionary 

associated with class-i, and c is the class number. Let 

Y=[Y1,Y2,…, Yc] and X= [X1,X2,…,Xc] denote the set of 

training samples and the coding coefficient matrix of Y 

over D, respectively, where Yi is the sub-set of the 

training samples from class i, Xi is the sub-matrix 

containing the coding coefficients of Yi over D and Y
DX. FDDL can be formulated as following: 

   
    1 2, 1,

min , ,
D X

D X
J r Y D X X f X    , (2) 

where, f(X)=tr(SW(X))-tr(SB(X))-η||X||F2 is a 

discriminative constraint imposed on X, which makes D 

discriminative for the samples in Y; SW(X) and SB(X) are 

within- and between-class scatters of X, respectively; λ1, 

λ2 are used to tune the influences of each term; 

r(Y,D,X)=∑i=1,…cr(Yi,D,Xi) is the discriminative fidelity 

term, and: 

 
2 22

1,

, , ,
c

i j

i i i i i i i j iF F F
j j i

r Y D X Y DX Y D X D X
 

       (3) 

The first two terms ensure that Yi can be represented by D 

and Di approximately with Xi and Xi
i, respectively; the last 

one ensures the representation of Yi over Dj(i  j) is small. 

Some important terms in r(Yi,D,Xi) is shown in Figure 2. 

Consider some 
1dy   (e.g. a stretched face image), 

y Dx  and ˆ
i iy D x  are reconstruction results of y over 

the whole dictionary D and the class-i dictionary Di, 

respectively. We denote the first two terms in Equation (3) 

as e  and ê  in Figure 2. The minimization of Equation (3) 

can be divided into two sub-problems: updating X by fixing 

D, and updating D by fixing X [9]. 

 

3 Our tracking framework with FDDL 

 

3.1 IMPROVED FDDL 

 

As mentioned above, Equation (3) minimizes e , ê  and 

∑jyj (i  j, j=1,…,c) in Figure 2. But we find that, it is 

not sufficient for reconstructing signal y based on 

Equation (3). Denote by y’=Dix’ the approximation of y

over Di, and e’= ŷ – y’, e = y – y’, e*= y – y’. Here, we 

use AR face database to validate the insufficient. AR 

contains 700 face images from 100 individuals (7 images 

for each one). In our experiment, 100 images are selected 

as query singles randomly, and the rest 600 images are 

treated as dictionary atoms. For each selected query 

image, ||e||F, ||e*||F, ||e’||F, || e ||F and ||ê||F are calculated 

on 600 labelled training images, and plotted in Figure 3. 

It is clear to see that: 

1) Minimization of || e ||F and ||ê||F cannot guarantee 

minimization of ||e||F, ||e*||F and ||e’||F; 

2) As ||e’||F >0 (unless the total dictionary D is 

consisting of ith class dictionary Di merely, which is not 

practical), ||ê||F<||e||F. And minimization of || e ||F and 

||ê||F in Equation (3) has nothing to do with minimization 

of ||e*||F; 

3) Beside || e ||F and || ê ||, ||e||F, ||e*||F and ||e’||F also 
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play important roles in face recognition. They report the 

difference between ith class information contained in Di 

and that in D. The smaller these three terms, the more 

positive information contained in Di and the less in D\Di; 

4) For each image, ||e||F is maximum among all five 

residual terms, and the minimization of ||e||F can be 

considered as the upper bound of all five representation 

residual terms. The similar results can be obtained on 

Yale, ORL database. Therefore, we can rewrite Equation 

(3) as: 

   
1

2 2

1 1,

, , , ,

,

c

i i

i

c c
i j

i i i j iF F
i j j i

r Y D X r Y D X

Y D X D X



  

  

 
   

 



 
 (4) 

where, Yi is the class-i subset of the training samples, X’i
j 

is the coding coefficient matrix of 
iY (reconstruction of 

Yi over Dj). Note that, we use X’i
j in Equation (4) instead 

of Xi
j in Equation (3). Denote f(X’)=tr(SW(X’))–

tr(SB(X’))–η||X’||F2, thus Equation (2) can be rewritten as: 

   
    1 2, 1,

min , ,
D X

D X
J r Y D X X f X 




      . (5) 

  

FIGURE 2 Residual terms FIGURE 3 Residual terms 

    

(a)Target in 
#204 

(b)Candidates 
(c)Sampling 

range 
(d)Training 

set 

FIGURE 4 Object location and training samples selection 

 

3.2 FDDL BASED TRACKING 

 

In this subsection, our tracking framework called FDDL 

based tracking (FD2LT) is proposed, which includes three 

components: target location with the dictionary learned in 

the last frame, training samples selection for dictionary 

learning, and discriminant dictionary learning. 

 

3.2.1 Target Location and Training Samples Selection 

 

According to the target location in the last frame (red box 

in Figure 4a), a number of candidate regions can be 

extracted with Bayesian inference (dotted boxes in 

Figure 4b), then target can be distinguished from those 

candidates. Many SC methods have been proposed for 

classification [5-7]. Most of them (no matter supervised, 

unsupervised and semi-supervised classification) work 

well based on a huge number of training samples, but as 

discussed above, DL with so many samples (e.g. Y in 

Equation (2-5)) lead to the tremendous computational 

costs. It is not critical for classification, as training and 

updating of classifiers are off-line in advance and 

classifying the new-arrival sample is very fast with the 

classifiers; but it is impatient in tracking, as the latter is 

real-time. 

In order to achieve robustness and efficiency, under 

the framework of PF framework, we seek the most likely 

candidate region as target in current frame, then generate 

object/positive samples and background/negative 

samples as following. Select 10 regions extremely 

nearby the object (small red rectangle in Figure 4c) as 

positive samples YO, and 10 regions (including up-left, 

up, up-right, left, right, left-down, down, left-right, 1/3 

bigger and 1/3 smaller than the small red box) as 

negative samples YB. Notice that, as shown in Figure 4d), 

in order to remain information of target during tracking, 

we always fix the last one in YO with the target selected 

artificially in the first frame; and the last two background 

regions are used to deal with the scale changing of target. 

 

3.2.2 Dictionary Learning 

 

Most of discriminant tracking methods are based on the 

assumption that, the appearances of target and 

background (near the object) change slightly frame by 

frame. Thus, we can represent candidate regions selected 

in current frame using the dictionary Dold learned in the 

last frame, and locate target as shown in the last section; 

afterwards, update Dold with 20 selected samples to help 

tracking in the successive frame. So, updating the 

dictionary is also a critical problem here.  

Suppose that, Dold=[Dold_O, Dold_B] is the last learned 

dictionary, and labeled training samples Y=[YO,YB] are 

selected as Figure 4d). The problem of DL is how to 

update Dold, such that Y can be represented by new 

dictionary Dnew with as less error as possible. According 

to improved FDDL proposed above, objective function 

for tracking is: 

   


    

2 2

,
,

2 2

1 1

2

2

min O B

O O O B B BD X F FD X

B O

B O O BF F

W B F

J Y D X Y D X

D X D X X

S X S X X



 

 
 

       

      

   

, (6) 

where, ,O BY Y Y     are approximation of  ,O BY Y Y  

over Dold; ,O BX X X      ; ,O B

O O OX X X       and 

,O B

B B BX X X       are SC coefficients of 
OY  and 

BY  over 

updated D’, respectively. 
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3.2.3 Solving modified FDDL 

 

Optimization of J(D’,X’) in Equation (6) is not convex 

with respect to D’ and X’ simultaneously, and we can 

divided it into two sub-problems: updating X’ by fixing D’; 

and updating D’ by fixing X’. The procedures are 

iteratively implemented in our previous work, the reader 

can refer to [10] for detail. 

 

3.3 REPRESENTATIVE/DISCRIMINANT ABILITIES 

OF DICTIONARY 

 

Figure 5 shows some tracking results with our modified 

and original FD2LT in #205 (Figures 5a and 5b) and #355 

(Figure 5c) of Dudek sequence, and the further and detail 

results can be seen in Figure 8b). Experimental settings are 

the same as those in section 4.1. It is clear to see that: 

1) Tracking results of our two FD2LT methods are 

similar in #205, both of them deal with deformations and 

occlusions of target steadily; 

2) FD2LT with our improved FDDL remains object 

information well after dictionary updating, while the latter 

destroys almost all object information, which is shown in 

10 object atoms (updated dictionary in current frame) in 

the lower-left corner of Figures 5a and 5b, respectively; 

(3) We also assert that, coding coefficients used to 

represent target in #205 with improved FD2LT is sparser 

than that with original FD2LT. The button row of Figures 

5a and 5b shows the coding results of these two methods. 

With experiments in section 4, we get similar 

conclusions and list as following: 

1) Our improved FDDL is much sparser than original 

FDDL, when coding the same signal; 

2) Dictionary learning with our improved FDDL has 

stronger representation ability than original FDDL. 

The second conclusion can be expressed in Figure 5c. 

With our method, after a few successive frames, some 

atoms in dictionary are almost close to zeros. As shown in 

Figure 5c, only 3 object atoms and 10 background atoms 

are used to represent the object with our improved FDDL, 

while it appears rarely when we use original FDDL in 

tracking. But it does not always benefit for tracking, 

especially when object changes heavily, as if the number 

of dictionary atoms is too small, they cannot remain the 

object information and adapt the change of object, 

simultaneously. In order to maintain rich ability of 

representation, we set those atoms with all zero elements 

as mean of all non-zero atoms. 

   

(a) Original FD2LT (b) Improved FD2LT (c) Special Example 

FIGURE 5 Results of FD2LT on Dudek 

 

 

FIGURE 6 NNC. Top: Tracking results of successive five frames 

with 1: l1-tracker(Bule), 2: original FD2LT (Red) and 3: improved 

FD2LT (Yellow); Bottom: dictionary templates of three algorithms 

 

3.4 WITH OR WITHOUT NON-NEGATIVE 

CONSTRAINTS? 

 

In original l1-tracker, non-negative constraints (NNC) for 

coding coefficients are not only used to restrict them to be 

positive, but also used to filter out clutter that is similar to 

target templates as reversed intensity patterns, as shown in 

Figure 6. In these successive five frames in Car4 sequence, 

the car for tracking is driven from brightness to darkness. 

With NNC, original l1-tracker remains the template 

information of the car, no matter it is in the shadow or not. 

But we have referred that, l1-tracker costs heavily, because 

of the large dictionary(almost half of the dictionary, i.e. the 

negative trivial template, is designed for NNC) and l1-

optimization, as shown in Figure 1 and section 2.2, 

respectively. 

In our FD2LT, which can be considered as the 

discriminant extended version of l1-tracker, NNC is 

omitted, because the changes of reversed intensity patterns 

can be incorporated into dictionary after learning. We find 

that, in Figure 1, the dictionaries learned with original and 

improved FDDL include not only positive templates, but 

also negative ones, which are used to deal with the problem 

of reversed intensity patterns. According to this, our two 

FD2LT algorithms are much faster than original l1-tracker, 

and the performances of them are nearly the same, which 

can be seen in Section 4. 

To compare the convergence we verify that for our two 

FD2LT trackers with Dudek sequence quantification ally. 

In #206, almost the entity face of the man (target for 

tracking) is blocked by his hand, which is slightly occurred 

in #205, see Figures 1a and Figures 5a, respectively. This 

is still a heavy representative change for modern trackers. 

There is reason to regard that, dictionaries learned in #205 

with above two FDDL methods are not very suitable for 

tracking the object in #206. We get the same result in 

Figure 7a that, initial energies (values of objective 

function, calculated with Equation (7) are very large. 

During the iterative procedure, energies decayed quickly, 

and FD2LT based on our improved FDDL convergences 

faster than the other one. Figure 7b shows the same result 

with the average energies convergence of the whole 

tracking procedure. In our experiment, we set number of 

iterations as 5, in order to keep our tracker working fast. 
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a) Energy of Dudek #206 b) Average Energy of Deduk 

FIGURE 7 Convergence Curves of Energies (Values of Objective 

Function) 

 

4 Experiment 

 

4.1 EXPERIMENT SETTING 

 

In order to evaluate our trackers, we conduct experiments 

on eight challenging video sequences, including Surfer, 

Dudek, Faceocc2, Animal, Girl, Car11, Stone, Jumping, 

Car4 and Pktest02 with 375, 1145, 

819,71,500,393,200,100,400 and 120 frames, respectively 

(see Figure 8). These sequences cover almost all 

challenges in tracking, including occlusion (even heavy), 

motion blur, rotation, scale variation and complex 

background, etc. For comparison, we select four state-of-

the-art trackers, including incremental learning based 

tracker (IVT, a familiar discriminant tracking method 

[11]), Tracking -Learning-Detection (TLD, a real-time 

long-term discriminant tracking method [12]), CovTrack(a 

generative tracker on Lie-group [13]) and l1-tracker(a 

generative tracking methods[4])1. 

 

4.2 EXPERIMENTAL RESULTS 

 

We evaluate the above-mentioned algorithms using the 

centre location errors, as shown in Figure 8. Overall, our 

FD2LT performs well against the other state-of-the-art 

algorithms.  

For occlusion, five algorithms except IVT work 

steadily roughly, especially at #206, #366 of the Dudek 

sequence in Figure 8b (head for tracking is covered by 

hand and glasses) and at #85, #108, #433 of the Girl 

sequence in Figure 8e (head for tracking turns right, turns 

back and blocks by someone else). After the target 

recovers from occlusion, these five trackers can seek it 

quickly. IVT works poorly, even lost the target from #10 in 

the Girl sequence, because of the number of positive and 

negative samples are limited (in consideration of the 

learning efficiency). Incremental updating of classifier in 

IVT is less effective; CovTrack has large size of candidates 

(with the definition of integral image, feature extraction of 

these candidates is so fast, and the costs of which can be 

ignored), which makes it robust for occlusion, scale 

variation and blur. Thanks to P-N expert learning and 

detection when loses the target, TLD often performs good 

when confronts occlusion. When occlusion happens, TLD 

abandons tracking, see the yellow regions in Figure 8. 

                                                           
1 Readers can download codes of IVT(Matlab version) and TLD(C++ version) on 

www.cs.toronto.edu/ dross/ivt/ and info.ee.surrey.ac.uk/Personal/Z.Kalal/, 

When target appears again, TLD can obtain it. But there 

are also some exceptions, see Figure 8c from #377 to the 

end of the Faceocc2 sequence. TLD loses the head for 

tracking from #377 because of the occlusion and rotation 

of the target, and after that, TLD never detects the target 

again; while original l1-tracker and the derivative two 

FD2LT trackers, which have strong representative abilities 

based on the large size of dictionary and good 

performances of dictionary learning, respectively, 

performance excellently.  

For motion blur, our two trackers work better than 

IVT and l1-tracker, moreover, CovTrack and TLD also 

reveal their abilities for blur, see #4, #9 and #38 in Figure 

8d and #16, #29 and #53 in Figure 8h. The animal runs and 

jumps fast(motion blur) with splashing a lot of water 

splashing (occlusion). IVT and l1-tracker fail both from #4, 

and never recover after that. Original and improved FD2LT 

lost target at #28 and recover at #38, Figure 8d. And at 

#12,#21 and #43,#71, improved FD2LT works better than 

original FD2LT, CovTrack and TLD. TLD loses target from 

#24 to #33, from #53 to #71 in Animal sequence and from 

#33 to #36, from #41 to #48, from #56 to #70, from #73 to 

#90 in Jumping sequence. 

For rotation and scale variation, our trackers still 

work robustly, see Figures 8a, 8c and 8e. The surfer 

staggers forward and back in the Surfer sequence, the girl 

turns left, turns right, zoom in and zoom out in the Girl 

sequence, and the man turns left, turns right and occludes 

by book in the Faceocc2 sequence, four trackers except 

IVT and TLD perform nice for these challenges. 

Especially, TLD loses the target in #377 in Faceocc2, and 

never recovers again. 

For complex background, as shown in Figures 8f and 

8g the car for tracking is driven in the dark with bright 

lamplight and car light affecting the tracking, and the stone 

for tracking scatters around lots of similar stones. TLD and 

our two trackers work well before #220 in Car11 sequence 

but IVT loses the target from #50. And in the Stone 

sequence, TLD, l1-tracker and our two trackers work better 

than other two trackers as before. CovTrack fail in these 

two sequences, because it extracts edge information of 

targets as one dimension of features, and in these two 

sequences, edge of targets are ambiguous and hard to 

distinct. l1-tracker fails after #220 in Car11, because of it 

is short of the discriminant ability of foreground and 

background; On the other hand, when there exists a 

candidate region which is like the target for tracking, it is 

likely for TLD to detect the former instead of the latter, as 

shown in #50 in Figure 8d and from #85 to the end in 

Figure 8j. This is because of the excessive strong detective 

ability of TLD, when losing the target. 

In general, from above analysis, we can find that, 

owing to powerful representative and discriminant 

capabilities, our original and improved FD2LT trackers 

work nearly the same, and the latter is slightly better, 

especially in the Faceocc2, Dudek, Girl, Car11, Stone and 

respectively. The other programs are coded with Matlab7.0 ourselves, and 

experiments are running on computer with 2.67GHz CPU and 2GB memory. 
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Car4 sequences, see Figures 8c, 8b, 8e, 8f, 8g, 8i; Original 

l1-tracker[4] performances good in most frames, but fail to 

track sometimes; TLD has high performance in most of 

situations, which is worthy of “long term tracker”[12]. But 

it gives up tracking when facing heavily occlusion and 

rotation, and cannot recover when target appears again 

with large changes in appearance; CovTrack is suitable for 

occlusion and rotation, but fails when facing with complex 

backgrounds; IVT is sensitive, when the occlusion, 

rotation, motion blur of target are appeared in tracking. We 

also find that, our improved FD2LT remains object 

information in updated dictionary, which are shown in 

button-two rows of lower-left of each frame in Figures 8a 

and 8b, while original FD2LT destroys almost all object 

information, which are shown in top-two rows of lower-

left of each frames. The same conclusions can be obtained 

when investigating the rest sequences in Figure 8. 

Moreover, the fixed 10th object training samples also 

prevent the procedure of DL from degeneration. See #28 

in Figure 8d, all six trackers lost the target, and most of the 

dictionary atoms after updating (used to track in the 

successive frame) are confused, except few atom. With our 

selection of training samples for DL in section 3.1, our two 

trackers retrieve the animal’s head in #38, but the other two 

methods fail. Meanwhile, CovTrack also preserves the 

original information of target, so it recovers in #34; and 

TLD uses detection module(not tracking or learning 

module) to search for the object and regain it in #38. All 

these mean that, remaining the original information of 

targets, instead of updating the whole templates frame by 

frame, is beneficial for tracking, which is taken more and 

more attention in tracking community. 

 

  
a) Surfer b) Dudek 

  

c) Faceocc2 d) Anima 

  

e) Girl f) Car11 

  

g) Stone h) Jumping 

  

i) Car4 j) Pktest02 

FIGURE 8 Tracking results with six tracking methods. Yellow 
regions means that, in these frames, trackers lose the targets 

Table 1 is the tracking cost comparison of six algorithms 

used in our experiments. One can see that, our two FD2LT 

frameworks work much faster(average 400 times faster 

under the same experimental settings described in Section 

4.1) than l1-tracker, because of the much smaller but well-

trained dictionary; the improved FD2LT (FD2LT1 in Table 

1) is slightly fast than the original one (FD2LT2 in Table 

1), because of the simpler optimization in Equation (5) 

than original one in Equation (2). TLD, coded with C++, is 

the fastest algorithm in our comparative experiments; and 

our improved and original FD2LT ranking third and fourth 

in these algorithms. But our methods work much better 

than IVT (ranking second). 
 

Table 1 The tracking cost comparison of six algorithms used in our experiments. 

 Surfer Dudek Faceocc2 Animal Girl Car11 Stone Jumping Car4 Pktest02 

IVT 2.8694 3.3211 2.7886 1.8979 1.6548 2.7901 1.2903 1.2682 0.8479 1.3503 
CovTrack 1.5707 1.2454 1.1278 1.2534 1.2209 1.7041 1.8890 1.4333 1.3632 1.1906 

TLD 3.0124 2.5078 3.4763 4.1023 3.8792 3.8145 4.6451 3.9561 5.7258 6.7894 

l1-track 0.0040 0.0016 0.0020 0.0020.5 0.0023 0.0023 0.0031 0.0029 0.0045 0.0033 
FD2LT1 2.0886 1.8748 1.7103 1.3596 1.6909 1.7473 1.0794 .0.8927 1.1323 1.1247 

FD2LT2 2.3469 2.3154 1.8979 1.4620 1.7392 2.3624 1.1501 1.1084 1.6092 1.1931 
 

5 Conclusion and future works 
 

In this paper, we analysis the reasons for the inefficiency 

of l1-tracker and the insufficient of original FDDL 

proposed by Mei [4] and Yang [5] firstly. Then, in order to 

overcome these drawbacks, we present a modified version 

of FDDL and validate the numerical convergence of 

improved FDDL, then introduce the original/modified 

FDDL into video tracking, called FD2LT.In our 

framework, three important components (object location, 

training samples selection, and dictionary learning) are 

introduced and discussed detail in Section3. Our 

framework combines generative tracking (i.e., PF [1]) 

with discriminant information (i.e., FDDL), and 

experiments demonstrate the effectiveness and efficiency 

of our trackers. But there are also some aspects required to 

be studied in future, including:  

1) some conclusions proposed in this paper without 

strict proof, instead of numerical validation, e.g. theoretic 

convergence of FDDL, why improved FD2LT has stronger 

discriminant ability than original one;  

2) our FD2LT framework is much faster than the latter, 

but it is still far away from real-time tracking(more than 20 

fps in common video sequence). How to accelerate the 

tracking efficiency is one the further goals of us and even 

all computer vision researchers. 
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