

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

271
Nature Phenomena and Innovative Engineering

An improved energy-efficient distributed storage system

Hongyan Li*

School of Information Management, Hubei University of Economics, Wuhan, China

Received 12 June 2014, www.tsi.lv

Abstract

Energy consumption has increasingly become a serious problem in contemporary data centres. The electricity bill contributes a

significant fraction of the Total Cost of Ownership (TCO), and it is predicted to increase at an even faster pace in the following years

as extremely large volume of data are being generated on a daily basis which would necessitate corresponding storage capacity to

hold them. As a profitable work-around step toward the energy problem within the cloud infrastructure, in this paper, we propose

REST, an energy-efficient cloud storage, which is built upon a cluster-based object store similar to GFS. It achieves high energy-

efficiency by cleverly exploiting the redundancy already present in the system without compromising the inherently well-established

schemes for consistency, fault-tolerance, reliability, availability, etc., while maintaining a reasonable performance level. By

modifying slightly the data-layout policy, REST can safely keep a large amount of the storage nodes in standby mode or even

powered off entirely most of the time. Deploying a sophisticated monitor, it also provides the flexibility to power up sleeping or

powered down nodes when necessary to accommodate to the variations in workloads. Trade-offs between energy efficiency and

performance can be conveniently made by simply adjusting a trade-off metric in REST. The FileBench and real world workload

experimental results demonstrate that power savings can reach 29% and 33%, respectively, while still providing comparable or even
surprisingly better performance.

Keywords: cloud storage, data centre, distributed storage, energy efficient, power saving

* Corresponding author e-mail: hongyanli78@aliyun.com

1 Introduction

With more and more internet services, outsourced storage

services being concentrated in data centres and cloud

computing infrastructures, added by a variety of data-

intensive applications, like Google search engine, genetic

projects, satellites images, data centres are increasingly

getting filled with extremely large amount of data. Such

huge storage requirements pose a lot of challenges to the

IT management in terms of privacy, security, efficiency,

energy consumption, etc. Even worse, the storage

requirements have been reported to be rising by 60%

annually. The phenomenal amounts of data in data

centres not only call for tremendous investment on

hardware, e.g. disks, to provide the corresponding storage

capacity, but also need continuing power supply to feed

the hardware. In large data centres, the energy cost

consumed by the IT equipment over their lifetime is

comparable to the hardware investment and occupies a

significant portion of the TCO [1]. To make the situation

more complicated, the power consumed never comes

alone, but with many accompanying negative side effects,

such as environmental impacts, noises, health

disturbance. For example, according to the data from

EPA, generating 1 kwh of electricity in the United States

gives birth to an average of 1.55 pounds of carbon

dioxide (CO2) emissions and consuming the same

amount of electricity would further incur more emissions

and heat which needs other additional electricity to keep

data centres temperature from getting too high [2].

What’s more, cutting the electricity bill is compelled by

external factors and especially critical in certain

situations. For example, in major cities the electricity

prices are extraordinarily high and the requirements of

increasing power supply may not be possible to be

fulfilled at all [14].

Fortunately, many researchers from academic and

industrial background have extensively investigated the

power consumption problem and put forward a number of

fruitful techniques to attack the problem over the past

several years [3-8]. Generally speaking, those techniques

can be classified into two broad subcategories:

component-based solutions [6, 12] and system-level

solutions [4, 5, 7, 8]. Since the data centres must be

designed to account for the peak workloads, they are

most of the time relatively over-provisioned due to the

wide temporal variations exhibited by the workloads, e.g.

diurnal peaks and troughs, which enable those techniques

to be effective. However, while power-proportionality

can be achieved relatively easier for some kinds of

components, e.g. using dynamic voltage and frequency

scaling (DVFS [13]) for CPUs, non-CPU components,

especially like disks, are not power-proportional. Thus, to

conserve energy consumption in storage subsystem,

taking advantage of the observed idle periods between

successive disk accesses is a common practice. For

example, put some disks into standby mode under light or

moderate workloads and try to manufacture and prolong

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

272
Nature Phenomena and Innovative Engineering

idle periods [4, 5, 7], both of which can be also perceived

as forms of power-proportional.

Still, there remains a relatively less-explored spectrum

of large-scale storage system power-saving space, which

is from a high-level system design perspective.

Distributed storage system systems such as GFS [9],

HDFS [10], and KFS [11] are widely deployed as the

backend storage infrastructure in large data centres and

cloud computing infantries due to the aggregate high I/O

performance and cost advantages over conventional SAN

and NAS solutions. However, they were originally

designed with little if not absolutely no power

considerations. They were established on the assumption

that instead of on enterprise-grade disks, they would be

running on clusters consisting of hundreds of thousands

of commodity servers, for which the unpredictable and

sporadic fault or failure happenings should be considered

as norm rather than exception [9]. Thus, they must be

designed to be able to gracefully tolerate large numbers

of component faults with little or no impact on service

level performance and availability. Facing this hard

situation, replication technique, a method widely thought

to be able to provide high system reliability, better

performance and high availability, had become a natural

technique candidate to be deployed. As a result, each data

block is replicated to a user defined level, typically three,

replicas in those systems, resulting in large amount of

redundancy. However, such redundancy at the same time

introduces a lot of overheads to the system in aspects of

storage capacity, replica consistency, networking

bandwidth requirements, power consumption, etc. For the

energy conservation consideration, an obvious and simple

ideal occurs to us: is it possible to put some of the

redundant nodes into power-saving mode or entirely

power them down under light or moderate workloads

while maintaining the existing sophisticated built-in

mechanisms?

In the remaining of this paper, we present REST, a

new cloud storage scheme based on a replicated,

distributed file system KFS [11]. It aims to improve

energy-efficiency without incurring severe performance

degradation from the perspective of applications. The

central point is that it turns down some redundant nodes

under light or moderate workloads to conserve energy

and also keeps the capability to power them up again in

response to variations in workloads to prevent the

performance from degrading too far. Our main

contributions are: an energy efficient cloud storage

scheme capable of reacting gracefully to variations in

workloads and an architecture deploying new technology

to manage cache and consistency under energy-saving

mode which could be also potentially applied under

disconnected conditions that happen frequently within

large-scale systems. The design specifics are detailed in

section 3. Experimental results have showed that REST

has lived up to our expectations very well.

The remainder of the paper is structured as follows:

Section 2 introduces the background and motivation.

Section 3 details the design principles and

implementation specifics. Section 4 presents our

evaluation methodology and results. Section 5 makes a

conclusive remark.

2 Background and motivation

Basically, many widely deployed distributed file systems

share some common design and implementation

strategies and tactics. They mainly consist of three parties

assuming respective responsibilities: the client library,

metadata server (MDS) and chunk-servers. The client

provides API facilities to access the file system; MDS is

the central component taking the responsibility of

managing the whole file system name space; chunk

servers are physical nodes where the data are actually

stored. The objects stored in the systems are partitioned

into chunks. Each chunk is replicated on multiple chunk

servers to guard against disk or machine failures and to

provide high performance and availability. The central

MDS is implemented as an in-memory data structure so

as to provide fast access speed, as it is visited much more

frequently by normal operations and scanning checks [9].

It keeps all the metadata information. It is check pointed

periodically to persistent storage to guarantee reliability

and fast recovery in the event of MDS failure. Chunk

servers communicate with MDS through frequent

heartbeat messages reporting their storage status and

receiving corresponding acknowledgement from MDS to

maintain high availability. If the MDS notices some

replicas are unavailable, it initiates re-replication process

to prevent the data block getting under-replicated. From a

high-level perspective, read and write requests are

handled similarly. They both firstly go forward to the

MDS to get the necessary information, like chunk

servers’ location and lease information, then directly

contact the corresponding chunk servers to complete the

data transfer, rendering the MDS out of the data transfer

path. By doing this way, the involvement of MDS is

minimized and the chances of its becoming potential

bottleneck would thus be minimized.

However, there exists a significant difference between

the phases of data transfer for read and write requests. For

writes, all the nodes hosting the replicas should remain

powered on for the purpose of strong consistency during

the entire write process. For example, GFS [9] uses lease

mechanism to define the write order of the replicas and

applies pipelining technique to propagate the content. But

for reads, after getting a list of chunk servers hosting the

replica, the client would contact (may use an optimal

algorithm, e.g. least distance first, to minimize the latency)

one of them to fetch the replica, leaving the other ones

unvisited if the firstly chosen chunk server succeeds in

servicing the request. To get a holistic view of the read

and write distribution, we modified the file access APIs

of dbench4.0 [15] to those APIs exported by KFS, and

then executed dbench4.0 on KFS. We configured KFS to

consist of a MDS and 60 chunk servers. After the running

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

273
Nature Phenomena and Innovative Engineering

process finished, we analysed the statistics from MDS

and all chunk servers. The overall number of reads is

what MDS has recorded, while the total number of writes

is the multiplicative result of the MDS recorded number

and the replication factor. The read and write requests’

cumulative distribution function (CDF) figure is shown in

Figure 1.

0 6 12 18 24 30 36 42 48 54 60

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

 read

 write

%
 o

f t
o

ta
l

Number of chunkservers

FIGURE 1 CDF of read/write among all the chunk servers

As shown in Figure 1, it shows a cumulative

distribution function across the numbers of the chunk

servers versus the percentage of read/write that the chunk

servers experienced over the course of the running

process. As pictured in the figure, read distribution

embodies a wide discrepancy from write, i.e. read is more

skewed than write, whereas write is approximately linear,

which results from the inherent different handling

processes. For example, nearly 83% of the reads were

concentrated on 50% of the chunk servers, while 50% of

the chunk servers had absorbed 61% of the total write

operations. That’s because, for read, every time the

request for the same data block would with a strong

likelihood be routed to the same chunk server hosting a

copy (either primary or replicas) of the data block due to

the same internal decision policy, e.g. judging by IP

addresses, with the exception of the cases of chunk server

having failed or the system topology having changed. But

for write, because of the load-balance hinting data placing

policy, especially for newly written data block, the write

operations are more likely to be distributed uniformly

among all the chunk servers. Such observed skewness in

the read/write distribution motivates our work: is it

possible to remove the write traffic from some chunk

servers to make them presented with more read-

dominated access patterns, which would lead to more

skewness and exploit such skewness to conserve energy?

It is worth noting that due to hardware limitations, the

experiment was not conducted on 60 physical chunk

servers, but with each server hosting multiple chunk

servers. Chunk servers are represented by different

processes running on different ports with respective

dedicated directories providing storage capacity. Such

configurations have the following important implications:

the chunk servers bear great homogeneity, have relatively

flat network topology and are rendered to be equally

subject to the network conditions. By contrast, in a

genuine environment of large-scale storage system

installation, like data centres, the situation is far away

from here. Usually, it embraces a wide range of

heterogeneity resulting from its hundreds of thousands of

commodity components possibly differing widely in

aspects of storage capacity, computing capability,

network bandwidth, etc. Furthermore, it is typically

constructed in a hierarchical form using different levels

of switches to connect racks and chunk servers, which

would make different constituents subject to various

network conditions. However, under such a complicated

situation, it is reasonable to assume the existence of

similar or even better observations that we had

experienced with our relatively simple and flat

experimental setup. The assumption is based on the

failure preference phenomenon observed in [16, 17],

stating that failures tend to happen again to where they

had happened before at a much higher probability. This

phenomenon would potentially translate into more

skewness in read/write distribution, which would present

us a great opportunity to conserve energy as discussed in

the following sections. Another thing that should be

pointed out is that with no doubt we would rather like to

admit dbench can never be representative of all read-

world workloads, but we hope it would be reasonable to

claim that though simple, it would shed some light on the

problem we are discussing in this paper.

3 Design and implementation

As discussed in the preceding section, the skewness in

I/O behaviour, especially in read distribution, may

provide us with great potential to conserve energy. That

is because skewness implies that some redundant chunk

servers would remain idle even in the presence of I/O

workloads. Thus, the node’s storage subsystem or even

the whole node if the node’s only role is providing

storage function can be transitioned into power-saving

mode in a manner that is oblivious to the applications

running on the system. This section is devoted to discuss

how the energy-conservation potential can be realized. It

deals with the details of the design and implementation of

our prototype system REST. Specifically, it first outlines

the design principles and goals that guide our design, and

then presents the challenges and problems that should be

resolved, followed by the overview architecture of REST.

Finally, it discusses in depth the strategies and tactics we

have deployed to achieve energy-efficiency purpose.

3.1 GOALS AND CHALLENGES

The ultimate goal of our work is to build an energy

efficient storage system through exploiting the

redundancy inherently existing in a replicated, cluster

storage system. We choose the distributed file system

KFS [11] as our basic architecture and develop our

prototype on that. During the process of development, we

strive to fulfil the following design disciplines and

principles, which also act as our design guidelines:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

274
Nature Phenomena and Innovative Engineering

 Changes made to the original system should be

minimized.

 Energy efficiency should be obtained not at the

expense of severe system performance degradation.

 Energy efficiency should be obtained without

compromising reliability, availability, consistency

and failure resilience.

 Trade-offs between energy efficiency and high

performance should possibly be made by users

and the system should be reasonably flexible to

automatically respond to the workload variations.

 Failures of the components should be handled

gracefully, ideally transparently, without adversely

impacting the applications.

KFS was initially designed with almost no power-

awareness considerations, but with its focus on building a

high reliable, high available, high aggregate performance,

scalable and fault-tolerant storage system on commodity-

level components. Its salient feature is that reliability and

availability can be well guaranteed even in the presence

of failure occurrences to some components. The rationale

behind our design is to conserve as much energy as

possible while maintaining basic functions and desirable

excellent features. To achieve this goal, the following

challenges and problems should be well addressed:

 Data placement policy should be power-aware.

The policy deployed by KFS places data blocks in

a random way which would potentially cause all

chunk servers to be highly correlated to each

other. Using that policy, for example, at most N-1

chunk servers can be transitioned into power-

saving mode to conserve energy if the system’s

replica factor is N.

 How many redundant chunk servers and when are

they going to be put into power-saving mode

while maintaining a reasonable performance

level? And how to differentiate those deliberately

powered-down servers from those that actually

malfunction?

 Under what circumstances should the sleep servers

be woken up? And in what manner are they woken

up?

 What measurements should the system to take if

failures occur?

 How to guarantee consistency among all replicas

when some are temporarily not unreachable for

power-saving purpose?

We present our approach to addressing those

challenges and problems in the following subsections. At

first, we give an overall description of the architecture of

REST, and then we dive into the details of the design

strategies and tactics integrated in REST.

3.2 SYSTEM OVERVIEW

As mentioned previously, our simple strategy is to exploit

the redundancy present in the system and the skewness in

IO distribution to realize energy-efficiency purpose. In

order to do so, we have slightly changed the architecture

of the original system and additionally integrated some

functional modules into it. As shown in Figure 2, there

are three main roles in REST: MDS as in the basic

infrastructure with a newly added functional module

instructor (not shown in the figure), loggers that are

performed by dedicated high-performance servers and

chunk servers. Note that the constant heartbeat messages

among them are omitted for simplicity.

Compared with its basic architecture, REST differs

itself in the following aspects: the back-end chunk servers

are partitioned into several subsets, the new entering of

loggers and an instructor that decides when and how

many chunk severs are going to be powered down and up.

Since the details are given in the subsequent subsections,

we only give a brief description in the remain of this

subsection. As shown in the figure, we strategically

partition the entire space of chunk serves into several

subsets. The most important one is named kernel subset

coloured in red, and the others are named backup subsets

coloured in green and light green, respectively. Ideally,

the kernel is expected to remain powered on, while

backups are to be kept powered down under light and

moderate workloads. It is the responsibility of instructor

that determines when to power backups down and when

to up based on a number of factors. The up/down

commands are piggybacked in the acknowledgements to

periodic heartbeat messages from chunk servers. The

loggers are designated the functions of providing

temporary storage space to hold the data destined to the

chunk servers that are powered down for that period of

time, forwarding them to the corresponding chunk servers

when they are powered on again and reclaiming the space.

Read requests are sent to loggers as shown by read step: 1)

(solid-line) if the requested data blocks exist there and the

loggers are not too overloaded, otherwise they would be

served by kernel or backup subsets as shown by read step;

2) (dash-line). Write requests are handled as usual in KFS

if the kernel and backup subsets are all powered on, in

other cases they are written to the powered-on chunk

servers and loggers, and then immediately return to the

clients to indicate write completion.

3.3 POWER-AWARE DATA LAYOUT

The inherent limitation that prevents the original system

from powering down more than N-1 chunk servers in an

N-way replicated system lies in that the initial data block

assignment policy logically imposes a strong tie between

every pairwise, despite they are physically separate. For

example, if N or more chunk servers were powered down,

the data block of which all N replicas unluckily happen to

reside on the N powered-down chunk servers or on a

subset of the powered-downs would have been rendered

unavailable.

To eliminate this limitation, we divide the whole

chunk servers into several independent subsets named

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

275
Nature Phenomena and Innovative Engineering

kernel and backups, and for each data block, it is

guaranteed that there would be at least one replica in each

of the subset. This is achieved by the new data placement

policy. For the convenience of our discussion, we define

the following symbols: N for the total number of chunk

servers in the system; r for replication factor; k

(1
N

k
r

) for the size of kernel. As a system

parameter, k is critical to the system performance and

energy efficiency, since it determines the kernel’s

performance and thus, how often backups are going to be

powered down and up, as discussed in the next following

subsection. Fortunately, its value determination can be

hinted by the individual performance of the chunk servers

and operator’s well-understandings of the characteristics

of the expected workloads or it can be gradually adapted

to the most suitable value using test-and-tune method.

Backup subsets are obtained by equally partitioning the

rest of the chunk servers, making its size
1

N k

r
. The

definitions of kernel and backups can be specified in

advance in a system configuration file, and are all

maintained in MDS. The chunk servers that belong to

kernel and backups are typically chosen to have the same

fault-tolerance properties, like a rack, respectively, for

they are highly logically related, i.e. the failing of any

one of them would render the data blocks residing on it

unavailable within the corresponding subset. Interestingly,

such strong relationship among physically separate nodes

is exactly the reason that motivates our new data

placement policy. However, doing so has several

advantages, for example, utilizing less precious

networking bandwidth and creating opportunity for

power savings for switches, which would otherwise

remain powered on, but also bears potential

disadvantages, like being easily bottlenecked and forming

high-temperature spots in large data centres.

When allocating a data block, MDS firstly allocates

one data block for it from kernel, and then allocates the

remaining replicas from backups, one from each. Within

each of the subset, we also balance the data blocks among

the chunk servers. With this kind of data placement

policy, the minimum availability would safely be

guaranteed by kernel, and backups can be powered down

freely and independently when necessary without

compromising system availability. MDS dynamically

tracks the status of kernel and backups and differentiates

the failed chunk servers and those powered down chunk

servers. The placement policy imposes several changes to

the read/write processes as discussed previously. When

the kernel fails down, one of or all of the backups can be

powered up to take the role of the kernel and

rebuild/recovery the kernel, based on the trade-offs

between greater power savings and higher

rebuild/recovery speed.

MDS

Loggers

wr i t e

r ead

Chunkservers

①

Clients

Legend

SS

D

SS

D

SS

D

Ot her OPs

①
①

①

FIGURE 2 REST architecture

3.4 INSTRUCTOR

In reality, due to wide variations in workloads, it is

improper to keep the number of powered down chunk

servers constant. In REST, there is a central role named

instructor that determines when and how many chunk

servers are required to be powered down or up using

WOL [18] technique. It periodically makes the decision

based on a complex combination of multiple factors.

Formally, the decision-making can be expressed as:

(, , ,)n f P R F C (1)

1 (2)

In the above equations, n is the result of the decision

making and indicates the number of the to-be-powered

down or up chunk servers. P is defined as the ratio of

performance to power, both of which are monitored by

instructor, it reflects the system power efficiency; R is the

required performance level, usually assigned as the

minimum requirements that must be met; F represents the

instructor’s predication of the near-future workloads. It is

obtained by analysing past workload characteristics and

is used to instruct the decision. If it is predicated that the

forthcoming write requests are very large or the writes

would last for a long time, it will generate a larger value

of F, indicating it is desirable to power more chunk

serves up. The heuristic is that it tries to directly write

large writes to all the chunk servers as possible as it can

be, while redirect as many small writes as possible to the

loggers, which is decided by two reasons: the loggers’

capacity is limited and we want small write requests to be

returned faster, since their latencies are more sensitive to

the applications. If it is predicated that there are

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

276
Nature Phenomena and Innovative Engineering

enormous read-intensive access patterns in the near future,

it would pro-actively prepare to power up more chunk

servers to mask the relative long time, usually minutes, to

power chunk servers up and to avoid degrading read

performance too much. C is the health conditions of the

kernel. Since the kernel is expected to be working all the

time and unexpected failures in the kernel would be

expensive due to the minimum availability being

compromised, kernel health conditions [17] should be

constantly monitored and reported to the instructor to

take corresponding precautions, like replace new devices,

if the health conditions are not so good. , , and

are their corresponding coefficients and can be assigned

by the operator. They represent their relative importance

in the process of decision making. For example, if the

operator gives higher priority for performance than

power-saving consideration, she/he can easily achieve

that by assigning bigger than .

In addition to the above power-down and up scheme,

there are some other scenarios that the chunk servers

should be powered up in REST. For example, in our

current prototype implementation, the loggers and chunk

servers’ statuses are periodically reported to MDS

through heartbeat messages. When MDS notices that if

the overall space utilization of loggers has reached certain

threshold, e.g. 80% or some members of kernel are

unavailable, it would force all the chunk servers to be

woken up immediately.

3.5 LOGGERS

In REST, unlike other techniques using dedicatedly

reserved space on the existing devices, e.g. Eraid [19],

DIV [7], write-offloading, we have used dedicated

servers equipped with solid-state drives (SSD) to log the

data destined to the temporarily powered down chunk

servers. From the point of view of our considerations,

there are four reasons for doing so. At first, we want the

logged data to be persistently stored more reliably, and

SSDs can fulfil our requirements, additionally, SSDs

themselves consume much less power than conventional

disks counterparts. Secondly, it is desirable to place

logged data in different fault domains, typically different

racks in data centres. Thus, even if the kernel subset fails

down due to whole rack or switch failing down [26], it is

still achievable to restore the data to the latest status with

the logged data and the newly powered up servers.

Thirdly, with the technology drastically advanced, the

shortcomings formerly associated with SSD have already

been well overcome [20] and their prices are not that high

as before making them increasingly become acceptable

and practical to be deployed in production systems.

Lastly, SSD flash drives have blazingly fast read speed,

including both of sequential and random patterns. We

deploy this attractive characteristic to provide high

performance for read requests by diverting read requests

to loggers firstly if they are not overwhelmingly

overloaded with traffics.

To take maximum advantage of SSDs and avoid their

excruciating slow write shortcoming, we deploy a log-

structured [21, 22] store engine to record the logged data.

For each logged data block, there is corresponding

information specifying whether it is logged and logged on

which logger in its in-memory metadata entry in MDS

namespace. In addition, each logger maintains a hash

table in memory for itself. The table maps the unique 64-

bit chunkID to the location where the on-disk entry

resides within the store engine. The on-disk entry of

logged data block is self-contained. It is composed of a

logger header and a logger body. The logger header

contains the following information: chunkID, version

number, destinations, logger factor (meaning how many

copies the chunk should be propagated to newly powered

up chunk servers to in order to maintain the required

replication factor) and chunk checksum. The logger body

is the content of the data block.

For every data block write request, it would be firstly

tried to be forwarded to the powered on chunk servers

and if any of the destination chunk servers is powered

down temporarily, it would be logged to one of the

loggers before returning to the application. Specifically,

MDS would choose a logger and send it a log request

containing the necessary information and update its

corresponding metadata entry. Receiving the log request,

the logger appends an on-disk entry to the store engine,

and then inserts a mapping entry into the local hash table,

or replaces the mapping entry corresponding to the chunk

if it has been inserted previously. That implies, for each

logged chunk, there is only one mapping entry, which

points to the most recent version of that chunk. For every

read request, MDS would look the chunks in the

namespace and preferably forward it to the loggers if it

has been logged in any of the loggers, otherwise forward

it to the powered on chunk servers. From the data paths

of write and read requests, it would be expected that

loggers would improve the system performance due to

the log-structured design and SSDs’ superior random

read performance, which is actually proved by our

experiments.

Considering the limited space of the loggers, we have

designed each logger to initiate propagating and

reclaiming processes at regular intervals, i.e. one minute.

The propagating processes scans through the entire local

hash table, and for each entry, it tries to contact those

corresponding destination chunk servers to see whether

they are reachable and if so it sends the logged data to

them and update the entry information. The reclaiming

process scans the on-disk entries from the beginning, and

reclaims the space occupied by those entries whose

logger factor is zero. It works in a similar way to the

cleaner in [21]. Thanks to the two periodically-run

processes, the loggers’ utilization of space is reasonably

prevented from going high quickly.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

277
Nature Phenomena and Innovative Engineering

3.6 ENERGY MODELLING

To estimate the energy efficiency of REST, in this

subsection, we analyse the energy models for both of the

original system and REST. The following table

summarizes the parameters in our analysis:

TABLE 1 Energy modelling parameters

Symbol Description

cN The total number of chunk servers

lN Number of loggers

k

iT Length of the kth active interval of the ith chunk server

iA Number of active intervals of the ith chunk server

k

iP
Power of the ith chunk server at time t within the kth interval

0 k

it T

u

iE Energy consumed by the ith chunk server to transition up

d

iE Energy consumed by the ith chunk server to transition down

u

iC Count of transition ups of the ith chunk server

d

iC Count of transition downs of the ith chunk server

jP Power of the jth chunk server when power up

jT Active time of the jth logger. Loggers have no up-and-
downs

Two points should be noted about Table 1. One is that

we have not outlined the energy consumed by MDS,

since our main purpose is to compare the energy

efficiency of the original system and REST. And we

assume the amounts of MDS energy of them are

approximately equal. We denote it as mE in the

following discussion. The other one is that we treat the

instantaneous powers of loggers and chunk servers

differently, i.e. we consider the power of loggers to be

stable, while the power of chunk servers to be varying

over time. Because we expect that individual chunk

servers would experience bigger power gaps between

peak power and the lowest power than loggers. Now we

can calculate the total energy consumed by the original

system using Equation (3).

0
1 1

()
kc i

i

N A
T

k

b m i

i k

E E P dt . (3)

Since the original system has no power up-and-downs,

the numbers of active intervals of all the chunk servers

are the same and equal to 1. Thus, Equation (3) can be

translated into Equation (4).

1

' 1

0
1

()
c

i

N
T

b m i

i

E E P dt . (4)

Involving with the chunk servers power up-and-

downs, REST has a more complex energy consumption

formula:

1 1

0
1 1 1

() ()

() ()

l c

kc c i
i

N N
u u

R m j j i i

j i

N N A
T

d d k

i i i

i i k

E E T P E C

E C P dt

. (5)

It says that the total energy is the sum of individual

components’ energy: MDS, loggers, chunk servers. The

differences between the two energy models lie in that

REST divides the energy of chunk servers into active

status energy, transition energy and powered down

energy, which is zero, and has additional energy

consumed by loggers, while the original system keeps the

chunk servers up all the time. The active energy is the

sum of all the energy consumed by all the chunk servers

over all their respective active intervals. The power up-

and-down overheads are the sum of all the energy

consumed by transitioning. Comparing with the original

system, REST’s potential gaining power savings stem

directly from how many and how long chunk servers are

powered down.

4 System evaluation

In this section, we evaluate REST from various aspects

using benchmarking method and realistic workload. We

also test the original system, which is referred to NO-

REST later as baseline for comparison reason. Section

4.1 describes our test environment. Experimental results

are discussed in the subsequent subsections.

4.1 EXPERIMENTAL SETUP

Our test bed consists of one MDS server and a number of

chunk servers composed of 4 servers and 32 commodity

PCs belonging to our lab’s graduate students. The

hardware configuration of the MDS server is

characterized by a quad-core 2GHz CPU 16GB RAM and

16 1TB hard disks. One of the 4 servers is equipped with

a quad-core 2GHz CPU, 4GB RAM and a Kingston 128

GB SSD disk drive and functions as a logger. The

remaining three servers have the same configurations: a

quad-core 2GHz CPU, 4GB RAM and 8 1TB hard disks

structured as RAID5. The other 32 chunk servers bear a

wide variety of configurations and performance, since

they were purchased in the different years when their

respective owners were enrolled in our lab.

We conducted our test using both benchmarking and

realistic workload. The benchmark is FileBench [23], an

application level workload generator that enables the

users to emulate various workloads. Its Workload Model

Language (WML) provides users with the capability to

flexibly define the workload bearing different

characteristics. A WML workload description is called a

personality and it typically contains the following

information about the workload: average file size,

directory depth, the total number of files, and alpha

parameters governing the file and directory sizes that are

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

278
Nature Phenomena and Innovative Engineering

based on a gamma random distribution [24]. FileBench

can define the period of time for which the personalities

are going to be run, and report the total number of

performed operations at the end of each run. We selected

four personalities included in FileBench to drive our

testing. They are Web, File, Mail and Database servers,

and their workload characteristics are specifically

described in [24]. Each of them was run for a period of 1

hour. We deployed fuse support of REST and NO-REST

to access the storage like conventional file systems. The

realistic workload is a shared server workload in our lab.

The server is shared by all lab staff doing their own jobs,

e.g. upload/download files, doing backups, visiting CVS

source code repository, etc., it is also the backup server of

B-cloud [25] system developed at our lab which provides

on-line backup services. We configured REST and NO-

REST as the backend storage infrastructures of the server,

respectively and monitored the server for 48 hours dating

from 8:00 am GMT on Nov. 10 to 8:00 am GMT on Nov.

12 to observe the workload characteristics and how REST

performs.

We emulated 76 chunk servers for both REST and

NO-REST for fair comparison. Each of the 3 servers

hosted four chunk servers, and each of those PCs hosted

2 chunk servers. The logger server emulated 2 loggers in

REST. Both of REST and NO-REST were configured as

three-way replicated systems. The kernel was set to

include all those chunk servers hosted on the 3 high

performance servers and its size was set to 24. For each

run, we initially powered on all the chunk servers.

4.2 PERFORMANCE IMPACTS

We compare the performance of different workloads in

terms of the performance metric reported by FileBench.

FileBench reports file system performance under

different workloads in units of operations per second

(ops/sec). Due to the peculiar characteristics of the Web

server workload, FileBench would report much higher

ops/sec than the other workloads. In order to avoid the

results figures being too skewed, we present Web result

in units of 100 ops/sec and ops/sec for the others. Figure

3 shows the performance results.

Web File Mail Database

0

200

400

600

800

1000

P
e

rf
o

rm
a

n
c
e

 (
o

p
s
/s

e
c
)

 NO-REST

 REST

689

756

456
488

893

966

512
483

Workloads

FIGURE 3 Performance of different workloads with REST and NO-

REST

It is shown in the figure that REST well outperforms

NO-REST for Web, Mail, File, achieving 9.7%, 8.17%

and 7% performance gains respectively, while consuming

less energy as discussed in the next subsection. And

Database slightly lags behind NO-REST by a margin of

5.7%. Generally, the performance gains can be attributed

to the newly added loggers in REST. Because reads are

preferentially considered to be routed to loggers, which

can provide excellent read performance, including both

random and sequential reads and writes are redirected to

loggers when the destination chunk servers are powered

down temporarily. Due the log-structure, writes can be

returned to applications much sooner, thus enhancing

performance.

It is interesting to note that the amounts of percentage

performance gains are closely related to the read/write

ratio. And it’s surprising to know that the performance

gains are proportional to the energy savings. For example,

Web conserves the most energy but with the most

performance improvement, which are 17% and 9.7% of

the NO-REST counterpart respectively, due to its highest

read/write ratio and its sequential reading entire files

patterns. Analysing the workloads, we know Web, File,

Mail and Database’s R/W ratios are 10:1, 1:2 and 20:1

respectively. It reveals that workloads with higher

percentage of reads can get more energy savings and the

chosen kernel can reasonably satisfy the read requests in

most scenarios. However, there is an exception to that:

Database has the biggest R/W ratio, but exhibits

degrading performance. It is partly because, besides 200

readers, it launches 10 asynchronous writers and a log

writers. In addition, they perform extensive concurrency

and random read/writes, which would adversely prevent

chunk servers from powering down. Another reason is

that the writers’ extensive writing operations would

quickly cause the loggers’ space utilization threshold to

be reached and chunk servers to be waken up more

frequently.

4.3 TRANSITIONS AND POWER SAVINGS

In this section, we discuss the chunk servers transitions

and power savings of REST. Power savings were

calculated by substituting the parameters in our energy

models with corresponding dynamically monitored

numbers and representative real world values. As pointed

out previously, the chunk servers’ transitions are

determined by the instructor. We define a trade-off metric

T as / , i.e. T = / . It reflects the preference

degree for power efficiency, meaning the bigger T is, the

more power savings are desired. To see how instructor

affects the power up-and-downs, we collected all chunk

servers up-and-downs for the four workloads with

varying T (as a side note, the preceding section’s results

are from experiments conducted with T = 1 for REST)

value while keeping and invariable and let their

sum equal to 0.3. The statistics are summarized in Table

2.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

279
Nature Phenomena and Innovative Engineering

TABLE 2 Transition counts summary

Workload T=0.5 T=1 T=1.5 T=2

Web 126 113 110 95

File 243 220 201 198

Mail 189 165 146 134

Database 74 87 102 121

The table demonstrates that for Web, File and Mail,

the number of transitions decrease with T increasing.

Bigger value of T implies trying to achieve better energy

efficiency, which means once chunk servers are powered

down, they would be powered up under more serious

conditions. Again, Database is the exception with

transitions increasing with T increasing. As explained

before, the nature of Database prevents chunk servers

transitioning, but bigger value of T tries to force

transitioning, causing REST struggling powering down

and up.

Since the energy savings and performance of all the

four workloads share similar characteristics, we take Mail

as our example to discuss power savings and performance

with varying value of T. Figure 4 shows the relationship

between them. The energy savings and performance are

percentages relative to its NO-REST counterpart. It is

apparent that power saving and performance can be

traded off with different T values. For example, we can

get 29% power savings at 83% performance level, or

alternatively, we can enjoy 112% performance level at

the cost of less potential power savings, which is 10%.

This has important practical implications for applications,

i.e. performance and power efficiency can be flexibly

traded off in REST by simply changing T.

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 Energy saving

 Performance

trade-off-ratio T

E
n

e
rg

y
 s

a
v
in

g
 %

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
e

rfo
rm

a
n

c
e

 %

FIGURE 4 Energy saving of REST relative to NO-REST for Mail at

different T value

4.4 REALISTIC WORKLOAD EXPERIMENT

For our realistic lab workload, we obtained similar

energy efficiency and performance results. The power

saving surprisingly reaches as high as 33% due to the

wide variations in the workload, while maintains

comparable performance level. In addition to that, we

sampled the REST dynamical number of powered on

chunk servers every 2 hours over the 48 hours experiment

period. The result is portrayed in Figure 5.

It shows that the workload exhibits periodicity, and

REST responded to that in a power-proportional way. For

each of the two days, we observed that at 12:00, 18:00,

the up chunk servers are more than other times. We find

that is because our lab members often saved their work

on to the server before leaving the lab, resulting in peak

time in workload. And for the spike points at 24:00 each

day, we assume that is caused by our B-cloud server

services. Several small and medium size companies are

using B-cloud for their daily backup tasks, and they

usually do backups at that point of time. We also notice

there is a spike point at 04:00 on Nov 12 due to a kernel

network partition occurrence. When failures occur to the

kernel, REST would wake up chunk servers swiftly to

rebuild/recovery the kernel.

16:00 02:00 12:00 22:00 08:00

20

30

40

50

60

70

80

#
 o

f
u

p
 c

h
u

n
k
s
e

rv
e

rs

Timepoint

 dynamical # of chunkservers

FIGURE 5 Dynamical number of powered on chunk servers over the

experiment period References

Our real world lab workload experiment has revealed

that REST has practical applicability. It can save energy

by exploiting both the redundancy in the storage system

and real workload characteristics, like periodicity and

burstness in the workload.

5 Conclusions

In this paper, we present REST, a redundancy-based

energy efficient cloud storage system. Motivated by the

observations of workloads’ periodicity and asymmetric

phenomenon in read and write requests, we suggest in

REST powering down the whole redundant chunk servers

to achieve energy efficiency. We explicitly explain the

techniques that we deployed in REST, including power-

aware data layout, instructor, loggers and the energy

models. Our experimental results show that a reasonable

amount of energy savings can be achieved at comparable

or unexpected better performance level, especially for

realistic workload.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(6) 271-280 Li Hongyan

280
Nature Phenomena and Innovative Engineering

References

[1] Belady C 2010 In the data centre, power and cooling costs more

than the IT equipment it supports Electronics Cooling
[2] Zong Z, Briggs M, O’Conner N, Qin X 2007 An energy-Efficient

Framework for Large-Scale Parallel Storage Systems Proc. Int'l

Parallel and Distributed Processing Symp., March 2007
[3] Benini L, Bogliolo A, de Micheli 1999 A survey of design

techniques for system-level dynamic power management IEEE
Transactions on VLSI Systems 8(3) 813-33

[4] Papathanasiou A E, Scott M L 2004 Energy efficient prefetching

and caching In Proc. of the USENIX Annual Technical Conference,
June 2004

[5] Zhu Q, David F M, Devaaraj C F, Li Z, Zhou Y, Cao P 2004
Reducing Energy Consumption of Disk Storage Using Power-

Aware Cache Management Proc. High-Performance Computer

Architecture, 2004
[6] Zhu Q, Chen Z, Tan L, Zhor Y, Keeton K, Wikes J 2005 Hibernator

Helping Disk Arrays Sleep Through The Winter Proc. ACM Symp.
Operating Sys. Principles, October. 2005

[7] Pinheiro E, Bianchini R, Dubnicki C 2006 Exploiting redundancy

to conserve energy in storage systems In Proceedings of the 2006
SIGMETRICS Conference on Measurement and Modeling of

Computer Systems. Saint Malo, France, June 2006
[8] Kaushik R T, Bhandarkar M 2010 GreenHDFS: Towards an

energy-Conserving, Storage-Efficient, Hybrid Hadoop Compute

Cluste In HotPower
[9] Ghemawat S, Gobioff H, Leung S-T 2003 The Google File System

In the Proceedings of the 9th Symp. on Operating Systems
Principles, Oct. 2003

[10] Konstantin S, Kuang H, Radia S, Chansler R 2010 The hadoop

distributed file system MSST
[11] http://kosmosfs.sourceforge.net/

[12] Barroso L A, HÖlzle U 2007 The case for energy-proportional

computing IEEE Computer 40(12) 33–37

[13] Chen Y, Das A, Qin W, Sivasubramaniam A, Wang Q, Gautam N

2005 Managing server energy and operational costs in hosting
centres In SIGMETRICS ’05: Proceedings of ACM SIGMETRICS

International Conference on Measurement and Modelling of
Computer Systems 33 303–14

[14] Rakesh Kumar 2006 Gartner: A message from data centre
managers to CIOs: Floor space, power and cooling will limit our

growth, August 2006

[15] http://dbench.samba.org/
[16] Clement A, Kapritsos M, Lee S, Wang Y, Alvisi L, Dahlin M, T

Riche M 2009 UpRight cluster services In SOSP
[17] Pinheiro E, Weber W-D, Barroso L A 2007 Failure trends in a large

disk drive population In Proc. USENIX Conference on File and

Storage Technologies (FAST’07), San Jose, CA, Feb. 2007
[18] http://en.wikipedia.org/wiki/Wake-on-LAN

[19] Li D, Wang J 2005 Conserving Energy in RAID Systems with
Conventional Disks In Proceedings of the International Workshop

on Storage Network Architecture and Parallel I/Os, Sept 2005

[20] http://www.samsungssd.com/
[21] Rosenblum M, Ousterhout J 1991 The design and implementation

of a log-structured file system In Proc. ACM Symposium on
Operating Systems Principles (SOSP’91), Pacific Grove, CA, Oct.

1991

[22] Ganesh L, Weatherspoon H, Balakrishnan M, Birman K 2007
Optimizing power consumption in large scale storage systems In

Proc. Workshop on Hot Topics in Operating Systems (HotOS’07),
San Diego, CA, May 2007

[23] FileBench, July 2008

www.solarisinternals.com/wiki/index.php/FileBench.
[24] Sehgal P, Tarasov V, Zadok E 2010 Evaluating performance and

energy in file system server workloads In Proceedings of the 8th

USENIX Conference on File and Storage Technologies (FAST ’10),

February 2010

[25] Wei J, Jiang H, Zhou K, Feng D 2010 MAD2: a scalable high-
throughput exact deduplication approach for network backup

services MSST
[26] Ford D, Labelle F, Popovici F, Stokely M 2010 Availability in

Globally Distributed Storage Systems In proceedings of the 9th

USENIX Symposium on Operating Systems Design and
Implementation, 2010

Authors

Hongyan Li, born on October 12, 1978, Wuhan, China

Current positions, grades: Now she is a PhD candidate in school of Computer Science & Technology of Huazhong University of Science &
Technology. She is an associate professor at School of Information management, Hubei University of Economics. Since 2008 she is Member of IEEE.
University studies: received her M.Sc. in Computer Science (2005) from Central China Normal University.
Scientific interests: different aspects of storage Systems.
Publications: (co-)authored more than 20 papers.

http://www.solarisinternals.com/wiki/index.php/FileBench

