
 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan 

271 
Nature Phenomena and Innovative Engineering 

 

An improved energy-efficient distributed storage system 

Hongyan Li* 

School of Information Management, Hubei University of Economics, Wuhan, China 

Received 12 June 2014, www.tsi.lv 

Abstract 

Energy consumption has increasingly become a serious problem in contemporary data centres. The electricity bill contributes a 

significant fraction of the Total Cost of Ownership (TCO), and it is predicted to increase at an even faster pace in the following years 

as extremely large volume of data are being generated on a daily basis which would necessitate corresponding storage capacity to 

hold them. As a profitable work-around step toward the energy problem within the cloud infrastructure, in this paper, we propose 

REST, an energy-efficient cloud storage, which is built upon a cluster-based object store similar to GFS. It achieves high energy-

efficiency by cleverly exploiting the redundancy already present in the system without compromising the inherently well-established 

schemes for consistency, fault-tolerance, reliability, availability, etc., while maintaining a reasonable performance level. By 

modifying slightly the data-layout policy, REST can safely keep a large amount of the storage nodes in standby mode or even 

powered off entirely most of the time. Deploying a sophisticated monitor, it also provides the flexibility to power up sleeping or 

powered down nodes when necessary to accommodate to the variations in workloads. Trade-offs between energy efficiency and 

performance can be conveniently made by simply adjusting a trade-off metric in REST. The FileBench and real world workload 

experimental results demonstrate that power savings can reach 29% and 33%, respectively, while still providing comparable or even 
surprisingly better performance. 
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1 Introduction 

 
With more and more internet services, outsourced storage 

services being concentrated in data centres and cloud 

computing infrastructures, added by a variety of data-

intensive applications, like Google search engine, genetic 

projects, satellites images, data centres are increasingly 

getting filled with extremely large amount of data. Such 

huge storage requirements pose a lot of challenges to the 

IT management in terms of privacy, security, efficiency, 

energy consumption, etc. Even worse, the storage 

requirements have been reported to be rising by 60% 

annually. The phenomenal amounts of data in data 

centres not only call for tremendous investment on 

hardware, e.g. disks, to provide the corresponding storage 

capacity, but also need continuing power supply to feed 

the hardware. In large data centres, the energy cost 

consumed by the IT equipment over their lifetime is 

comparable to the hardware investment and occupies a 

significant portion of the TCO [1]. To make the situation 

more complicated, the power consumed never comes 

alone, but with many accompanying negative side effects, 

such as environmental impacts, noises, health 

disturbance. For example, according to the data from 

EPA, generating 1 kwh of electricity in the United States 

gives birth to an average of 1.55 pounds of carbon 

dioxide (CO2) emissions and consuming the same 

amount of electricity would further incur more emissions 

and heat which needs other additional electricity to keep 

data centres temperature from getting too high [2]. 

What’s more, cutting the electricity bill is compelled by 

external factors and especially critical in certain 

situations. For example, in major cities the electricity 

prices are extraordinarily high and the requirements of 

increasing power supply may not be possible to be 

fulfilled at all [14].  

Fortunately, many researchers from academic and 

industrial background have extensively investigated the 

power consumption problem and put forward a number of 

fruitful techniques to attack the problem over the past 

several years [3-8]. Generally speaking, those techniques 

can be classified into two broad subcategories: 

component-based solutions [6, 12] and system-level 

solutions [4, 5, 7, 8]. Since the data centres must be 

designed to account for the peak workloads, they are 

most of the time relatively over-provisioned due to the 

wide temporal variations exhibited by the workloads, e.g. 

diurnal peaks and troughs, which enable those techniques 

to be effective. However, while power-proportionality 

can be achieved relatively easier for some kinds of 

components, e.g. using dynamic voltage and frequency 

scaling (DVFS [13]) for CPUs, non-CPU components, 

especially like disks, are not power-proportional. Thus, to 

conserve energy consumption in storage subsystem, 

taking advantage of the observed idle periods between 

successive disk accesses is a common practice. For 

example, put some disks into standby mode under light or 

moderate workloads and try to manufacture and prolong 
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idle periods [4, 5, 7], both of which can be also perceived 

as forms of power-proportional. 

Still, there remains a relatively less-explored spectrum 

of large-scale storage system power-saving space, which 

is from a high-level system design perspective. 

Distributed storage system systems such as GFS [9], 

HDFS [10], and KFS [11] are widely deployed as the 

backend storage infrastructure in large data centres and 

cloud computing infantries due to the aggregate high I/O 

performance and cost advantages over conventional SAN 

and NAS solutions. However, they were originally 

designed with little if not absolutely no power 

considerations. They were established on the assumption 

that instead of on enterprise-grade disks, they would be 

running on clusters consisting of hundreds of thousands 

of commodity servers, for which the unpredictable and 

sporadic fault or failure happenings should be considered 

as norm rather than exception [9]. Thus, they must be 

designed to be able to gracefully tolerate large numbers 

of component faults with little or no impact on service 

level performance and availability. Facing this hard 

situation, replication technique, a method widely thought 

to be able to provide high system reliability, better 

performance and high availability, had become a natural 

technique candidate to be deployed. As a result, each data 

block is replicated to a user defined level, typically three, 

replicas in those systems, resulting in large amount of 

redundancy. However, such redundancy at the same time 

introduces a lot of overheads to the system in aspects of 

storage capacity, replica consistency, networking 

bandwidth requirements, power consumption, etc. For the 

energy conservation consideration, an obvious and simple 

ideal occurs to us: is it possible to put some of the 

redundant nodes into power-saving mode or entirely 

power them down under light or moderate workloads 

while maintaining the existing sophisticated built-in 

mechanisms? 

In the remaining of this paper, we present REST, a 

new cloud storage scheme based on a replicated, 

distributed file system KFS [11]. It aims to improve 

energy-efficiency without incurring severe performance 

degradation from the perspective of applications. The 

central point is that it turns down some redundant nodes 

under light or moderate workloads to conserve energy 

and also keeps the capability to power them up again in 

response to variations in workloads to prevent the 

performance from degrading too far. Our main 

contributions are: an energy efficient cloud storage 

scheme capable of reacting gracefully to variations in 

workloads and an architecture deploying new technology 

to manage cache and consistency under energy-saving 

mode which could be also potentially applied under 

disconnected conditions that happen frequently within 

large-scale systems. The design specifics are detailed in 

section 3. Experimental results have showed that REST 

has lived up to our expectations very well. 

The remainder of the paper is structured as follows: 

Section 2 introduces the background and motivation. 

Section 3 details the design principles and 

implementation specifics. Section 4 presents our 

evaluation methodology and results. Section 5 makes a 

conclusive remark. 

 

2 Background and motivation 

 

Basically, many widely deployed distributed file systems 

share some common design and implementation 

strategies and tactics. They mainly consist of three parties 

assuming respective responsibilities: the client library, 

metadata server (MDS) and chunk-servers. The client 

provides API facilities to access the file system; MDS is 

the central component taking the responsibility of 

managing the whole file system name space; chunk 

servers are physical nodes where the data are actually 

stored. The objects stored in the systems are partitioned 

into chunks. Each chunk is replicated on multiple chunk 

servers to guard against disk or machine failures and to 

provide high performance and availability. The central 

MDS is implemented as an in-memory data structure so 

as to provide fast access speed, as it is visited much more 

frequently by normal operations and scanning checks [9]. 

It keeps all the metadata information. It is check pointed 

periodically to persistent storage to guarantee reliability 

and fast recovery in the event of MDS failure. Chunk 

servers communicate with MDS through frequent 

heartbeat messages reporting their storage status and 

receiving corresponding acknowledgement from MDS to 

maintain high availability. If the MDS notices some 

replicas are unavailable, it initiates re-replication process 

to prevent the data block getting under-replicated. From a 

high-level perspective, read and write requests are 

handled similarly. They both firstly go forward to the 

MDS to get the necessary information, like chunk 

servers’ location and lease information, then directly 

contact the corresponding chunk servers to complete the 

data transfer, rendering the MDS out of the data transfer 

path. By doing this way, the involvement of MDS is 

minimized and the chances of its becoming potential 

bottleneck would thus be minimized. 

However, there exists a significant difference between 

the phases of data transfer for read and write requests. For 

writes, all the nodes hosting the replicas should remain 

powered on for the purpose of strong consistency during 

the entire write process. For example, GFS [9] uses lease 

mechanism to define the write order of the replicas and 

applies pipelining technique to propagate the content. But 

for reads, after getting a list of chunk servers hosting the 

replica, the client would contact (may use an optimal 

algorithm, e.g. least distance first, to minimize the latency) 

one of them to fetch the replica, leaving the other ones 

unvisited if the firstly chosen chunk server succeeds in 

servicing the request. To get a holistic view of the read 

and write distribution, we modified the file access APIs 

of dbench4.0 [15] to those APIs exported by KFS, and 

then executed dbench4.0 on KFS. We configured KFS to 

consist of a MDS and 60 chunk servers. After the running 
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process finished, we analysed the statistics from MDS 

and all chunk servers. The overall number of reads is 

what MDS has recorded, while the total number of writes 

is the multiplicative result of the MDS recorded number 

and the replication factor. The read and write requests’ 

cumulative distribution function (CDF) figure is shown in 

Figure 1. 
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FIGURE 1 CDF of read/write among all the chunk servers 

As shown in Figure 1, it shows a cumulative 

distribution function across the numbers of the chunk 

servers versus the percentage of read/write that the chunk 

servers experienced over the course of the running 

process. As pictured in the figure, read distribution 

embodies a wide discrepancy from write, i.e. read is more 

skewed than write, whereas write is approximately linear, 

which results from the inherent different handling 

processes. For example, nearly 83% of the reads were 

concentrated on 50% of the chunk servers, while 50% of 

the chunk servers had absorbed 61% of the total write 

operations. That’s because, for read, every time the 

request for the same data block would with a strong 

likelihood be routed to the same chunk server hosting a 

copy (either primary or replicas) of the data block due to 

the same internal decision policy, e.g. judging by IP 

addresses, with the exception of the cases of chunk server 

having failed or the system topology having changed. But 

for write, because of the load-balance hinting data placing 

policy, especially for newly written data block, the write 

operations are more likely to be distributed uniformly 

among all the chunk servers. Such observed skewness in 

the read/write distribution motivates our work: is it 

possible to remove the write traffic from some chunk 

servers to make them presented with more read-

dominated access patterns, which would lead to more 

skewness and exploit such skewness to conserve energy? 

It is worth noting that due to hardware limitations, the 

experiment was not conducted on 60 physical chunk 

servers, but with each server hosting multiple chunk 

servers. Chunk servers are represented by different 

processes running on different ports with respective 

dedicated directories providing storage capacity. Such 

configurations have the following important implications: 

the chunk servers bear great homogeneity, have relatively 

flat network topology and are rendered to be equally 

subject to the network conditions. By contrast, in a 

genuine environment of large-scale storage system 

installation, like data centres, the situation is far away 

from here. Usually, it embraces a wide range of 

heterogeneity resulting from its hundreds of thousands of 

commodity components possibly differing widely in 

aspects of storage capacity, computing capability, 

network bandwidth, etc. Furthermore, it is typically 

constructed in a hierarchical form using different levels 

of switches to connect racks and chunk servers, which 

would make different constituents subject to various 

network conditions. However, under such a complicated 

situation, it is reasonable to assume the existence of 

similar or even better observations that we had 

experienced with our relatively simple and flat 

experimental setup. The assumption is based on the 

failure preference phenomenon observed in [16, 17], 

stating that failures tend to happen again to where they 

had happened before at a much higher probability. This 

phenomenon would potentially translate into more 

skewness in read/write distribution, which would present 

us a great opportunity to conserve energy as discussed in 

the following sections. Another thing that should be 

pointed out is that with no doubt we would rather like to 

admit dbench can never be representative of all read-

world workloads, but we hope it would be reasonable to 

claim that though simple, it would shed some light on the 

problem we are discussing in this paper. 

 

3 Design and implementation 

 

As discussed in the preceding section, the skewness in 

I/O behaviour, especially in read distribution, may 

provide us with great potential to conserve energy. That 

is because skewness implies that some redundant chunk 

servers would remain idle even in the presence of I/O 

workloads. Thus, the node’s storage subsystem or even 

the whole node if the node’s only role is providing 

storage function can be transitioned into power-saving 

mode in a manner that is oblivious to the applications 

running on the system. This section is devoted to discuss 

how the energy-conservation potential can be realized. It 

deals with the details of the design and implementation of 

our prototype system REST. Specifically, it first outlines 

the design principles and goals that guide our design, and 

then presents the challenges and problems that should be 

resolved, followed by the overview architecture of REST. 

Finally, it discusses in depth the strategies and tactics we 

have deployed to achieve energy-efficiency purpose. 

 

3.1 GOALS AND CHALLENGES 

 

The ultimate goal of our work is to build an energy 

efficient storage system through exploiting the 

redundancy inherently existing in a replicated, cluster 

storage system. We choose the distributed file system 

KFS [11] as our basic architecture and develop our 

prototype on that. During the process of development, we 

strive to fulfil the following design disciplines and 

principles, which also act as our design guidelines: 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan 

274 
Nature Phenomena and Innovative Engineering 

 

 Changes made to the original system should be 

minimized.  

 Energy efficiency should be obtained not at the 

expense of severe system performance degradation. 

 Energy efficiency should be obtained without 

compromising reliability, availability, consistency 

and failure resilience.  

 Trade-offs between energy efficiency and high 

performance should possibly be made by users 

and the system should be reasonably flexible to 

automatically respond to the workload variations. 

 Failures of the components should be handled 

gracefully, ideally transparently, without adversely 

impacting the applications. 

KFS was initially designed with almost no power-

awareness considerations, but with its focus on building a 

high reliable, high available, high aggregate performance, 

scalable and fault-tolerant storage system on commodity-

level components. Its salient feature is that reliability and 

availability can be well guaranteed even in the presence 

of failure occurrences to some components. The rationale 

behind our design is to conserve as much energy as 

possible while maintaining basic functions and desirable 

excellent features. To achieve this goal, the following 

challenges and problems should be well addressed: 

 Data placement policy should be power-aware. 

The policy deployed by KFS places data blocks in 

a random way which would potentially cause all 

chunk servers to be highly correlated to each 

other. Using that policy, for example, at most N-1 

chunk servers can be transitioned into power-

saving mode to conserve energy if the system’s 

replica factor is N. 

 How many redundant chunk servers and when are 

they going to be put into power-saving mode 

while maintaining a reasonable performance 

level? And how to differentiate those deliberately 

powered-down servers from those that actually 

malfunction?  

 Under what circumstances should the sleep servers 

be woken up? And in what manner are they woken 

up? 

 What measurements should the system to take if 

failures occur? 

 How to guarantee consistency among all replicas 

when some are temporarily not unreachable for 

power-saving purpose?  

We present our approach to addressing those 

challenges and problems in the following subsections. At 

first, we give an overall description of the architecture of 

REST, and then we dive into the details of the design 

strategies and tactics integrated in REST. 

 

3.2 SYSTEM OVERVIEW 

 

As mentioned previously, our simple strategy is to exploit 

the redundancy present in the system and the skewness in 

IO distribution to realize energy-efficiency purpose. In 

order to do so, we have slightly changed the architecture 

of the original system and additionally integrated some 

functional modules into it. As shown in Figure 2, there 

are three main roles in REST: MDS as in the basic 

infrastructure with a newly added functional module 

instructor (not shown in the figure), loggers that are 

performed by dedicated high-performance servers and 

chunk servers. Note that the constant heartbeat messages 

among them are omitted for simplicity. 

Compared with its basic architecture, REST differs 

itself in the following aspects: the back-end chunk servers 

are partitioned into several subsets, the new entering of 

loggers and an instructor that decides when and how 

many chunk severs are going to be powered down and up. 

Since the details are given in the subsequent subsections, 

we only give a brief description in the remain of this 

subsection. As shown in the figure, we strategically 

partition the entire space of chunk serves into several 

subsets. The most important one is named kernel subset 

coloured in red, and the others are named backup subsets 

coloured in green and light green, respectively. Ideally, 

the kernel is expected to remain powered on, while 

backups are to be kept powered down under light and 

moderate workloads. It is the responsibility of instructor 

that determines when to power backups down and when 

to up based on a number of factors. The up/down 

commands are piggybacked in the acknowledgements to 

periodic heartbeat messages from chunk servers. The 

loggers are designated the functions of providing 

temporary storage space to hold the data destined to the 

chunk servers that are powered down for that period of 

time, forwarding them to the corresponding chunk servers 

when they are powered on again and reclaiming the space. 

Read requests are sent to loggers as shown by read step: 1) 

(solid-line) if the requested data blocks exist there and the 

loggers are not too overloaded, otherwise they would be 

served by kernel or backup subsets as shown by read step; 

2) (dash-line). Write requests are handled as usual in KFS 

if the kernel and backup subsets are all powered on, in 

other cases they are written to the powered-on chunk 

servers and loggers, and then immediately return to the 

clients to indicate write completion. 

 

3.3 POWER-AWARE DATA LAYOUT 

 

The inherent limitation that prevents the original system 

from powering down more than N-1 chunk servers in an 

N-way replicated system lies in that the initial data block 

assignment policy logically imposes a strong tie between 

every pairwise, despite they are physically separate. For 

example, if N or more chunk servers were powered down, 

the data block of which all N replicas unluckily happen to 

reside on the N powered-down chunk servers or on a 

subset of the powered-downs would have been rendered 

unavailable. 

To eliminate this limitation, we divide the whole 

chunk servers into several independent subsets named 
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kernel and backups, and for each data block, it is 

guaranteed that there would be at least one replica in each 

of the subset. This is achieved by the new data placement 

policy. For the convenience of our discussion, we define 

the following symbols: N for the total number of chunk 

servers in the system; r for replication factor; k 

( 1
N

k
r

) for the size of kernel. As a system 

parameter, k is critical to the system performance and 

energy efficiency, since it determines the kernel’s 

performance and thus, how often backups are going to be 

powered down and up, as discussed in the next following 

subsection. Fortunately, its value determination can be 

hinted by the individual performance of the chunk servers 

and operator’s well-understandings of the characteristics 

of the expected workloads or it can be gradually adapted 

to the most suitable value using test-and-tune method. 

Backup subsets are obtained by equally partitioning the 

rest of the chunk servers, making its size 
1

N k

r
. The 

definitions of kernel and backups can be specified in 

advance in a system configuration file, and are all 

maintained in MDS. The chunk servers that belong to 

kernel and backups are typically chosen to have the same 

fault-tolerance properties, like a rack, respectively, for 

they are highly logically related, i.e. the failing of any 

one of them would render the data blocks residing on it 

unavailable within the corresponding subset. Interestingly, 

such strong relationship among physically separate nodes 

is exactly the reason that motivates our new data 

placement policy. However, doing so has several 

advantages, for example, utilizing less precious 

networking bandwidth and creating opportunity for 

power savings for switches, which would otherwise 

remain powered on, but also bears potential 

disadvantages, like being easily bottlenecked and forming 

high-temperature spots in large data centres. 

When allocating a data block, MDS firstly allocates 

one data block for it from kernel, and then allocates the 

remaining replicas from backups, one from each. Within 

each of the subset, we also balance the data blocks among 

the chunk servers. With this kind of data placement 

policy, the minimum availability would safely be 

guaranteed by kernel, and backups can be powered down 

freely and independently when necessary without 

compromising system availability. MDS dynamically 

tracks the status of kernel and backups and differentiates 

the failed chunk servers and those powered down chunk 

servers. The placement policy imposes several changes to 

the read/write processes as discussed previously. When 

the kernel fails down, one of or all of the backups can be 

powered up to take the role of the kernel and 

rebuild/recovery the kernel, based on the trade-offs 

between greater power savings and higher 

rebuild/recovery speed. 
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FIGURE 2 REST architecture 

 

3.4 INSTRUCTOR 

 

In reality, due to wide variations in workloads, it is 

improper to keep the number of powered down chunk 

servers constant. In REST, there is a central role named 

instructor that determines when and how many chunk 

servers are required to be powered down or up using 

WOL [18] technique. It periodically makes the decision 

based on a complex combination of multiple factors. 

Formally, the decision-making can be expressed as: 

( , , , )n f P R F C  (1) 

1  (2) 

In the above equations, n is the result of the decision 

making and indicates the number of the to-be-powered 

down or up chunk servers. P is defined as the ratio of 

performance to power, both of which are monitored by 

instructor, it reflects the system power efficiency; R is the 

required performance level, usually assigned as the 

minimum requirements that must be met; F represents the 

instructor’s predication of the near-future workloads. It is 

obtained by analysing past workload characteristics and 

is used to instruct the decision. If it is predicated that the 

forthcoming write requests are very large or the writes 

would last for a long time, it will generate a larger value 

of F, indicating it is desirable to power more chunk 

serves up. The heuristic is that it tries to directly write 

large writes to all the chunk servers as possible as it can 

be, while redirect as many small writes as possible to the 

loggers, which is decided by two reasons: the loggers’ 

capacity is limited and we want small write requests to be 

returned faster, since their latencies are more sensitive to 

the applications. If it is predicated that there are 
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enormous read-intensive access patterns in the near future, 

it would pro-actively prepare to power up more chunk 

servers to mask the relative long time, usually minutes, to 

power chunk servers up and to avoid degrading read 

performance too much. C is the health conditions of the 

kernel. Since the kernel is expected to be working all the 

time and unexpected failures in the kernel would be 

expensive due to the minimum availability being 

compromised, kernel health conditions [17] should be 

constantly monitored and reported to the instructor to 

take corresponding precautions, like replace new devices, 

if the health conditions are not so good. , ,  and  

are their corresponding coefficients and can be assigned 

by the operator. They represent their relative importance 

in the process of decision making. For example, if the 

operator gives higher priority for performance than 

power-saving consideration, she/he can easily achieve 

that by assigning  bigger than .  

In addition to the above power-down and up scheme, 

there are some other scenarios that the chunk servers 

should be powered up in REST. For example, in our 

current prototype implementation, the loggers and chunk 

servers’ statuses are periodically reported to MDS 

through heartbeat messages. When MDS notices that if 

the overall space utilization of loggers has reached certain 

threshold, e.g. 80% or some members of kernel are 

unavailable, it would force all the chunk servers to be 

woken up immediately. 

 

3.5 LOGGERS 

 

In REST, unlike other techniques using dedicatedly 

reserved space on the existing devices, e.g. Eraid [19], 

DIV [7], write-offloading, we have used dedicated 

servers equipped with solid-state drives (SSD) to log the 

data destined to the temporarily powered down chunk 

servers. From the point of view of our considerations, 

there are four reasons for doing so. At first, we want the 

logged data to be persistently stored more reliably, and 

SSDs can fulfil our requirements, additionally, SSDs 

themselves consume much less power than conventional 

disks counterparts. Secondly, it is desirable to place 

logged data in different fault domains, typically different 

racks in data centres. Thus, even if the kernel subset fails 

down due to whole rack or switch failing down [26], it is 

still achievable to restore the data to the latest status with 

the logged data and the newly powered up servers. 

Thirdly, with the technology drastically advanced, the 

shortcomings formerly associated with SSD have already 

been well overcome [20] and their prices are not that high 

as before making them increasingly become acceptable 

and practical to be deployed in production systems. 

Lastly, SSD flash drives have blazingly fast read speed, 

including both of sequential and random patterns. We 

deploy this attractive characteristic to provide high 

performance for read requests by diverting read requests 

to loggers firstly if they are not overwhelmingly 

overloaded with traffics. 

To take maximum advantage of SSDs and avoid their 

excruciating slow write shortcoming, we deploy a log-

structured [21, 22] store engine to record the logged data. 

For each logged data block, there is corresponding 

information specifying whether it is logged and logged on 

which logger in its in-memory metadata entry in MDS 

namespace. In addition, each logger maintains a hash 

table in memory for itself. The table maps the unique 64-

bit chunkID to the location where the on-disk entry 

resides within the store engine. The on-disk entry of 

logged data block is self-contained. It is composed of a 

logger header and a logger body. The logger header 

contains the following information: chunkID, version 

number, destinations, logger factor (meaning how many 

copies the chunk should be propagated to newly powered 

up chunk servers to in order to maintain the required 

replication factor) and chunk checksum. The logger body 

is the content of the data block. 

For every data block write request, it would be firstly 

tried to be forwarded to the powered on chunk servers 

and if any of the destination chunk servers is powered 

down temporarily, it would be logged to one of the 

loggers before returning to the application. Specifically, 

MDS would choose a logger and send it a log request 

containing the necessary information and update its 

corresponding metadata entry. Receiving the log request, 

the logger appends an on-disk entry to the store engine, 

and then inserts a mapping entry into the local hash table, 

or replaces the mapping entry corresponding to the chunk 

if it has been inserted previously. That implies, for each 

logged chunk, there is only one mapping entry, which 

points to the most recent version of that chunk. For every 

read request, MDS would look the chunks in the 

namespace and preferably forward it to the loggers if it 

has been logged in any of the loggers, otherwise forward 

it to the powered on chunk servers. From the data paths 

of write and read requests, it would be expected that 

loggers would improve the system performance due to 

the log-structured design and SSDs’ superior random 

read performance, which is actually proved by our 

experiments. 

Considering the limited space of the loggers, we have 

designed each logger to initiate propagating and 

reclaiming processes at regular intervals, i.e. one minute. 

The propagating processes scans through the entire local 

hash table, and for each entry, it tries to contact those 

corresponding destination chunk servers to see whether 

they are reachable and if so it sends the logged data to 

them and update the entry information. The reclaiming 

process scans the on-disk entries from the beginning, and 

reclaims the space occupied by those entries whose 

logger factor is zero. It works in a similar way to the 

cleaner in [21]. Thanks to the two periodically-run 

processes, the loggers’ utilization of space is reasonably 

prevented from going high quickly. 
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3.6 ENERGY MODELLING 

 

To estimate the energy efficiency of REST, in this 

subsection, we analyse the energy models for both of the 

original system and REST. The following table 

summarizes the parameters in our analysis: 
 

TABLE 1 Energy modelling parameters 

Symbol Description 

cN  The total number of chunk servers 

lN  Number of loggers 

k

iT  Length of the kth active interval of the ith chunk server 

iA  Number of active intervals of the ith chunk server 

k

iP  
Power of the ith chunk server at time t within the kth interval 

0 k

it T  

u

iE  Energy consumed by the ith chunk server to transition up 

d

iE  Energy consumed by the ith chunk server to transition down 

u

iC  Count of transition ups of the ith chunk server 

d

iC  Count of transition downs of the ith chunk server 

jP  Power of the jth chunk server when power up 

jT  Active time of the jth logger. Loggers have no up-and-
downs 

 

Two points should be noted about Table 1. One is that 

we have not outlined the energy consumed by MDS, 

since our main purpose is to compare the energy 

efficiency of the original system and REST. And we 

assume the amounts of MDS energy of them are 

approximately equal. We denote it as mE  in the 

following discussion. The other one is that we treat the 

instantaneous powers of loggers and chunk servers 

differently, i.e. we consider the power of loggers to be 

stable, while the power of chunk servers to be varying 

over time. Because we expect that individual chunk 

servers would experience bigger power gaps between 

peak power and the lowest power than loggers. Now we 

can calculate the total energy consumed by the original 

system using Equation (3). 

0
1 1

( )
kc i

i

N A
T

k

b m i

i k

E E P dt . (3) 

Since the original system has no power up-and-downs, 

the numbers of active intervals of all the chunk servers 

are the same and equal to 1. Thus, Equation (3) can be 

translated into Equation (4). 

1

' 1

0
1

( )
c

i

N
T

b m i

i

E E P dt . (4) 

Involving with the chunk servers power up-and-

downs, REST has a more complex energy consumption 

formula:  

1 1

0
1 1 1

( ) ( )

( ) ( )

l c

kc c i
i

N N
u u

R m j j i i

j i

N N A
T

d d k

i i i

i i k

E E T P E C

E C P dt

. (5) 

It says that the total energy is the sum of individual 

components’ energy: MDS, loggers, chunk servers. The 

differences between the two energy models lie in that 

REST divides the energy of chunk servers into active 

status energy, transition energy and powered down 

energy, which is zero, and has additional energy 

consumed by loggers, while the original system keeps the 

chunk servers up all the time. The active energy is the 

sum of all the energy consumed by all the chunk servers 

over all their respective active intervals. The power up-

and-down overheads are the sum of all the energy 

consumed by transitioning. Comparing with the original 

system, REST’s potential gaining power savings stem 

directly from how many and how long chunk servers are 

powered down. 

 

4 System evaluation 

 

In this section, we evaluate REST from various aspects 

using benchmarking method and realistic workload. We 

also test the original system, which is referred to NO-

REST later as baseline for comparison reason. Section 

4.1 describes our test environment. Experimental results 

are discussed in the subsequent subsections.  

 

4.1 EXPERIMENTAL SETUP 

 

Our test bed consists of one MDS server and a number of 

chunk servers composed of 4 servers and 32 commodity 

PCs belonging to our lab’s graduate students. The 

hardware configuration of the MDS server is 

characterized by a quad-core 2GHz CPU 16GB RAM and 

16 1TB hard disks. One of the 4 servers is equipped with 

a quad-core 2GHz CPU, 4GB RAM and a Kingston 128 

GB SSD disk drive and functions as a logger. The 

remaining three servers have the same configurations: a 

quad-core 2GHz CPU, 4GB RAM and 8 1TB hard disks 

structured as RAID5. The other 32 chunk servers bear a 

wide variety of configurations and performance, since 

they were purchased in the different years when their 

respective owners were enrolled in our lab. 

We conducted our test using both benchmarking and 

realistic workload. The benchmark is FileBench [23], an 

application level workload generator that enables the 

users to emulate various workloads. Its Workload Model 

Language (WML) provides users with the capability to 

flexibly define the workload bearing different 

characteristics. A WML workload description is called a 

personality and it typically contains the following 

information about the workload: average file size, 

directory depth, the total number of files, and alpha 

parameters governing the file and directory sizes that are 
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based on a gamma random distribution [24]. FileBench 

can define the period of time for which the personalities 

are going to be run, and report the total number of 

performed operations at the end of each run. We selected 

four personalities included in FileBench to drive our 

testing. They are Web, File, Mail and Database servers, 

and their workload characteristics are specifically 

described in [24]. Each of them was run for a period of 1 

hour. We deployed fuse support of REST and NO-REST 

to access the storage like conventional file systems. The 

realistic workload is a shared server workload in our lab. 

The server is shared by all lab staff doing their own jobs, 

e.g. upload/download files, doing backups, visiting CVS 

source code repository, etc., it is also the backup server of 

B-cloud [25] system developed at our lab which provides 

on-line backup services. We configured REST and NO-

REST as the backend storage infrastructures of the server, 

respectively and monitored the server for 48 hours dating 

from 8:00 am GMT on Nov. 10 to 8:00 am GMT on Nov. 

12 to observe the workload characteristics and how REST 

performs. 

We emulated 76 chunk servers for both REST and 

NO-REST for fair comparison. Each of the 3 servers 

hosted four chunk servers, and each of those PCs hosted 

2 chunk servers. The logger server emulated 2 loggers in 

REST. Both of REST and NO-REST were configured as 

three-way replicated systems. The kernel was set to 

include all those chunk servers hosted on the 3 high 

performance servers and its size was set to 24. For each 

run, we initially powered on all the chunk servers. 

 

4.2 PERFORMANCE IMPACTS 

 

We compare the performance of different workloads in 

terms of the performance metric reported by FileBench. 

FileBench reports file system performance under 

different workloads in units of operations per second 

(ops/sec). Due to the peculiar characteristics of the Web 

server workload, FileBench would report much higher 

ops/sec than the other workloads. In order to avoid the 

results figures being too skewed, we present Web result 

in units of 100 ops/sec and ops/sec for the others. Figure 

3 shows the performance results. 

Web File Mail Database
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FIGURE 3 Performance of different workloads with REST and NO-

REST 

It is shown in the figure that REST well outperforms 

NO-REST for Web, Mail, File, achieving 9.7%, 8.17% 

and 7% performance gains respectively, while consuming 

less energy as discussed in the next subsection. And 

Database slightly lags behind NO-REST by a margin of 

5.7%. Generally, the performance gains can be attributed 

to the newly added loggers in REST. Because reads are 

preferentially considered to be routed to loggers, which 

can provide excellent read performance, including both 

random and sequential reads and writes are redirected to 

loggers when the destination chunk servers are powered 

down temporarily. Due the log-structure, writes can be 

returned to applications much sooner, thus enhancing 

performance. 

It is interesting to note that the amounts of percentage 

performance gains are closely related to the read/write 

ratio. And it’s surprising to know that the performance 

gains are proportional to the energy savings. For example, 

Web conserves the most energy but with the most 

performance improvement, which are 17% and 9.7% of 

the NO-REST counterpart respectively, due to its highest 

read/write ratio and its sequential reading entire files 

patterns. Analysing the workloads, we know Web, File, 

Mail and Database’s R/W ratios are 10:1, 1:2 and 20:1 

respectively. It reveals that workloads with higher 

percentage of reads can get more energy savings and the 

chosen kernel can reasonably satisfy the read requests in 

most scenarios. However, there is an exception to that: 

Database has the biggest R/W ratio, but exhibits 

degrading performance. It is partly because, besides 200 

readers, it launches 10 asynchronous writers and a log 

writers. In addition, they perform extensive concurrency 

and random read/writes, which would adversely prevent 

chunk servers from powering down. Another reason is 

that the writers’ extensive writing operations would 

quickly cause the loggers’ space utilization threshold to 

be reached and chunk servers to be waken up more 

frequently. 

 

4.3 TRANSITIONS AND POWER SAVINGS 

 

In this section, we discuss the chunk servers transitions 

and power savings of REST. Power savings were 

calculated by substituting the parameters in our energy 

models with corresponding dynamically monitored 

numbers and representative real world values. As pointed 

out previously, the chunk servers’ transitions are 

determined by the instructor. We define a trade-off metric 

T as / , i.e. T = / . It reflects the preference 

degree for power efficiency, meaning the bigger T is, the 

more power savings are desired. To see how instructor 

affects the power up-and-downs, we collected all chunk 

servers up-and-downs for the four workloads with 

varying T (as a side note, the preceding section’s results 

are from experiments conducted with T = 1 for REST) 

value while keeping  and  invariable and let their 

sum equal to 0.3. The statistics are summarized in Table 

2. 
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TABLE 2 Transition counts summary 

Workload T=0.5 T=1 T=1.5 T=2 

Web 126 113 110 95 

File 243 220 201 198 

Mail 189 165 146 134 

Database 74 87 102 121 

 

The table demonstrates that for Web, File and Mail, 

the number of transitions decrease with T increasing. 

Bigger value of T implies trying to achieve better energy 

efficiency, which means once chunk servers are powered 

down, they would be powered up under more serious 

conditions. Again, Database is the exception with 

transitions increasing with T increasing. As explained 

before, the nature of Database prevents chunk servers 

transitioning, but bigger value of T tries to force 

transitioning, causing REST struggling powering down 

and up.  

Since the energy savings and performance of all the 

four workloads share similar characteristics, we take Mail 

as our example to discuss power savings and performance 

with varying value of T. Figure 4 shows the relationship 

between them. The energy savings and performance are 

percentages relative to its NO-REST counterpart. It is 

apparent that power saving and performance can be 

traded off with different T values. For example, we can 

get 29% power savings at 83% performance level, or 

alternatively, we can enjoy 112% performance level at 

the cost of less potential power savings, which is 10%. 

This has important practical implications for applications, 

i.e. performance and power efficiency can be flexibly 

traded off in REST by simply changing T. 
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FIGURE 4 Energy saving of REST relative to NO-REST for Mail at 

different T value 

 

4.4 REALISTIC WORKLOAD EXPERIMENT  

 

For our realistic lab workload, we obtained similar 

energy efficiency and performance results. The power 

saving surprisingly reaches as high as 33% due to the 

wide variations in the workload, while maintains 

comparable performance level. In addition to that, we 

sampled the REST dynamical number of powered on 

chunk servers every 2 hours over the 48 hours experiment 

period. The result is portrayed in Figure 5. 

It shows that the workload exhibits periodicity, and 

REST responded to that in a power-proportional way. For 

each of the two days, we observed that at 12:00, 18:00, 

the up chunk servers are more than other times. We find 

that is because our lab members often saved their work 

on to the server before leaving the lab, resulting in peak 

time in workload. And for the spike points at 24:00 each 

day, we assume that is caused by our B-cloud server 

services. Several small and medium size companies are 

using B-cloud for their daily backup tasks, and they 

usually do backups at that point of time. We also notice 

there is a spike point at 04:00 on Nov 12 due to a kernel 

network partition occurrence. When failures occur to the 

kernel, REST would wake up chunk servers swiftly to 

rebuild/recovery the kernel. 
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FIGURE 5 Dynamical number of powered on chunk servers over the 

experiment period References 

Our real world lab workload experiment has revealed 

that REST has practical applicability. It can save energy 

by exploiting both the redundancy in the storage system 

and real workload characteristics, like periodicity and 

burstness in the workload.   

 

5 Conclusions  

 

In this paper, we present REST, a redundancy-based 

energy efficient cloud storage system. Motivated by the 

observations of workloads’ periodicity and asymmetric 

phenomenon in read and write requests, we suggest in 

REST powering down the whole redundant chunk servers 

to achieve energy efficiency. We explicitly explain the 

techniques that we deployed in REST, including power-

aware data layout, instructor, loggers and the energy 

models. Our experimental results show that a reasonable 

amount of energy savings can be achieved at comparable 

or unexpected better performance level, especially for 

realistic workload.  
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