# A study on the efficiency of public culture service based on DEA cross evaluation

### Liping Fu<sup>1</sup>, Juan Li<sup>1, 2\*</sup>, Zuting Zheng<sup>2</sup>

<sup>1</sup>Public Resource Management Research Center, College of Management and Economics, Tianjin University, Tianjin, China

<sup>2</sup> Hebei United University, Tangshan, Hebei, China

Received 14 June 2014, www.tsi.lv

#### Abstract

This paper analysed the inputs and outputs of public cultural services in 31 provinces of China in 2012, including municipalities and autonomous regions, based on the CCR model of DEA and the DEA cross-evaluation model. The DEAP2.1 software was also used for this empirical analysis to probe the performance and problems of the inputs and outputs of public cultural services. From analysis, this paper reached some conclusions, including the development of cultural services should be based on the increase of industrial inputs, as well as the optimization of resource allocation, so as to achieve the optimum state of inputs and outputs. The research results can provide a reference for the further improvement of the quality and inputs and outputs efficiency of public cultural services in all regions.

Keywords: Public Culture Services, DEA Model, Inputs and Outputs, Performance Evaluation

#### **1** Introduction

DEA is a new field of cross study of operations research, management science, and mathematical economics, and it is used to study the relative effectiveness of decisionmaking units through mathematical programming calculation [1-5]. Compared with traditional methods, it has many advantages. By standardizing different variables of different units, DEA is very objective, and it can avoid many problems caused by various indicators and dimensions [6]. Initially, DEA is used by non-profit organizations to evaluate the efficiency of inputs and outputs, and it permits placing emphasis on choosing inputs and outputs [7]. Public cultural services cover a wide range, and involve more indicators' inputs and outputs, so it is hard to conduct effective evaluations of all the inputs and outputs [8]. Therefore, this paper adopted DEA cross-evaluation model and selected indicators to analyse the efficiency of inputs and outputs of public cultural services in 31 provinces of China in 2012.

#### 2 The establishment of DEA model

#### 2.1 THE EFFECTIVENESS JUDGMENT AND ECNOMIC IMLICATION OF DEA MODEL

The relative efficiency of many input and output sectors and units, is evaluated by DEA through the mathematical programming model [9].The effectiveness of a decisionmaking unit (DMU), is defined by the ratio between the weighed multi-index output and multi-index input of the unit [10].

$$DMU_{L} = \begin{bmatrix} x_{i} \\ y_{i} \end{bmatrix} (1 \le i \le n) ,$$

where  $x_i = [x_{1i}, x_{2i}, \dots, x_{mi}]^T 1$ ,  $y_i = [y_{1i}, y_{2i}, \dots, y_{si}]^T$  are the vectors of input index *m* of  $DMU_i$   $x_{1i}, x_{2i}, \dots, x_{mi}$ and the vectors of output index *s* of  $y_{1i}, y_{2i}, \dots, y_{si}$  $(x_{ji}, y_{ji} > 0)$  respectively, denoted:  $X = [x_1, x_2, \dots, x_n]$ ,  $Y = [y_1, y_2, \dots, y_n]$ , *X* is called the multi-index input matrix and *Y* is the multi-index output matrix.

**Definition 1:**  $T = \{(x, y) \text{ output } y \text{ can be produced by } x\}$ is called the input and output combination of  $DMU_i$  and set  $v_i$  as a weighting measurement of category i input,  $u_k$  is the measurement of category k output, then the weighting coefficient vector is:

$$v = \{v_i, i = 1, 2, \cdots, m\}; u = \{u_k, k = 1, 2, \cdots, s\};$$

**Definition 2:** 
$$h_j = \frac{u^T y_{kj}}{v^T x_j} = \frac{\sum_{k=1}^{m} u_k y_{kj}}{\sum_{i=1}^{m} v_i x_{ij}}, \quad j = 1, 2, \dots, n \text{ is the}$$

S

effectiveness index of evaluation unit  $j DMU_j$ . Select appropriate u and v, make  $h_j \le 1$ ; the increase of  $h_{j0}$ indicates that the evaluation unit  $DMU_{j0}$  can obtain more output with less input. Therefore, investigating the evaluation unit  $DMU_{j0}$  in multi-evaluation units is not the

<sup>\*</sup> Corresponding author e-mail: lijuanzw@126.com

best way, change u and v as far as possible to obtain the maximum  $h_{i0}$ . Construct the following *CCR* model:

$$\left(\overline{p}\right) \begin{cases} \max \frac{\sum_{k=1}^{S} u_{k} y_{kj0}}{\sum_{i=1}^{m} v_{i} x_{ij}} = V_{\overline{p}} \\ \sum_{i=1}^{S} u_{k} y_{kj} \\ s.t. \frac{\sum_{i=1}^{m} v_{i} x_{ij}}{\sum_{i=1}^{m} v_{i} x_{ij}} \le 1, j = 1, 2, ..., n \end{cases}$$

$$\left(1\right)$$

$$\left(\frac{1}{\sum_{i=1}^{m} v_{i} x_{ij}}{\sum_{i=1}^{m} v_{i} x_{ij}} = 0, k = 1, 2, ..., n \right)$$

$$\left(\frac{1}{\sum_{i=1}^{m} v_{i} x_{ij}}{\sum_{i=1}^{m} v_{i} x_{ij}} = 0, k = 1, 2, ..., n \right)$$

Set  $t = \frac{1}{v^T x_0}$ ,  $\varpi = tv$  and  $\mu = tu$ , and then Equation (1)

can be transformed to the linear programming model:

$$(p) \begin{cases} \max \mu^{T} y_{0} = V_{p} \\ s.t. \sigma^{T} x_{0} - \mu^{T} y_{j} \ge 0, j = 1, 2, ..., n \\ \sigma^{T} x_{0} = 1 \\ \sigma \ge 0, \mu \ge 0 \end{cases}$$
 (2)

According to the duality theory of linear programming, the dual programming model of (*P*) is:

$$\begin{cases} \min \theta \\ s.t. \sum \lambda_j x_j + s^- = \theta x \\ \sum \lambda_j y_j - s^+ = y_0 \\ \lambda_j \ge 0, s^- \ge 0, s^+ \ge 0, j = 1, 2, ..., n \end{cases}$$

$$(3)$$

The concept of Archimedes infinitesimal is introduced for getting solution conveniently in simplex method of linear programming and simplifying the inspection work:

$$\begin{pmatrix} D_e \end{pmatrix} = \begin{cases} \min \left[ \begin{array}{c} \theta - \varepsilon \left( \hat{e}^T s^- + \hat{e}^T s^+ \right) \right] \\ s.t. \sum \lambda_j x_j + s^- = \theta x_0 \\ \sum \lambda_j y_j - s^+ = y_0 \\ \lambda_j \ge 0, s^- \ge 0, s^+ \ge 0, j = 1, 2, \cdots, n \end{cases}$$

$$(4)$$

where:  $\hat{e} = (1,...,1)^{T} \in \mathbb{R}^{m}$ ,  $e = (1,...,1) \in \mathbb{R}^{s}$ . The optimal solution of programming problem  $(D_{\varepsilon})$  is  $\lambda^{*}$ ,  $s^{*-}$ ,  $s^{*+}$ ,  $\theta^{*}$ ; if  $\theta^{*} = 1$ , then  $DMU_{j0}$  is weak *DEA* is efficient; if  $\theta^{*} = 1$ ,  $s^{*-} = 0$  and  $s^{*+} = 0$ ,  $DMU_{j0}$  is *DEA*-efficient, and the models above are the CCR models of evaluation unit.

In CCR model  $\theta$  is the effective value of the decisionmaking unit  $DMU_0$  (refers to the effective application

#### Fu Liping, Li Juan, Zheng Zuting

degree of input relative to output);  $X_i$  is the input factor combined with  $DMU_i$  and can be expressed by  $(X_{i1}, X_{i2}, ..., X_{im})$ ;  $Y_i$  is the output factor combined with  $DMU_i$  and can be expressed by  $(y_i, y_{i2}, ..., y_{ip})$ ;  $\lambda$  is the combination ratio that is the decision-making unit *i* of a reconstructed effective DMU combination relative to  $DMU_0$  and  $s^-$  and  $s^+$  are slack variables.

Its economic implication is:

a. If  $\theta = 1$  and  $s^- = s^+ = 0$ ,  $DMU_0$  is called *DEA* - efficient, in the economic system which is composed by *n* decision-making units, on the basis of original input  $X_0$ , the output  $Y_0$  has reached to the optimum condition;

b. If  $\theta = 1$  and  $s^- \neq 0$  or  $s^+ \neq 0$ ,  $DMU_0$  is called the weak DEA efficiency and in the economic system which is composed by *n* decision-making units, reduce the  $s^-$  of the input  $X_0$  and do not change the output  $Y_0$  or don't change input  $X_0$  and increase the  $s^+$  of the output;

c. If  $\theta < 1$ ,  $DMU_0$  is called *DEA* -inefficient, in the economic system which is composed by *n* decision-making units, through combination reduce the proportion of original input  $X_0$  and don't change the original output  $Y_0$ .

#### 2.2 THE VALUE OF RETURNS TO SCALE IN DEA METHOD

Set  $k = \sum \lambda_j$  and then k is called the value of returns to scale of  $DMU_0$ , where:

a. If k = 1, the returns to scale of  $DMU_0$  do not change and now  $DMU_0$  reaches the maximum output scale point;

b. If k < 1, the returns to scale are increasing and if the k decreases faster, the scale will increase faster; it indicates that the proper increase of input can bring the higher output on the basis of  $DMU_0$  input  $X_0$ ;

c. If k > 1, the returns to scale are decreasing and if the k increases faster, the scale will decrease faster; it indicates that the increase of input cannot bring the higher output on the basis of  $DMU_0$  input  $X_0$  and now it is unnecessary to increase the decision-making unit.

#### 2.3 THE DEFINITION OF INPUT REDUNDANCY RATIO AND OUTPUT INEFFICIENCY RATIO

Set the input redundancy ratio as  $\alpha_{ij}$  and  $\alpha_{ij} = S_{ij}^- / X_{ij}$ indicates the proportion of the weighted indicators, which can be saved. In the same way, set  $\beta_{IJ} = S_{ij}^+ / y_{ij}$  and  $\beta_{ij}$ is called as output inefficiency ratio indicating the proportion of weighted indicators, which shall be added.

The comparison of the input redundancy ratio or the output inefficiency ratio in different years in the economic system can show which aspects have been improved and should be strengthened in management. Moreover, the horizontal comparison can also be conducted to analyse the input redundancy ratio and output inefficiency ratio among different related economic systems in the same period of time.

## **3** The empirical research on the performance evaluation of public culture service based on DEA

#### 3.1 THE SELECTION OF DECISION-MAKING UNITS

The DEA method is principally applied to the evaluation of Relative Merits among same kinds of samples, so the selected samples for evaluation must be of the same kind as DMU. In recent years, the Party Central Committee and the State Council have paid high attention to the construction of public culture service. The outline of the 12th Five-Year Plan has pointed out "to enhance public cultural products and services and establish and improve the public cultural services system" [11]. In recent years, the investment of public finance in the cultural construction has increased continuously, and the national cultural undertakings expense has increased in the latest five years with 20% annual growth rate and reached RMB 29.14 per capita in 2011 [12]. In this paper, the inputs and outputs data of 31 provinces, including municipalities and autonomous regions, in china, were selected as the decision-making units for the DEA evaluation, and the horizontal comparison on the public culture service performances were conducted to evaluate their advantages and disadvantages of various provinces, municipalities and autonomous regions in China. The inputs and outputs data in this study were taken form China Cultural Relics Statistics Yearbook 2013.

## 3.2 THE SELECTION OF EVALUATION INDICATORS

Different evaluation indicators of DEA system will result in different effectiveness evaluation results [13]. Therefore, the following aspects, including the realization of evaluation purpose, the complete reflection the evaluation purpose and the input vectors are connected

#### Fu Liping, Li Juan, Zheng Zuting

with the output vectors, should be principally considered for the selection of evaluation indicators. The evaluation of the efficiency of public culture service is a complex system, involving multiple inputs and outputs. The inputs contain physical factors, such as people, money, and commodity, can be applied to quantitative calculation, and intangible factors, like national policy support and technical support and so on. The multiple outputs contain both various cultural activities aiming at the improvement of people's livelihood and the contributions to social and economic development.

According to the data size of unity, the principle of comparability, at the same time, the data availability, the representative of indicators and the principle of mutual independence of indicators, this paper chose three input indicators, and they were per capita cultural operating expense (RMB), cultural workers number, and public cultural institutions.

The number of the public cultural institutions is the sum of the number of art performance venues, libraries, museums and mass cultural centres; the number of cultural-practitioners is the total number of staff in the art performance venues, libraries, museums and mass cultural centres; the cultural undertakings expense per capita embodies the capital investment in the cultural undertakings by the government, which is the core indicator reflecting the cultural undertakings development. The output indicators selected in this paper were based on the forms of cultural activities and the output quantities, including the number of cultural activities, and the number of participating people, in which the number of cultural activities was the sum of the number of art groups' performances held in art stadium, and art exhibitions, cultural activities and training classes held by cultural centres; and the number of participating people was the sum of the number of audience of the art group performances, audience going to the art stadium or museums and attending art exhibitions, people participating in art exhibitions, cultural activities and training classes held by cultural centres.

#### **3.3 DATA REDUCTION**

The data reduction and analysis were made according to China Cultural Relics Statistics Yearbook 2013. The data of various indicators is unified and comparable. Table 1 presents the details of specific data:

TABLE 1 DMU input and output data of public culture service investment performance

| 1              | 1 1                                                   |                                | 1                                      |                                                          |                                           |
|----------------|-------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------------------|-------------------------------------------|
| Region         | Cultural undertakings<br>expense per capita<br>(Yuan) | Numbers of<br>cultural workers | Number of public cultural institutions | Number of cultural<br>activity participators<br>(10,000) | Number of cultural<br>Activities (10,000) |
| Beijing        | 110.55                                                | 13361                          | 486                                    | 3010.8656                                                | 10.5727                                   |
| Tianjin        | 56.11                                                 | 4893                           | 135                                    | 1393.2055                                                | 3.2731                                    |
| Hebei          | 15.74                                                 | 21113                          | 846                                    | 5356.566                                                 | 10.2954                                   |
| Shanxi         | 36.34                                                 | 20545                          | 660                                    | 5069.8109                                                | 13.5354                                   |
| Inner Mongolia | 65.12                                                 | 10463                          | 349                                    | 2681.9817                                                | 3.547                                     |
| Liaoning       | 33.53                                                 | 12878                          | 481                                    | 3578.638                                                 | 6.7711                                    |
| Jilin          | 34.53                                                 | 6615                           | 226                                    | 1715.9153                                                | 3.5798                                    |
| Heilongjiang   | 24.4                                                  | 9342                           | 355                                    | 3001.0366                                                | 3.6978                                    |

| OMPUTER MODEI | LLING & NEW TECHNO | Fu Liping | , Li Juan, Zheng Zuting |            |         |
|---------------|--------------------|-----------|-------------------------|------------|---------|
| Shanghai      | 120.65             | 17981     | 380                     | 4205.669   | 15.2522 |
| Jiangsu       | 37.59              | 26692     | 1043                    | 12275.8601 | 45.9412 |
| Zhejiang      | 65.2               | 30551     | 1155                    | 10006.7174 | 15.0313 |
| Anhui         | 15.08              | 22564     | 1344                    | 3802.5818  | 13.4117 |
| Fujian        | 33.9               | 16491     | 585                     | 4182.5967  | 7.148   |
| Jiangxi       | 17.71              | 11267     | 496                     | 4118.7341  | 5.4668  |
| Shandong      | 21.36              | 18405     | 752                     | 9402.1821  | 10.2993 |
| Hainan        | 15.99              | 27708     | 864                     | 11977.6866 | 12.0508 |
| Henan         | 24                 | 16711     | 577                     | 5653.0646  | 8.0448  |
| Hubei         | 19.12              | 12445     | 486                     | 6107.1678  | 8.4259  |
| Hunan         | 36.3               | 26251     | 757                     | 11118.4997 | 11.5049 |
| Guangdong     | 25                 | 6439      | 294                     | 2905.308   | 6.5208  |
| Guangxi       | 64.5               | 3810      | 116                     | 893.49     | 0.9768  |
| Chongqing     | 41                 | 7899      | 358                     | 3051.2564  | 3.156   |
| Sichuan       | 34.04              | 21870     | 961                     | 6978.9988  | 11.6886 |
| Guizhou       | 27.81              | 5058      | 258                     | 1761.1226  | 2.2668  |
| Yunnan        | 28.07              | 11841     | 534                     | 3170.7065  | 6.0521  |
| Tibet         | 88.09              | 3175      | 201                     | 299.0573   | 0.8063  |
| Shanxi        | 40.87              | 16647     | 531                     | 5501.2832  | 4.8185  |
| Gansu         | 35.38              | 9641      | 397                     | 3508.3203  | 3.5298  |
| Qinghai       | 89.8               | 2316      | 143                     | 304.3684   | 1.259   |
| Ningxia       | 68.84              | 1833      | 65                      | 669.3121   | 1.0033  |
| Sinkiang      | 56.01              | 8108      | 346                     | 2399.3285  | 9.5304  |

#### 4 Model calculation and analysis

#### 4.1 SOLUTION TO CCR MODEL

#### TABLE 2 Results of solution to CCR model

The software DEAP 2.1 was applied in this paper to solve CCR model and sort the results of 31 provinces (including municipalities and autonomous regions) according to scale efficiency. See Table 2 for the results.

| Region         | Overall efficiency | Pure technical efficiency | Scale efficiency | Evaluation conclusion                                     |
|----------------|--------------------|---------------------------|------------------|-----------------------------------------------------------|
| Jiangsu        | 1                  | 1                         | 1.000 -          | DEA-efficient                                             |
| Shandong       | 1                  | 1                         | 1.000 -          | DEA-efficient                                             |
| Henan          | 1                  | 1                         | 1.000 -          | DEA-efficient                                             |
| Guangdong      | 1                  | 1                         | 1.000 -          | DEA-efficient                                             |
| Zhejiang       | 0.679              | 0.679                     | 1.000 -          | Weak DEA efficiency                                       |
| Hunan          | 0.995              | 1                         | 0.995 irs        | DEA-inefficient, progressive increase of returns to scale |
| Sichuan        | 0.64               | 0.651                     | 0.983 irs        | DEA-inefficient, progressive increase of returns to scale |
| Shanghai       | 0.932              | 0.987                     | 0.945 irs        | DEA-inefficient, progressive increase of returns to scale |
| Shanxi         | 0.741              | 0.799                     | 0.928 irs        | DEA-inefficient, progressive increase of returns to scale |
| Guangxi        | 0.926              | 1                         | 0.926 irs        | DEA-inefficient, progressive increase of returns to scale |
| Beijing        | 0.517              | 0.562                     | 0.92 irs         | DEA-inefficient, progressive increase of returns to scale |
| Chongqing      | 0.756              | 0.836                     | 0.905 irs        | DEA-inefficient, progressive increase of returns to scale |
| Hubei          | 0.736              | 0.814                     | 0.904 irs        | DEA-inefficient, progressive increase of returns to scale |
| Gansu          | 0.712              | 0.804                     | 0.886 irs        | DEA-inefficient, progressive increase of returns to scale |
| Shanxi         | 0.601              | 0.706                     | 0.852 irs        | DEA-inefficient, progressive increase of returns to scale |
| Inner Mongolia | 0.566              | 0.676                     | 0.838 irs        | DEA-inefficient, progressive increase of returns to scale |
| Fujian         | 0.548              | 0.654                     | 0.838 irs        | DEA-inefficient, progressive increase of returns to scale |
| Liaoning       | 0.587              | 0.704                     | 0.834 irs        | DEA-inefficient, progressive increase of returns to scale |
| Tianjin        | 0.787              | 1                         | 0.787 irs        | DEA-inefficient, progressive increase of returns to scale |
| Ningxia        | 0.785              | 1                         | 0.785 irs        | DEA-inefficient, progressive increase of returns to scale |
| Sinkiang       | 0.683              | 0.875                     | 0.781 irs        | DEA-inefficient, progressive increase of returns to scale |
| Jiangxi        | 0.738              | 1                         | 0.738 irs        | DEA-inefficient, progressive increase of returns to scale |
| Yunnan         | 0.723              | 1                         | 0.723 irs        | DEA-inefficient, progressive increase of returns to scale |
| Heilongjiang   | 0.542              | 0.757                     | 0.716 irs        | DEA-inefficient, progressive increase of returns to scale |
| Guizhou        | 0.659              | 0.957                     | 0.688 irs        | DEA-inefficient, progressive increase of returns to scale |
| Hebei          | 0.687              | 1                         | 0.687 irs        | DEA-inefficient, progressive increase of returns to scale |
| Hainan         | 0.651              | 1                         | 0.651 irs        | DEA-inefficient, progressive increase of returns to scale |
| Hainan         | 0.54               | 0.927                     | 0.582 irs        | DEA-inefficient, progressive increase of returns to scale |
| Jilin          | 0.579              | 1                         | 0.579 irs        | DEA-inefficient, progressive increase of returns to scale |
| Qinghai        | 0.316              | 0.853                     | 0.370 irs        | DEA-inefficient, progressive increase of returns to scale |
| Tibet          | 0.197              | 0.717                     | 0.274 irs        | DEA-inefficient, progressive increase of returns to scale |

Note: the overall efficiency in the table refers to the technical efficiency with no consideration of the returns to scale; the pure technical efficiency refers to technical efficiency with the consideration of the returns to scale; and the scale efficiency refers to the scale efficiency with consideration of returns to scale.

According to the result of solution to CCR model in Table 2, we can see that the scale efficiency in Jiangsu, Shandong, Henan and Guangdong is 1, reflecting the relative optimality of input and output of public culture service. These four regions put more in the public culture service area, which is also started relatively earlier and has already stepped into a mature phase. Although the scale

#### Fu Liping, Li Juan, Zheng Zuting

efficiency of Zhejiang is also 1, the overall efficiency and pure technical efficiency are not 1, indicating that a higher investment in public culture service is made after awareness of its importance, which has not achieved a good effect and needs further adjustment.

There are 26 DEA-inefficient regions, with efficient pure technical efficiency (the pure technical efficiency is 1) and inefficient scale efficiency (the scale efficiency is less than 1) in 9 regions of Hunan, Guangxi, Tianjin, Ningxia, Anhui, Jiangxi, Guizhou, Hebei and Jilin, indicating the weak mean technical level in these regions and demand for further projection analysis of its reasons.

In order to know the reasons for weak scale efficiency of public culture service in the inefficient DEA regions, the projection analysis was carried out and the results were listed in Table 3.

| TABLE 3 Rankings of | of various | provinces ar | nd projection | analysis of | f decision-m | aking unit | of inefficient DEA |
|---------------------|------------|--------------|---------------|-------------|--------------|------------|--------------------|
|---------------------|------------|--------------|---------------|-------------|--------------|------------|--------------------|

|                   |      |                                              | In                                                       | put redundancy                       | Insufficient output                              |                                                                  |                                                     |
|-------------------|------|----------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|
| Region            | Rank | <b>DEA</b><br>efficiency<br>value $(\theta)$ | Cultural<br>undertakings<br>expense per capita<br>(Yuan) | The number<br>of cultural<br>workers | The number of<br>public cultural<br>institutions | The number of the<br>cultural activity<br>participators (10,000) | The number of<br>cultural<br>activities<br>(10,000) |
| Jiangsu           | 1    | 1.000 -                                      | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Shandong          | 1    | 1.000 -                                      | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Henan             | 1    | 1.000 -                                      | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Guangdong         | 1    | 1.000 -                                      | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Zhejiang          | 1    | 1.000 -                                      | 39.127                                                   | 9804.798                             | 370.677                                          | 0                                                                | 0                                                   |
| Hunan             | 6    | 0.995 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Sichuan           | 7    | 0.983 irs                                    | 11.875                                                   | 7629.674                             | 389.193                                          | 0                                                                | 0                                                   |
| Shanghai          | 8    | 0.945 irs                                    | 61.718                                                   | 8265.713                             | 4.896                                            | 143.845                                                          | 0                                                   |
| Shanxi            | 9    | 0.928 irs                                    | 8.216                                                    | 4873.498                             | 106.751                                          | 0                                                                | 2.303                                               |
| Guangxi           | 10   | 0.926 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Beijing           | 11   | 0.92 irs                                     | 48.383                                                   | 6231.31                              | 212.703                                          | 130.26                                                           | 0                                                   |
| Chongqing         | 12   | 0.905 irs                                    | 6.738                                                    | 1298.195                             | 69.37                                            | 0                                                                | 2.524                                               |
| Hubei             | 13   | 0.904 irs                                    | 4.461                                                    | 4881.733                             | 107.259                                          | 28.089                                                           | 0                                                   |
| Gansu             | 14   | 0.886 irs                                    | 6.934                                                    | 1889.581                             | 77.81                                            | 0                                                                | 2.962                                               |
| Shanxi            | 15   | 0.852 irs                                    | 10.699                                                   | 9262.899                             | 194.315                                          | 180.556                                                          | 0                                                   |
| Inner<br>Mongolia | 16   | 0.838 irs                                    | 21.124                                                   | 3596.463                             | 113.212                                          | 0                                                                | 1.301                                               |
| Fujian            | 17   | 0.838 irs                                    | 11.713                                                   | 7396.247                             | 202.134                                          | 25.283                                                           | 0                                                   |
| Liaoning          | 18   | 0.834 irs                                    | 9.93                                                     | 5093.557                             | 142.45                                           | 0                                                                | 0.093                                               |
| Tianjin           | 19   | 0.787 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Ningxia           | 20   | 0.785 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Sinkiang          | 21   | 0.781 irs                                    | 7.026                                                    | 1017.025                             | 57.504                                           | 754.663                                                          | 0                                                   |
| Anhui             | 22   | 0.738 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Jiangxi           | 23   | 0.723 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Yunnan            | 24   | 0.716 irs                                    | 6.808                                                    | 2871.867                             | 134.329                                          | 378.67                                                           | 0                                                   |
| Heilongjiang      | 25   | 0.688 irs                                    | 1.05                                                     | 1810.192                             | 15.278                                           | 178.928                                                          | 2.584                                               |
| Guizhou           | 26   | 0.687 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Hebei             | 27   | 0.651 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Hainan            | 28   | 0.582 irs                                    | 4.72                                                     | 714.312                              | 8.488                                            | 52.178                                                           | 0.707                                               |
| Jilin             | 29   | 0.579 irs                                    | 0                                                        | 0                                    | 0                                                | 0                                                                | 0                                                   |
| Qinghai           | 30   | 0.370 irs                                    | 21.138                                                   | 341.55                               | 72.435                                           | 430.986                                                          | 0                                                   |
| Tibet             | 31   | 0.274 irs                                    | 24.904                                                   | 897.602                              | 109.405                                          | 520.704                                                          | 0.371                                               |

The projection analysis in Table 3 shows that the actual values of various input and output indexes are the same as the project values in the four regions of Jiangsu, Shandong, Henan and Guangdong with the relatively optimum input and output of public culture service, so the corresponding adjustment amount is 0, indicating that the input and output level in these regions has reached the optimum utilization state. As a weak DEA efficient region, Zhejiang Province is faced with serious input redundancy, so the investment in the public culture service should be reduced appropriately, which will not result in the decrease of output.

According to Table 3, it is not hard to discover that with the pure technical efficiency 1, the input redundancy and insufficient output in 9 regions is 0, indicating that the input and output of the public culture service in these regions are relatively balanced. However, the input can be increased appropriately due to the smaller scale of the public culture service, which can result in the incensement of the output and the scale efficiency and gradually achieve a mature public culture service. Other regions like Sichuan and Shanghai belong to the inefficient regions in pure technical efficiency and scale efficiency. Analysed from an input point, these regions are all faced with the redundant input in cultural undertakings expense per capita, cultural-practitioner quantity and public cultural institution quantity. Under a low technical level, with the other factors unchanged, increasing the input of cultural undertakings expense per capita, cultural-practitioner quantity and public cultural institution quantity excessively will result in inefficient production. Therefore, analysed from a public culture service performance point, the optimization of resource allocation and incensement of industrial input should be carried out together, with the expectation of achieving the optimum state of input and output. Analysed from an output point, there exists the

insufficient person-time and quantity of the cultural activities in most regions, which needs to be improved in the future.

#### 4.2 DEA CROSS EVALUATION MODEL

The DEA cross evaluation model is proposed to solve the problem of failure to distinguish the advantages and disadvantages of decision-making units by the traditional DEA evaluation method [14]. In the new DEA cross evaluation, the DEA is used as a kind of ranking tool for multi-criteria decision making, with the main function of distinguishing the efficiency of efficient decision-making units so that these units can be ranked.

Basic idea of cross evaluation: calculate the efficiency value of other  $DMU_{K}$  by the optimum weight  $w_{i}^{*} = \begin{bmatrix} v_{i}^{*} \\ u_{i}^{*} \end{bmatrix}$ 

of each  $DMU_i$  to obtain the cross evaluation value:

$$E_{ik} = \frac{y_k^T u_i^*}{x_k^T v_i^*} \,. \tag{5}$$

The higher value of  $E_{ik}$  is, more beneficial for  $DMU_k$  but the more adverse for  $DMU_i$ .

Since the optimal solutions  $u_i^*$  and  $v_i^*$  are not unique, the cross evaluation value  $E_{ik}$  is uncertain. According to  $E_{ik}$  and  $i \in \{1, 2, ..., n\}$ ,  $k \in \{1, 2, ..., n\}$ , the linear programming below may be solved by the aggressive cross evaluation:

$$\begin{cases} \min y_k^T u \\ s.t. \ y_j^T u \le x_j^T v \ (1 \le j \le n), \\ y_i^T u = E_{ii} x_i^T v, \\ x_k^T v = 1, \\ u \ge 0, v \ge 0 \end{cases}$$
(6)

The cross evaluation value can be worked out by the optimal solution  $u_{ik}^*$  and  $v_{ik}^*$  in Equation (6):

$$E_{ik} = \frac{y_k^T u_{ik}^*}{x_k^T v_{ik}^*} = y_k^T u_{ik}^*.$$
(7)

The cross evaluation matrix is constituted by the cross evaluation value:

$$E = \begin{bmatrix} E_{11} & E_{12} & \dots & E_{1n} \\ E_{21} & E_{22} & \dots & E_{2n} \\ \dots & \dots & \dots & \dots \\ E_{n1} & E_{n2} & \dots & E_{nn} \end{bmatrix}.$$

In the above matrix, the elements  $E_{ii}$  on the principal diagonal are the self-evaluation value and the nonprincipal diagonal  $E_{ik} (k \neq i)$  is the cross evaluation value. *E* is the evaluation value of  $DMU_i$  by decisionmaking units *i*, indicating that the higher values account for the superior of  $DMU_i$ ; row *i* of *E* (except the elements on the principal diagonal) is the evaluation value of  $DMU_i$  for other decision-making units, indicating that the lower the values are, the more beneficial for  $DMU_i$ :

$$e = \frac{1}{n} \sum_{k=1}^{n} E_{ki} .$$
 (8)

Take the average value of column *i* of *E* as an index for measurement of advantage or disadvantage of  $DMU_i$ and regard  $e_i$  as the overall evaluation of decision-making units for  $DMU_i$ , and the higher  $e_i$  accounts for the superior of  $DMU_i$ . The calculation results by  $DMU_i$ MATLAB software are shown in Table 4.

TABLE 4 Results of e value in cross evaluation model

| e <sub>i</sub> | $e_1$    | e <sub>2</sub> | <i>e</i> <sub>3</sub> | $e_4$    | <i>e</i> <sub>5</sub> | e <sub>6</sub> | <i>e</i> <sub>7</sub> | $e_8$    |
|----------------|----------|----------------|-----------------------|----------|-----------------------|----------------|-----------------------|----------|
| Value          | 0.422    | 0.553          | 0.488                 | 0.505    | 0.441                 | 0.493          | 0.467                 | 0.541    |
| $e_i$          | $e_9$    | $e_{10}$       | $e_{11}$              | $e_{12}$ | $e_{13}$              | $e_{14}$       | $e_{15}$              | $e_{16}$ |
| Value          | 0.556    | 0.962          | 0.570                 | 0.319    | 0.461                 | 0.604          | 0.873                 | 0.866    |
| $e_i$          | $e_{17}$ | $e_{18}$       | $e_{19}$              | $e_{20}$ | $e_{21}$              | $e_{22}$       | $e_{23}$              | $e_{24}$ |
| Value          | 0.625    | 0.856          | 0.819                 | 0.738    | 0.401                 | 0.576          | 0.543                 | 0.502    |
| $e_i$          | $e_{25}$ | $e_{26}$       | e <sub>27</sub>       | $e_{28}$ | $e_{29}$              | $e_{30}$       | $e_{31}$              |          |
| Value          | 0.444    | 0.130          | 0.584                 | 0.572    | 0.198                 | 0.591          | 0.536                 |          |

According to the table above:  $e_{10} > e_{15} > e_{16} > e_{18} > e_{19} > e_{20} > e_{17} > e_{14} > e_{30} > e_{27} > e_{22} > e_{28} > e_{11} > e_9 > e_2 > e_{23} > e_8 > e_{31} > e_4 > e_{24} > e_6 > e_3 > e_7 > e_{13} > e_{25} > e_5 > e_1 > e_{21} > e_{12} > e_{29} > e_{26}$ .

The new ranking for 31 regions obtained according to the above ranking of values of e is shown in Table 5.

According to Table 5, various input and output performances of public culture service in Jiangsu rank the first place but the e value has not reached 1 yet, indicating that insufficient input possibly exists at some aspects except cultural undertakings expense per capita. Therefore, cultural-practitioner quantity and public cultural institution quantity etc. and the further improvement shall be carried out.

Fu Liping, Li Juan, Zheng Zuting

| TABLE 5 Analysis of the results of closs evaluation |              |                   |           |         |           |          |         |         |  |
|-----------------------------------------------------|--------------|-------------------|-----------|---------|-----------|----------|---------|---------|--|
| Region                                              | Jiansu       | Shandong          | Henan     | Hunan   | Guangdong | Guangxi  | Hubei   | Jiangxi |  |
| Ranking                                             | 1            | 2                 | 3         | 4       | 5         | 6        | 7       | 8       |  |
| Region                                              | Ningxia      | Shaanxi           | Chongqing | Gansu   | Zhejiang  | Shanghai | Tianjin | Sichuan |  |
| Ranking                                             | 9            | 10                | 11        | 12      | 13        | 14       | 15      | 16      |  |
| Region                                              | Heilongjiang | Sinkiang          | Shanxi    | Guizhou | Liaoning  | Hebei    | Jilin   | Fujian  |  |
| Ranking                                             | 17           | 18                | 19        | 20      | 21        | 22       | 23      | 24      |  |
| Region                                              | Yunnan       | Inner<br>Mongolia | Beijing   | Hainan  | Anhui     | Qinghai  | Tibet   |         |  |
| Ranking                                             | 25           | 26                | 27        | 28      | 29        | 30       | 31      |         |  |

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 **18**(8) 223-230 TABLE 5 Analysis of the results of cross evaluation

#### **5** Research conclusion

This paper made a comprehensive assessment and analysis on the performance and efficiency of public cultural service of 31 provinces (including municipalities and autonomous regions) in China. In order to avoid subjective judgment, the evaluation of the inputs and outputs of different regions' public cultural service was made in a quantitative way, which made the results more objective. On the basis of DEA analysis results, the deep analysis was made for the 31 regions with adequate application of projecting analysis and the overall efficiency ranking was carried out in the 31 decision-making units through DEA cross evaluation models. The conclusions were drawn as follows:

Conclusion 1: all of the 31 provinces (including municipalities and autonomous regions) have increased the investment in public cultural service to some degree, in accordance with the requirement of the outline of the 12th Five-Year Plan, which advocates enhancing the supply of public cultural product and service, and establishing and perfecting the system of public cultural services. The industrial scale in Jiangsu, Shandong, Henan and Guangdong province has been greatly improved, occupying the top list of 31 provinces (including municipalities and autonomous regions) in China. Their system of public cultural service becomes more and more mature, while the other regions still need to make more advancement in increasing the input and output efficiency of public cultural service, perfecting the allocation of resources and using efficiency.

**Conclusion 2:** statistics show that the scale efficiency in Zhejiang province is 1, but both its overall efficiency

#### References

- Deraman N A 1982 Data envelopment analysis (DEA) evaluation framework of hotel services *Recent Researches in Economics* 56(1) 154-9
- [2] Jun T 2000 Research of multiple criteria random DEA model and application on evaluation investment Chinese Quarterly *Journal of Mathematics* 15(2) 70-5 (*in Chinese*)
- [3] Caves W D 1982 The economic theory of index numbers and the measurement of input output and productivity *Econometrics* 50(6) 1393-1414
- [4] Charnes A, Cooper W 1982 Measuring the efficiency of decision making units *European Journal of Operational Research* 73(2) 429-44
- [5] Mohammadi A, Ranaei H 2011 The Application of DEA based malmquist productivity index in organizational performance analysis *International Research Journal of Finance and Economics* 62(6) 68-76

and pure technical efficiency are not 1, which indicate that although a higher investment in public culture service has been made after realizing its importance, the higher investment has not achieved better results and Zhejiang needs further adjustment to the quantity of output value.

**Conclusion 3:** despite the inputs and outputs of public cultural service in 9 regions, including Hunan and Guangxi, are relatively balanced, their scale efficiency is not high. Therefore, more investment should be properly made to increase the scale efficiency, gradually making the public cultural service industry become mature.

**Conclusion 4:** the pure technical efficiency and scale efficiency in Shanghai and Sichuan and other regions do not make any sense, which means restricted by the technical factors, if they do not change other conditions, excessive input of people, money and materials in public cultural service will lead to inefficient results. So considering the efficiency and performance of public cultural service, these regions should increase the input of public cultural service as well as allocating resources optimally, to achieve a best state of input and output. Analysed from the perspective of output, most regions perform insufficiently in output, so the improvement and promotion should be carried out in the future.

**Conclusion 5:** although Jiangsu province tops the comprehensive list of every input and output performance index of public culture service, its *e* value has not reached 1 through DEA cross efficiency evaluation. It indicates that insufficient input exists in some other aspects, besides cultural undertakings expense per capita, cultural-practitioner quantity and public cultural institution quantity and so on, and needs to be improved in the future.

- [6] Renshou Z et al. 2011 Research on performance of cultural industry in 13 provinces of China based on DEA model-based on input-output data of 2007 from 13 cities of Guangdong *China Soft Science* 26(2), 183-92 (*in Chinese*)
- [7] Xiuge T, Fenghu W 2011 Research on the efficiency of public investment in culture based on DEA *Development Studies* 28(2) 90-3 (*in Chinese*)
- [8] Yanxin Z 2013 Performance evaluation of public culture service: empirical research based on DEA *Journal of Shandong Administration Institute* 25(2) 33-8 (*in Chinese*)
- [9] Wenyan W, Yulan Z 2013 Empirical research on the tendency of culture industry input and output efficiency based on DEA-Based on the culture industry input and output data from 2004-2010 of Jiangsu *Nanjing University of Finance and Economics* **30**(9) 51-55 (*in Chinese*)

Fu Liping, Li Juan, Zheng Zuting

- [10] Jiating W, Rong Z 2009 Research on efficiency of cultural industry in 31 provinces of China based on three-stage DEA model *China Soft Science* 24(9) 75-82 (*in Chinese*)
- [11] Jianmei J 2008 A Study on the performance evaluation of government common culture service system *The Journal of Shanghai Administration Institute* 9(4) 60-5 (*in Chinese*)
- [12] Han X, Ma X 2012 A Study on the cultural industry development efficiency of China based on DEA model *Journal of Yunnan* University of Finance and Economics 28(3) 146-153 (in Chinese)

#### Liping Fu, born in February, 1963, Tianjin City, P.R. China

Current position, grades: Professor at the College of Management and Economics, Tianjin University, China. University studies: B.Sc. in Political Economics at Beijing Normal University in China. M.Sc. and Ph.D. in World Economy at Nankai University in China.

Scientific interest: public management, technological innovation. Publications: more than 50 papers. Experience: teaching experience of 29 years, more than 10 scientific research projects. Juan Li, born in March, 1979, Tangshan City, Hebei Province, P.R. China



Authors

Current position, grades: Associate professor at the College of Yisheng, Hebei United University, China. University studies: B.Sc. in Industrial Analysis at Jilin Institute of Chemical Technology in China. M.Sc. at Yanshan University in China. Scientific interest: public management, technological innovation. Publications: more than 20 papers. Experience: teaching experience of 8 years, 3 scientific research projects. Zuting Zheng, born in May, 1978, Tangshan City, Hebei Province, P.R. China



Current position, grades: Associate professor at the College of Economics, Hebei United University, China. University studies: B.Sc. in Industrial Foreign Trade at Harbin Engineering University, China. M.Sc. in industrial economics at Hebei Polytechnic University in China and PhD in Technological Economics and Management at Tianjin University in China. Scientific interest: technological innovation and industrial economics. Publications: more than 20 papers.

Experience: teaching experience of more than 10 years, more than 20 scientific research projects.

#### Fu Liping, Li Juan, Zheng Zuting

- [13] Xu J, Xu X, Chen X, Cui L, Lu C, Xue B 2013 Evaluation on urban efficiencies of Gansu province based on DEA-cross model *Journal* of Natural Resources 28(4) 618-624 (in Chinese)
- [14] L. Biao 2011 Research on the scientific and technological resources allocation efficiency based on DEA cross model *Modern Management Science* 28(12) 35-8 (in Chinese)