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Abstract 

Great loss would be caused when power system lost its critical capacity by the impact of extreme events. Disruption management of 

State Grid Zhejiang Electric Power Company of China (shorted for SGZEPC) suffered in 2008 was firstly investigated, and then a 

dual sourcing model of regular and expedite capacity during recovery periods is correspondingly presented in this paper. A 

mathematical model of capacity procurement in a multi recover periods is constructed at the aim of minimizing the disruption cost of 

injured power system. Three meaningful managerial insights are obtained through sensitivity analysis on key parameters, which is 
helpful for manager to make decision during the disruption period. 
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1 Introduction 

 

Power system is one of most important public facilities 

which highly relies on the safety and steady operation of 

its critical capacities, such as power transmission 

network, distribution facilities and power plants. Despite 

a lot of protection on its safety operation have been done, 

power system still cannot eliminate every potential 

threats arose by unexpected events, such as natural 

disasters, man-made operational defaults and even 

intentional attacks.  

In recent years, serious blackouts were frequently 

witnessed that power systems lost their critical capacities. 

For example, State Grid Zhejiang Electric Power 

Company of China (shorted for SGZEPC) suffered great 

loss on its operation history, because of a hundred-year 

frozen rain attacked its transmission network in Jan 2008, 

and about 75 percent of its power transmission lines were 

crippled by heavy ice. This unexpected frozen rain caused 

a serious blackout among Zhejiang Province of China, 

which caused the consequence of over 20 million people 

suffered power shortage for over two weeks. Disruption 

management was started at the first time, Manager of 

SGZEPC on one hand started recovery process on the 

injured capacity, on the other hand acquired as much as 

possible the temporary electricity from its neighbouring 

provincial partners and mobile generators. 

In this paper, we would like to present a multi-period 

model under the scenario of SGZEPC’s disruption 

management in 2008. The paper is organized as follows: 

In section 2, the most related literatures to our research 

are reviewed. In section 3, the basic description and 

notations of our model are presented according to our 

background case. In section 4, the mathematical model 

and proofs of optimal decision sequences are presented at 

the aim of minimizing the disruption cost. In section 5, 

sensitivity analyses on key parameters of our model are 

given to illustrate the impaction on disruption cost. 

Finally, managerial insights and conclusions are 

presented in section 6. 

 

2 Literature review 

 

In the past decade, many researchers in the fields of 

operation management and risk management have done 

voluminous studies in order to enhance the system’s 

operational robustness in facing fluctuations from both 

inside and outside [1]. However, some researchers argued 

that some traditional risk mitigation methods should be 

reinvestigated under the scenario of operation system (or 

supply chain) might be attacked by those unexpected 

events, because of “Snow Ball” effects could cause risks 

spreading quickly along the whole supply chain from the 

disrupted node [2]. Losses caused by abnormal 

disruptions are much more serious that those caused by 

normal risks (operational risk, seasonal fluctuation risk et 

al). Different from those traditional risk management 

researches, disruption management puts more emphasis 

on risks arose by those unexpected events with great 

negative impacts and extremely low probabilities. 

Researches exist in disruption management nowadays can 

be categorized into two streams. The first stream adopts 

the methodologies of empirical and framework studies, 

for one purpose is to verify whether disruption really has 

negative impact both on company’s long-term 

performance through statistical models or cases [3-4], and 
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for another purpose is to introduce disruption mitigation 

methods, guidelines and strategies through framework 

models [5-6]. The second stream attracts the most of 

researchers in giving mathematic models and simulations 

in order to give some effective mitigation methods 

before\during\after the break out of disruption, and much 

of the works follow the framework of [1].  

Once the disruption happens on the critical capacity 

of power system, there three kinds of mitigation methods 

in operational level that manager could take [5]. They are 

lagging demand along the time scale by price 

coordination [7], increasing temporary capacity by 

sourcing from suppliers or partners [8-9], and mitigation 

the cost by production rescheduling [10-11]. Although 

disruption cost could be greatly cut down, the mitigation 

methods/policies are always confined by the operation 

system’s public importance. For example, shifting the 

demand to the future time span may alleviate the current 

shortage of capacity by increasing the price temporarily 

[12]. However, this might not be a good idea, because 

increasing the electricity spending might easily incur the 

protest or pressure from the public or government [13]. 

Procuring or sourcing inventory from backup suppliers or 

capacity-sharing partners are extensively studied in 

supply disruption management, and how to make the best 

order-split decisions among different suppliers are mainly 

focused [14-18]. We are glad to find that dual capacity 

sourcing described in [14] was still adopted by SGZEPC 

in 2008 when acquiring temporary electricity during the 

disruption management. For example, temporary 

electricity was provided from its neighbouring provincial 

power system and mobile generators. However, capacity 

damage are much more serious than capacity shortage, 

which could causes a sharp fall in the service level and 

contributes great loss towards the power system. 

Following this point of view, some researchers paid their 

attention to generate sub-optimal operational plans/ 

routings by dispatch the residual capacity in order to 

obtain a satisfied cost as well as save the calculation time 

[19-20]. However, the assumption of recovered capacity 

can be only reused at the last period might not be proper 

according to the practice of SGZEPC, because recovered 

capacity was gradually put into reoperation during the 

disruption periods [21]. Thus, we are inspired to make a 

further extension of [21] under the scenario of power 

system’s injured capacity is gradually recovered. 

 

3 Problem description and notation 

 

According to the practice of SGZEPC in 2008, electricity 

provision in Zhejiang province is seriously deteriorated 

due to the injury of critical capacity. SGZEPC started the 

procedure of disruption management at first time. On one 

hand, the injured capacity should be recovered to normal 

state; on the other hand, the service level of electricity 

provision should be tried best to keep in certain satisfied 

level by acquiring more temporary electricity from both 

inside and outside of SGZEPC’s operation system. There 

were two kinds of capacity that could SGZEPC provide 

extra electricity. For example, regular capacity was 

procured form its neighbouring provincial partners 

through SGZEPC’s residual capacity, and the expedite 

capacity was procured by starting the backup power 

systems, such as mobile generators. Therefore, the 

disruption management model could be illustrated in 

figure 1. 
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FIGURE 1 Disruption management model when operation capacity is 

injured 

For convenience of creating mathematical model, 

notations are described as bellow: 

normalZ  is the power system’s planned capacity in 

normal state. 

0d  is the residual capacity that is still in operation 

when disruption take place, and 
0 normald Z . 

N is the recovery cycles that is needed to recover all 

the injured capacity to normal state 
normalZ , and there are 

m periods in 1 cycle.  

r is the recovered capacity in 1 recovery cycle which 

is bounded by recovery technique, and 

 0
/

normal
Z d N    is the recovery up-limit. Further, we 

assume r  . Recovered capacity need m periods that 

can be put into re-operation. In other words, recovered 

capacity can only be reused at every end of recovery 

cycle. 

 P   is recovery cost function. 

U is regular capacity that capacity-sharing partner 

could provide, and is ordered only once at the beginning 

of each cycle with a fixed value. U is received after   

periods, therefore,   is the lead time of regular capacity, 

where 2 m  . 

y is electricity demand in each period, and y is a non-

negative random variable with the probability density and 

distribution function are  f y  and  F y  respectively. 

Electricity demand is satisfied by the output of system’s 

capacity at the end of each period and unit capacity 

satisfied unit demand. Unsatisfied demand is backlogged 

to next period. 

The subscript  ,i j  is a time indicator which means 

ith cycle and jth period, and 1,...,i N , 1,...,j m . Some 

additional notations are defined as follows: 
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,i jz  is the planned capacity in  ,i j  period which is a 

decision variable, where 
,0 i j iz d   when 1,..., 1j m  , 

and 
,0 i j iz d    when j m . 

,i jv  is the quantity of expedite capacity procurement, 

which is ordered at the beginning of each period and 

received at the end of each period, therefore the lead time 

of 
,i jv  is set to 1 period. Additionally, 

,0 i jv V  , where 

V  is the maximum that expedite capacity could be 

acquired. 

,i jx  is the net inventory at the beginning of  ,i j  

period, demand that was not satisfied in last period is 

backlogged. 
,i jx  is also the state transition variable, and 

, ,min{0, }i j i jx x which means excessive electricity 

cannot be backlogged into next period. 

0c  is the unit cost of using system’s own capacity. 
1c  

and 
2c  are the unit cost of using regular and expedite 

capacity respectively, the expedite capacity is much more 

expensive, thus
1 0 2c c c  .  

k  is the unit shortage cost when electricity cannot 

meet the demand. 

  is the manager’s risk attitude factor during the 

disruption periods, which take the form of equation (1). 

Manager will be more aggressive in using expedite 

capacity ,i jv  when   increases. Otherwise, decision 

maker will be more conservative when   decreases. 

,

,

i j

normal i j

v

Z z
 


 (1) 

 

4 Mathematic model 

 

Based on the description of section 2, we could construct 

the cost function ,i j  in normal state as equation (2), 

where the first item is operation cost of planned capacity, 

the second item is electricity shortage cost. 

, 0 , ,( )i j i j i jc z k z y     (2) 

It is rather interesting that ,i j  is obviously a 

newsvendor model. Thus, we could easily obtained the 

optimal planned capacity *

,i jz  in normal state by 

minimizing the expectation cost of equation (2), and 
*

,i jz  

is regarded as normalZ  as equation (3), where 1( )F    is the 

inverse function of ( )F  . 

1 0(1 )normal

c
Z F

k

   (3) 

Further, we could construct the cost function during 

the disruption period ( , )i j  as equation (4), where the 

second item is the procurement cost of regular capacity, 

the third is procurement cost of expedite capacity, and the 

last item is injured capacity recovery cost. 

 

, 0 , 1 2 , , 1 , ,( ) [

( ) ]

i j i j i j i j i j i jc z cU j c v k x z v

U j y P

  

 





       

   
 (4) 

( )   is dirichlet function, where (0) 1   when j  , 

otherwise ( ) 1    when j  . 
,i jx  in equation (4) is the 

state transition function, which takes the form as equation 

(5). 

, , 1 , ,min{ ( ) ,0}i j i j i j i jx x z v U j y        (5) 

The expectation disruption cost of equation (5) takes the 

form as equation (6), where 

, 1 , , ( )i j i j i jx z v U j       . 

, 0 , 1 2 ,( )

( ) ( ) ( )

i j i j i j

y

c z cU j c v

k y f y dy P


 






     

  
 (6) 

It can be easily proved that 
,i j  is convex in 

,i jz , so 

we omit the proof. And we could get the optimal planned 

capacity *

,i jz  in period ( , )i j  by solving 
,

,

0
i j

i jz





, and 

the expedite capacity can be obtained through equation 

(1), that is
* *

, ,( )i j normal i jv Z z  , which is obvious an 

“order up to” decision. 

However, due to the net inventory variable *

,i jx , we 

could not expect the optimal decision * *

, ,[ , ]i j i jz v  in single 

period to be also optimal in a multi-period decision. Here, 

we define a cost function , ( , , )i jJ x z v , which is a total 

expected cost by aggregating expected discounted from 

( , )i j th period to the ( , )N m  period. And , ( , , )i jJ x z v  takes 

the form of equation (7). 

, , , 1( , , ) min{ ( , , )}i j i j i jJ x z v J x z v    (7) 

  is discounted cost which is set to 1 in the 

following equations. Further, let 

, 1 , 1( , , ) min{ ( , , )}i j i jT x z v J x z v  , then we could obtain 

, ( , , )i jJ x z v  as equation (8): 

, 0 1 2 , 1

,
0

( , , ) ( ) ( )

( ) ( ) ( ) ( )

i

i j i j

i j
y y

J x z v c cU j c v P

k y f y dy T y f y dy


 

 
 

 

      

  



 
 (8) 
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Proposition 1: 
, ( , , )i jT x z v is convex in 

,i jx , 
,i jz and 

,i jv . 

Proof: Backward induction is adopted in proving 

proposition 1. Firstly, expectation cost of last 

period
, ,N m N mJ   , and it can be easily proved 

that

2

,

2

,

0
N m

N m

J

x





. Due to 

, ,min{ }N m N mT J , it can be 

easily proved that 

2

,

2

,

0
N m

N m

T

x





. Secondly, we assume 

2

, 1

2

, 1

0
i j

i j

T

x









, as long as 

2

,

2

,

i j

i j

T

x




 can be proved to be non-

negative, then we could obtain the proposition 1. 

According to equation (8), we could get 
2 2

, , 1

2 20
, , 1

( )
( ) ( ) 0

i j i j

y
i j i j

J T y
kf f y dy

x x




 




  
  

  , and then 

2

,

2

,

0
i j

i j

T

x





. According equation (5) and duality principle, 

, ( , , )i jT x z v  is also convex in z  and v . 

 

Proposition 2: Discounted cost 
, ( , , )i jJ x z v  is convex in 

,i jz  and 
,i jv . There is an unique optimal decision 

sequence * *

, ,{ , }i j i jz v  that minimizes
, ( , , )i jJ x z v , and takes 

the form as: 

* *

, ,max{0,min( , ( ))}i j i j iz z d j m    (9) 

* *

, , ,max{0,min( , ( ))}i j normal i j i jv V Z z x U j       (10) 

Proof: The second order derivative of , ( , , )i jJ x z v  

with x  has been verified non-negative, that means 
2

,

2

,

0
i j

i j

J

x





, and according to the duality principle, 

2

,

2

,

0
i j

i j

J

z





 is also non-negative. That means the optimal 

*

,i jz  is the solution of 

,

0
0

,

'( ) ( ) 0
i j

y
i j

J
c k T y f y dy

z







    

  . Considering that 

,i jz  is non-negative, the optimal 

* *

, ,
max{0,min( , ( ))}

i j i j i
z z d j m   . And the optimal 

*

,i jv  could be obtained by “order up to” policy by 

equation (1), so that 
* *

, , ,
max{0,min( , ( ))}

i j normal i j i j
v V Z z x U j       

 

 

 

 

5 Numerical simulation 

 

Despite the optimal decision sequence * *

, ,{ , }i j i jz v  being 

proved, no analytical solution could be foreseen in 

section 4. So in this section, numerical simulation is 

presented by genetic algorithm, in order to give much 

more managerial insights by sensitivity analysis to some 

key parameters. Basic parameters are set as below: 

electricity demand y  in each period during disruption is 

normal distributed, of which the mean and variance are 

1   and 2 0.1   respectively. 
0 0.8d  , and 

0d  . 

4 2( ) 10P r r  which means recovery cost is rather 

expensive and presents characteristic of “diseconomy of 

scale”. 100k  , 
0 2c  , 

1 3c  , 
2 4c  , 1.65normalZ  . 

Sensitivity analyses on parameters of  ,  , N , m , U 

and V  are assumed to be carried. 

 

5.1 SENSITIVITY ANALYSES ON   

 

normalZ  is the optimal planned capacity of each period, the 

decision variable *

,i jz  should be as close as possible to 

normalZ , so that the optimal *

, ( )i j iz d j m   . Then 

*

,{ }i jv  can be calculated by equation (10), and *

,{ }i jv  is 

given in FIGURE 2, where 5N  , 5m  , 0.2U   and 

0.1V  . It is quite interesting that the optimal expedite 

capacity ordering sequence *

,{ }i jv  converges into a 

rectangular wave with its amplitude equals to V  before 

the 12th period when 1.0  , while *

,{ }i jv  presents to be 

a bell-shape curve with its peak decreases when   varies 

from 0.9 to 0.1. It means that a much more stable and 

easier decision sequence of *

,{ }i jv  could be obtained when 

manager takes much more aggressive risk attitude, while 

the lowest disruption cost is promised when he 

maximizes the procurement of expedite capacity at the 

first several disruption periods.  
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5.2 SENSITIVITY ANALYSES ON  , U AND V  

 

Following the parameters setting of section 5.1, the total 

costs are given by TABLE 1 to show the trends of cost 

when the lead time of regular capacity   varies. In 

generally, total cost would be cut down when   

decreases. However, costs presented in TABLE 1 

announce that only 0.13% of cost reduction is contributed 

when   decrease from 5 period to 1period. It means that 

lead time of regular capacity has merely no impact on 

total cost.  

 

TABLE 1 Total cost when [ , ]   varies 

 τ=2 τ=3 τ=4 τ=5 

α=0.1 34829 34841 34852 34874 

α=0.5 34813 34832 34836 34848 

α=1.0 34808 34823 34839 34855 

α=1.5 34808 34823 34839 34855 

α=2.0 34808 34823 34839 34855 

 

Furthermore, we would like to investigate whether 

total costs will be changed when the upper bound of U  

and V  vary. TABLE 2 gives the numerical results when 

U  varies from 0.0 to 0.4 and V  varies from 0.0 to 0.3. It 

is interesting that cost decreases when either U  or V  

increases. However, the increment of U  or V  has a 

marginal decreasing effect in cutting down the cost. And 

even more, costs presented in TABLE 2 announce that 

only 2.07% of cost reduction in average is contributed 

when U  or V  increases. Hereunto, we could draw the 

conclusion that manager could not have to get more 

regular and expedite capacity to the best of his ability 

during the capacity recovery process, because it 

contributes very small in cutting down the cost. This 

conclusion also gives the possible implication that 

manager might not procure any regular or expedite 

capacity due to the small reduction in cost. 

 

TABLE 2 Total cost when [ , ]U V  vary when 2    

 V=0.0 V=0.1 V=0.2 V=0.3 

U=0.0 35396 34837 34806 34800 
U=0.1 35249 34835 34773 34763 

U=0.2 35135 34818 34742 34728 
U=0.3 35053 34813 34714 34694 

U=0.4 35001 34809 34691 34661 

 

5.3 SENSITIVITY ANALYSES ON N AND m 

 

Further, we would like to investigate the influence of 

[ , ]N m  on the total cost with 0.4U   and 0.3V  . 

TABLE 3 gives the simulation results. It is interesting 

that shortening the recovery cycles (N) has nearly no 

contribution in cutting down the total cost, while cost is 

greatly cut down by shortening the lead time (m) that 

recovered capacity is putting into reuse again. Some ways 

could help to shorten m, such as improving the labour 

skill of maintenance department; requiring suppliers 

provide spare parts as soon as possible, seeking the 

maintenance support from partners, and so on. 

 

TABLE 3 Total cost when [N, m] vary when 2   

 m=3 m=4 m=5 m=6 m=7 

N=3 20813 27758 34610 41671 48641 

N=4 20838 27793 34656 41729 48712 
N=5 20867 27833 34661 41795 48795 

N=6 20899 27878 34769 41873 48892 

N=7 20935 27928 34834 41958 49001 

 

6 Conclusions and future researches 

 

In this paper, a dual capacity sourcing model for an 

injured power system is presented by investigating the 

disruption management of SGZEPC in 2008, and 

correspondingly mathematical proofs are given to verify 

the existence of optimal decision, and numerical analysis 

is presented towards several key parameters by genetic 

algorithm. Three managerial insights are obtained 

through our research. Firstly, we find that an stable 

optimal decision sequence in expedite capacity ordering 

sequence could be obtained when manager takes 

aggressive risk attitude in recovery process, and the more 

aggressive the manager is, the more easier for him to 

make decisions. Secondly, disruption cost could be cut 

down by shortening the lead time of regular capacity and 

maximizing the procurement of regular and expedite 

capacity. However, the reduction in disruption is rather 

small, which implies that manager could procure none 

capacity when the procurement coordination cost is 

relatively high. Thirdly, disruption cost could be greatly 

cut down when shortening the lead time of recovered 

capacity being put into reoperation, which implies skilled 

maintenance labour, fast provision of spare parts and 

technique support in capacity recovery from partners 

could do great contribution in cutting down the disruption 

cost. 

Future works will be carried on two respects. First, 

since the possibility of manager in procuring non capacity, 

which implies lower service level of power system is 

during disruption periods. Supervision penalty as well as 

its optimal boundary should be further verified to prompt 

manager providing more electricity. Secondly, whether 

the conclusions mentioned above are still proper when 

electricity demand is correlated between neighbouring 

periods should be further researched. 
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