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Abstract 

Mining frequent itemsets from uncertain transaction dataset is a research topic in data mining. Some algorithms are based on FP-

Growth, but they construct the tree structure in a manner that cannot be as compact as the original FP-Tree, so the tree is easily 

developed to huge size and this hinders their performance. In this paper, we propose a new tree structure called IT-Tree (Itemset Tail-

node Tree) to efficiently maintain probability information of itemsets in tail-nodes; we also propose a corresponding algorithm IT-

Mine to mine frequent itemsets from IT-Tree without additional dataset scans. We evaluate our approach on real sparse and dense 

datasets with different minimum support numbers that can produce non-null frequent k-itemsets (k≥2); the results show that IT-Mine 
outperforms other algorithms in terms of execution time, especially for large dataset or small minimum expected support number. 

Keywords: frequent itemset, frequent pattern, uncertain transaction dataset, data mining 

 

1 Introduction 

 

Uncertain transaction dataset describes the existential 

probability of each item in a transactional process. Many 

applications create uncertain datasets; for example, as 

indicated by [1,2] and [3], measurement errors of RFID, 

GPS and other sensors are part of the major sources of 

uncertain data, because the sensor readings are constantly 

fluctuating and can hardly be precise, such as the location 

of an object provided by RFID or GPS. Another kind of 

uncertainty comes from statistical laws; for example, in 

medical field, the illness or disease diagnosed for a patient 

cannot be completely determined by one or more 

symptoms; in market analysis, customer purchase 

behaviours, computed from basket data for predicting what 

a customer will buy in the future, are also statistical 

probabilities [4, 5]. With the development of applications 

using uncertain datasets, the issue of data mining over 

uncertain dataset has become a hot topic in data mining in 

recent years [4-12]. 

Table 1 shows an example of an uncertain transaction 

dataset. Each transaction in Table 1 represents that a 

customer buy a certain item with a probability. The 

decimal value associated with an item is called the 

existential probability of the item. For instance, the first 

transaction T1 in Table 1 shows that the customer A might 

purchase products “a”, “b”, “c” and “d” with 60%, 20%, 

30% and 50% chances in the future, respectively. The 

probability values in Table 1 may be obtained from the 

analysis of the customers’ browsing online-shop history: if 

customer A visited an online-shop ten times in a certain 

period of time, out of which “a” product was clicked six 

times, then it might be established that customer A has a 

60% probability to buy “a” in the future. The probability 
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values may also be obtained from data mining results on 

the supermarket basket data. 

 
TABLE 1 An example of uncertain transaction dataset 

TID Customer Transaction itemset 

T1 A (a: 0.6), (b: 0.2), (c: 0.3), (d,0.5) 

T2 B (a: 0.7), (e: 0.25), (d,0.8) 
T3 C (a: 0.3), (c: 0.8) ,(d,0.4) 

T4 D (c: 0.7), (e: 0.2), (d,0.3) 

T5 E (a: 0.5), (b: 0.3), (e: 0.3) 

 

Mining frequent itemsets from uncertain transaction 

dataset is to discover those itemsets whose sum of 

probability values or occurring probability exceeds the 

user specified threshold. Because of its probablistic nature, 

frequent itemsets mining on uncertain transaction dataset 

is different from that on precise dataset, which has already 

been well defined and studied [13, 14], and many 

algorithms have been proposed, such as Apriori [13], FP-

Growth [14], MAFIA [15], COFI [16], Pincer-search [17], 

CHARM [18], Index-BitTableFI [19] etc. Researchers 

usually extrapolate the existing algorithms on precise data 

to get their new algorithms on uncertain data. The papers 

[5, 7, 10-12] proposed algorithms based on Apriori. These 

algorithms bear the same bottleneck as Apriori: the 

generating & processing of the candidate itemsets. And 

with the increasing of the number of long transactions and 

the decreasing of the minimum expected support, their 

performance deteriorates rapidly. The algorithms proposed 

in papers [6,8,9] are based on FP-Growth; in building their 

UF-Tree, two items with the same name but different 

existential probabilities are considered as different nodes; 

this approach leads to excessive memory requirement to 

maintain the tree. 
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Our approach is also inspired by FP-Growth, and tries 

to amend the defects of the above tree-based algorithms: 

we propose a more efficient tree structure, named IT-Tree 

(Itemset Tail-node Tree), to maintain the probability 

information of transaction itemsets, and give an algorithm, 

named IT-Mine, to mine frequent itemsets from the IT-

Tree. An IT-Tree is created by two scans of the dataset, 

and IT-Mine mines frequent itemsets from the IT-Tree 

without additional scan of the dataset, and without 

generating candidate itemsets. 

 

1.1 CONTRIBUTIONS OF THIS PAPER 

 

1) A tree structure named IT-Tree is proposed for 

maintaining transaction itemsets of an uncertain dataset. 

2) An algorithm named IT-Mine is proposed for 

discovering frequent itemsets from uncertain dataset based 

on IT-Tree. 

3) Both real and synthetic datasets are used in our 

experiments to evaluate the performance of the proposed 

algorithm with the state-of-the-art algorithm MBP. 

 

1.2 THE CONSTRUCTION OF THIS PAPER 

 

The rest of this paper is organized as follows: Section 2 is 

the description of the problem and definitions; Section 3 is 

related works; Section 4 is our proposed algorithm IT-

Mine; Section 5 is the experimental results; and Section 6 

is the conclusion and discussion. 

 

2 Problem definitions 

 

An uncertain transaction dataset D={T1,T2,…,Tn} contains 

n transaction itemsets and m distinct items i.e. I 

={i1,i2,…,im}, and each transaction itemset Td (1≤d≤n) is 

represented as {i1:p1, i2:p2,…, iv:pv} or 

{{i1,i2,…,iv},{p1,p2,…,pv}}, where {i1,i2,…,iv} is a subset 

of I, and pu is the probability of the item iu (1≤u≤v) in 

transaction itemset Td. An itemset X={i1,i2,…,ik} is called 

a k-itemset, and k is the length of the itemset X. 

We adopt definitions similar to those presented in the 

previous works [5, 11, 13]. 

Definition 1: According to the paper [13], the support 

number (sn) of an itemset X is the number of transaction 

itemsets containing X. 

Definition 2: The probability of an item ir in 

transaction itemset Td is denoted as p(ir,Td), and is defined 

by 

( , )r d rp i T p . (1) 

For example, in Table 1, p({a},T1)=0.6, p({d},T1)=0.5. 

Definition 3: The probability of an itemset X in a 

transaction itemset Td is denoted as p(X,Td), and is defined 

by 

,
( , ) ( , )

r d
d r di X X T

p X T p i T
 

 . (2) 

For example, in Table 1, p({a,d},T1)=0.6×0.5 = 0.3, 

p({a, d},T2)=0.7×0.8=0.56, p({a, d},T3)=0.3×0.4=0.12. 

Definition 4: The expected support number (exp) of an 

itemset X in an uncertain transaction dataset is denoted as 

E(X), and is defined by 

( ) ( , )
d

dT D
E X P X T


 . (3) 

For example, in Table 1, E({a, d})=p({a, d},T1)+p({a, 

d},T2)+p({a, d},T3)=0.3+0.56+0.12=0.98. 

Definition 5: According to the probability theory, the 

occurring probability of the itemset X occurring in k 

mutually independent transaction itemsets (0≤k≤|D|) is 

denoted as ( )kP X , and is defined by 

,| |
( ) ( ( , ) (1

( , )))

d d
k dS D S k T S T D S

d

P X P X T

P X T

    
  



  
. (4) 

For example, in Table 1, 

P2({a,d})=p({a,d},T1)×p({a,d},T2)× 

(1-p({a,d},T3))+p({a,d},T1)×p({a,d},T3)× 

(1-p({a,d},T2))+p({a,d},T2)×p({a,d},T3)× 

(1-p({a,d},T1))=0.21072; 

P3({a,d})=p({a,d},T1)×p({a,d},T2)×p({a,d},T3)=0.02016. 

Definition 6: According to the probability theory, the 

occurring probability of the itemset X occurring in more 

than k mutually independent transaction itemsets (0≤k≤|D|) 

is denoted as ( )kP X
, and is defined by 

,| |
( ) ( ( , )

(1 ( , )))

d

d

k dS D S k T S

dT D S

P X P X T

P X T

   

 

 



 


 (5) 

For example, in Table 1, 

P≥2({a,d})=P2({a,d})+P3({a,d})+P≥4({a,d})= 

0.21072+0.02016+0=0.23088.  

Note P≥4({a,d}) is 0 because there is only 3 transaction 

itemsets containing the itemset {a,d}. 

 

3 Related work 

 

The approaches of finding frequent itemsets from precise 

dataset can be classified into two categories: the level-wise 

approach and the pattern-growth approach. The algorithms 

Apriori [13] and FP-Growth [14] are representative ones 

for mining frequent itemsets from precise transaction 

dataset, and they are representative ones for the level-wise 

approach and pattern-growth approach, respectively. 

Apriori is to iteratively generate frequent (k+1)-itemsets 

using frequent k-itemsets (k≥1):  

1) a (k+1)-itemset X is a candidate itemset if its k sub 

k-itemsets are frequent itemsets; 

2) the support number of X is calculated by one scan of 

dataset if X is a candidate itemset; 
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3) the itemset X is frequent if its support number is not 

less than the specified minimum support number. 

One advantage is that it has a high time performance 

when the dataset is sparse, does not contain many long 

transaction itemsets, and the minimum support number is 

not small. Its main shortcoming is that it requires multiple 

scans of dataset, and generating candidate itemsets. 

Pattern-growth also employs the iteration approach:  

1) it finds the set of frequent 1-itemsets (the set is 

denoted as F) under the condition of a k-itemset X (k≥1),  

2) any itemset X∪f (f∈F) is a frequent (k+1)-itemset. 

It maintains all transaction itemsets on a tree by one scan 

of dataset, and generates a conditional sub-tree for each 

frequent itemset X. Thus, it will find all frequent itemsets 

under the condition of X by scanning this conditional sub-

tree, instead of scanning the whole dataset. 

An important difference between precise and uncertain 

transaction dataset is that each transaction itemset of the 

former only contains items, and that of the latter contains 

items and their existential probabilities. Thus, the existing 

algorithms of mining frequent itemsets from precise 

dataset cannot be used directly on uncertain transaction 

dataset. Recently, some algorithms have been proposed for 

mining frequent itemsets from uncertain transaction 

dataset. 

U-Apriori [7] was proposed in 2007 to find frequent 

itemsets from uncertain transaction dataset, and it was a 

level-wise approach. The difference of U-Apriori and 

Apriori is that U-Apriori calculates the sum of probability 

of a candidate itemset/item X in all transaction itemsets 

while Apriori calculates the number of transaction itemsets 

containing X when they scan a dataset to judge whether the 

candidate itemset/item X is frequent. U-Apriori and 

Apriori have the same advantage and disadvantage. The 

time and memory performance may be worse with the 

increasing of the number of long transaction itemsets and 

the decreasing of the minimum expected support number. 

In 2007, Leung et al. [8] propose a tree-based algorithm, 

named UF-Growth, for mining frequent itemsets from 

uncertain transaction dataset using the same definition of 

frequent itemsets as in paper [7]. UF-Growth is based on 

FP-Growth, and is a pattern-growth approach. UF-Growth 

also constructs a UF-Tree using the given uncertain 

transaction dataset. But, if two items have the same item 

name but different existential probabilities, they are 

considered as different items, and they cannot share the 

same node when they are added to a tree. For example, two 

sorted itemsets {a:0.90, b:0.70, c:0.73} and {a:0.95, b:0.85, 

c:0.70}, they will not share the same node “a” because the 

probabilities of item “a” in two itemsets are different. After 

the first UF-Tree is built, UF-Growth retrieves the frequent 

itemsets from the UF-Tree or sub UF-Trees recursively as 

the method of FP-Growth. However, the UF-Growth 

algorithm requires a lot of memory to store tree nodes and 

a large amount of computational time to process tree nodes.  

In 2008, Leung et al. [9] proposed two improvements 

to boost the time and memory performance of UF-Growth. 

The first improved algorithm uses the idea of the co-

occurrence frequent itemset tree [16] to avoid creating of 

sub UF-Trees. The second improved algorithm considers 

that the items, which have the same k-digit value after the 

decimal point, have the same probability. For example, for 

two sorted itemsets {a:0.90, b:0.70, c:0.73} and {a:0.95, 

b:0.85, c:0.70}, both probabilities of item “a” are 0.9 and 

they will share the node “a”. When they are inserted to a 

UF-Tree if k is set as 1; both probabilities of item “a” are 

0.90 and 0.95 respectively and they will not share the node 

“a” if k is set as 2. This improved algorithm has a better 

performance than its original algorithm UF-Growth. 

However, the improved algorithm still does not build a 

UFP-Tree as compact as the original FP-Tree [14], and it 

may loss some frequent itemsets. 

In 2009, Aggarwal et al. [6] proposed the two 

algorithms UH-mine and UFP-Growth respectively. These 

two algorithms employ the pattern-growth approach. 

Aggarwal also performed a comparison on three frequent 

itemsets mining algorithms U-Apriori, UH-Mine and 

UFP-Growth, and concluded that U-Apriori outperforms 

the other two algorithms. 

In the papers [6-9], the proposed algorithms are based 

on the expected support number of an itemset. An itemset, 

whose expected support number is not less than the user 

specified minimum expected support number, is called as a 

frequent itemset. 

In 2008, Zhang et al. [12] proposed an approximate 

algorithm for mining frequent itemsets from uncertain 

transaction dataset based on Definition 6, which defines an 

itemset to be a frequent itemset if its occurring probability 

is not less than the user specified minimum probability. 

In 2009, Bernecker et al. [5] developed a dynamic-

programming-based algorithm based on Definition 6, to 

mine frequent itemsets from uncertain transaction dataset, 

which employs the level-wise approach. This algorithm 

inherits the advantage and disadvantage of Apriori.  

In 2010, Sun et al. [10] proposed algorithms p-Apriori 

and TODIS to mine frequent itemsets from uncertain 

transaction dataset. The algorithm p-Apriori is based on 

Apriori, and applies a divide-and-conquer approach in 

calculating the occurring probability of an itemset. The 

difference between TODIS and p-Apriori is that TODIS 

works in a top-down manner and p-Apriori works in a 

bottom-up manner. However calculating the occurring 

probability of an itemset requires a large amount 

computation, the time performance of the algorithms 

proposed in the papers [5, 10, 12] is low.  

The problem of getting the occurring probability of an 

itemset is changed to the problem of getting the expected 

support number of an itemset in the paper [11], because a 

Poisson binomial distribution can be well approximated by 

a Poisson distribution [20] and calculating the occurring 

probability of an itemset requires a large amount 

computation. The paper [11] also proposed an algorithm 

MPB based on U-Apriori. MPB can fast identify frequent 

and non-frequent itemsets from candidate itemsets without 

scanning the whole dataset; it can achieve a better 

performance than U-Apriori in terms of time and space. In 
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this paper, we propose a mining algorithm based on the 

expected support number of an itemset. 

 

4 Our proposed method 

 

Our proposed algorithm IT-Mine mainly includes two 

procedures: firstly, create an IT-Tree or sub IT-Tree; 

secondly, mine frequent itemsets from the IT-Tree or sub 

IT-Tree. We descript the structure of IT-Tree in Section 4.1, 

give an example of the construction of IT-Tree in Section 

4.2, and describe the process of mining frequent itemsets 

from the tree with an example in Section 4.3. 

 

4.1 STRUCTURE OF IT-TREE 

 

Definition 7: Let X be a sorted k-itemset {i1, i2, i3,…, ik}, 

where ik is the tail-item. When the itemset X is inserted into 

a tree T in this order, the node N on the tree that represents 

this tail-item is defined as a tail-node for itemset X. The 

itemset X is called tail-node-itemset for node N.  

Definition 8: Let an itemset X containing itemset Y be 

added to a conditional sub-tree T of the itemset Y. On the 

tree T, the base probability of an itemset X is denoted as 

BP(X,Y), and is defined by 

 , ( , )BP Y X P Y X . (6) 

The structure of IT-tree is illustrated in Figure 1. There 

are two types of nodes on the IT-tree: one is normal node, 

as shown in Figure 1a, where N records the item name of 

each node, Parent records the parent node, Children list 

records all children nodes; and the other is tail-node, as 

shown in Figure 1b, where S records support number, BP 

is base probability value of a transaction itemsets, and 

ItemsP is an array which records probability values of all 

items in corresponding tail-node-itemset. We use a “list” 

to maintain BP and ItemsP values because there may be 

many itemsets sharing the same tail-node. 

 

FIGURE 1 Structure of nodes on IT-Tree 

 

4.2 CONSTRUCTION OF AN IT-TREE 

 
The construction of an IT-Tree needs two scans of dataset. 

In the first scan, create a header table to maintain the 

support number and expected support of each item; delete 

those items whose expected support number is less than 

the user specified minimum expected support number from 

the header table; arrange remaining items of the header 

table in descending order of support numbers. In the 

second scan, all transaction itemsets are inserted into an 

IT-tree. The process is as follows: 

1) Delete items that are not in the header table from the 

transaction itemset; 

2) Sort remaining items in the transaction itemset 

according to the order of the header table; 

3) Insert the modified transaction itemset into an IT-

tree, and store support number and probability value of 

each item in each modified transaction itemset to the tail-

node of the itemset. 

To facilitate tree traversals, links in the header table are 

also maintained (not shown in the Figure 2 for simplicity).  

For example, consider the transaction dataset in Table 

1. Here the user specified minimum expected support 

number is set to 0.8.  

 

FIGURE 2 Construction of an IT-Tree 

 

Figure 2a is a header table created in the first scan of 

dataset. Initially, the IT-Tree is created with a root R. 

When the transaction itemset T1 is retrieved, the algorithm 

IT-Mine firstly deletes the item “b”; and then arranges the 

itemset in the order as the header table in Figure 2a; last, 

inserts the sorted itemset into the IT-tree. The resulting IT-

Tree is shown in Figure 2b. On tail-node “c”, “1” 

represents the support number of this transaction itemset, 

“{1}” represents the base probability, “{0.6,0.5,0.3}” 
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represents the probability values of items “a”, ”d” and ”c” 

respectively. 

Now insert the transaction itemset T2 into the IT-Tree. 

Since the path “root-a-d” can be shared, the algorithm IT-

Mine changes the node “d” to a tail-node for the 

transaction itemsets T2. The resulting IT-Tree is shown in 

Figure 2c. 

Afterwards, insert the transaction itemsets T3 into the 

IT-Tree. Since the path “root-a-d-c” can be shared, only 

the probability information of this itemsets needs to be 

stored into tail node “c”. The resulting IT-Tree is shown in 

Figure 2d. On the tail node “c”, “{1,1}” represents the base 

probability values of two transaction itemsets, 

“{{0.6,0.5,0.3},{0.3,0.4,0.8}}” represents the probability 

values of items “a”, ”d” and ”c” in two transaction itemsets 

respectively. 

Figure 2e is the result after adding all transaction 

itemsets in Table 1 are added to the tree; this is the first IT-

Tree, and we also call it the global IT-Tree. Since the 

conditional base-itemset of the first IT-Tree is null, the 

base probability of any tail node on the first IT-Tree is set 

to 1. 

 

4.3 MINING FREQUENT ITEMSETS FROM THE 

TREE 

 

Start processing from the last item (denoted as Z) in the 

header table (denoted as HT): 

Step 1. Add item Z to the current base-itemset (which 

is initialized as null). Each new base-itemset is a frequent 

itemset.  

Step 2. Let Z.links contain k nodes whose item name is 

Z; we denote these k nodes as N1,N2,…,Nk respectively; 

because item Z is in the last of the header table, all these k 

nodes are tail nodes, i.e., each of these nodes contains 

probability information (S, list of BP, list of ItemsP). 

Substep 2.1. Since each one of these k nodes contains 

the probability of each item, create a sub header table 

through scanning these k branches whose paths are from 

these k nodes to the root.  

Substep 2.2. Go to Step 3 if the sub header table is null. 

Substep 2.3. Create a sub IT-tree for the current base-

itemset {Z} according to the sub header table and these k 

branches. The probability values of items in the current 

base-itemset are stored to the corresponding tail-nodes. 

Substep 2.4. Perform a recursive mining process on 

this sub IT-Tree. 

Step 3. Remove the item Z from the base-itemset. 

Step 4. For each of the k nodes (which we denote as Ni, 

1≤i≤k), modify its tail-information: 

Substep 4.1. Delete item Z’s probability from list of 

BP of these k nodes. 

Substep 4.2. Move the probability information (S, list 

of BP, list of ItemsP) on each node to the parent of each 

node.  

Step 5. Process the next item in the header table HT 

using the same method. 

 

FIGURE 3 Mining the frequent itemsets 

The following is the detailed explanation of the mining 

process illustrated in Figure 2 and Figure 3. 

In Figure 2a, item “c” is the last item in the header table. 

Firstly, add item “c” to the base-itemset, and get a frequent 

itemset {c}; then create a header table for the current base-

itemset by scanning the branches “root-a-d-c” and “root-d-

c”. For branch “root-a-d-c”, under the condition of the 

current base-itemset {c}, the probability values of items 

“a” and “d” are calculated as 0.42 (=0.3*0.6+0.8*0.3) and 

0.47 (=0.3*0.5+0.8*0.4); for branch “root-d-c”, under the 

condition of the current base-itemset {c}, the probability 

value of item “d” is calculated as 0.21 (=0.7*0.3). The 

expected support numbers of items “a” and “d”, 0.42 and 

0.68 (=0.47+0.21), are less than the user specified 

minimum expected support number 0.8. So remove item 

“c” from the base-itemset, and remove the probability of 

each node “c” from ItemsP of each node, then pass the 

modified probability information to the parent node of this 

node. The resulting IT-Tree is shown in Figure 3a. 

Afterwards, begin processing the item “d” in the header 

table in Figure 2a. 

Add item “d” to the current base-itemset, we get a 

frequent itemset {d}; then create a header table for the 

current base-itemset {d} by scanning the branch “root-a-

d” in Figure 3a; as the result, under the condition of the 

current base-itemset {d}, the expected support number of 

item “a” is calculated as 0.98 (= 0.5 * 0.6 + 0.4 * 0.3 + 0.8 

* 0.7). Since this expected support number is not less than 

minimum expected support number 0.8, create a 

conditional sub IT-Tree and a sub header table for the 

current base-itemset {d}, as shown in Figure 3b. On tail-

node “a” of Figure 3b, “{0.8,0.5,0.4}” represents the base 

probability values of 3 transaction itemsets containing the 

itemset {da}, “{{0.7},{0.6},{0.3}}” represents the 

probability value of the item “a” in 3 transaction itemsets 

respectively.  

Now, the item “a” in header table in Figure 3b is 

processed.  

Add item “a” to the current base-itemset {d}, and get a 

frequent itemset {da}. After the sub IT-tree in Figure 3b is 

processed, return to process previous tree in Figure 3a. 

Go on processing the next item “a” of the header table 

in Figure 2a. 
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After finish processing item “a”, we get a new frequent 

itemset {a}. 

Lastly, we find 4 frequent itemsets from the dataset in 

Table 1: {c}, {d}, {da} and {a}. 

 

5 Experimental results 

 

In this section, we compare the performance of the 

proposed algorithm IT-Mine, the level-wise algorithm 

MBP and the pattern-growth algorithm UF-Growth using 

five datasets. 

TABLE 2 Dataset characteristics 

Dataset |D| |I| ML DS (%) Type 

retail 88162 16470 10.3 0.06 sparse 
T20I6D100K 100000 980 20 2.03 sparse 

mushroom 8124 119 23 19.33% dense 

connect 67557 129 43 33.33 dense 

T20I6D200K 200000 980 20 2.03 sparse 

Table 2 shows the characteristics of 5 datasets used in 

our experiments. “|D|” represents the number of 

transactions; “|I|” represents the number of distinct items; 

“ML” represents the mean length of all transaction 

itemsets; “DS” represents the degree of sparse or dense. 

The datasets retail, mushroom and connect are real-world 

and obtained from FIMI Repository [21]. The datasets 

T20I6D100K and T20I6D200K came from the IBM Data 

Generator [13]. Because the original datasets do not 

provide probability values for each item, to use these 

dataset as uncertain transaction dataset, we assign a 

randomly generated existential probability from range (0, 

1] to each item of each transaction itemset. The runnable 

programs and testing datasets used in our experiments can 

be downloaded from the following address: 

http://code.google.com/p/it-tree/downloads/list. 

The configuration of the testing platform is as follows: 

Windows 7 operating system, 3G memory, Intel(R) 

Core(TM) i5-2300 CPU @ 2.80 GHz; Java heap size is 

1024M. 

The minimum expected support number is set from 130 

down to 40 with the decreasing of 10 on retail, from 160 

down to 70 with the decreasing of 10 on T20I6D100K, 

from 550 down to 100 with the decreasing of 50 on 

mushroom, and is set from 9000 down to 7200 with the 

decreasing of 200 on connect. The more the number of 

frequent itemsets is, the smaller the minimum expected 

support number is set. Under the upper bound of the 

minimum expected number on our experiments, there are 

at least frequent 2-itemsets on those datasets. As shown in 

Figures 4-7, they show the distribution of frequent itemsets 

(FIs) under different minimum expected support number. 
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FIGURE 4 Distribution of FIs of retail 
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FIGURE 5 Distribution of FIs of T20I6D100K 

 
TABLE 3 Number of candidate itemsets under varied minimum expected support number 

retail T20I6D100K mushroom connect 

Min_exp 
Candidate  

itemsets (#) 
Min_exp 

Candidate  

itemsets (#) 
Min_exp 

Candidate  

itemsets (#) 
Min_exp 

Candidate  

itemsets (#) 

130 143524 160 367899 550 2002 9000 7758 
120 193308 150 375253 500 2403 8800 7829 
110 246261 140 384624 450 2777 8600 8078 
100 327889 130 392468 400 3533 8400 8524 
90 435082 120 404535 350 4589 8200 9496 
80 576580 110 417895 300 5692 8000 10761 
70 786105 100 436599 250 7860 7800 11986 
60 1142949 90 467162 200 12275 7600 13524 
50 1713089 80 516153 150 19595 7400 15263 
40 2756787 70 596506 100 40061 7200 17221 
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FIGURE 8 Running time on retail 

160 150 140 130 120 110 100 90 80 70

50

100

150

200

250

300

350

400

450

500

550

Minimum expected support number

R
u

n
n

in
g

 t
im

e
 (

S
)

 MBP

 UF-growth

 IT-Mine

 

FIGURE 9 Running time on T20I6D100K 
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FIGURE 10 Ru3nning time on mushroom 
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FIGURE 11 Running time on connect 
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FIGURE 12 Scalability for the algorithms on the sparse 

dataset 
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FIGURE 13 Scalability for the algorithms on the dense 
dataset 

 

Figures 8-11 show the running time of 3 algorithms on 

four testing datasets under different minimum expected 

support number. On the dense dataset connect, UF-Growth 

is out of memory although the minimum expected support 

number is set 9000 because the dataset connect is very 

dense and the length of each transaction itemset is 43. The 

time performance of UF-Growth is low because UF-

Growth generates too many tree nodes and requires too 

much time to process these tree nodes. The number of 

candidate itemsets generated by MBP increases with the 

decreasing of the minimum expected support number, as 

shown in Table 3. For example, the number of candidate 

itemsets is up to 2756787 from 143524 when the minimum 

expected support number is down to 40 from 130 on retail, 

thus the running time of MBP increases quickly with the 

decreasing of the minimum expected support number. 

Figures 8-11 shows that IT-Mine has a high time 

performance on those four dataset under different 

minimum expected support number. 

In the following experiments, we evaluate the 

scalability of IT-Mine, UF-Growth and MBP on sparse 

datasets using the synthetic sparse dataset T20I6D200K; 

we vary the size of the dense dataset connect to evaluate 

the scalability of IT-Mine, UF-Growth and MBP on dense 
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datasets; The minimum expected support number is set 

120 and 8000 on the sparse dataset and dense dataset 

respectively. 

MBP requires generating candidates and identifying 

frequent itemsets from the candidates by scanning the 

dataset, thus its time performance is dependent on the 

numbers of candidates, the size of dataset and the length of 

transaction itemsets. As shown in Figure 12 and Figure 13, 

the time performance of MBP slows down drastically with 

the increasing of number of transaction itemsets. Both IT-

Mine and UF-Growth have a stable time performance on 

the sparse dataset. On the dense dataset, because the length 

of each transaction itemset is long and the dataset is very 

dense, UF-Growth is out of memory in our experiment of 

dense dataset and the time performance of MBP also slows 

down with the increasing of the size of dataset. Figure 12 

and Figure 13 show that the strong scalability of IT-Mine 

is obvious. 

 

6 Conclusion and discussion 

 

In this paper, we propose a novel tree structure, named IT-

Tree, to represent transaction itemsets of an uncertain 

transaction dataset. An important feature of IT-Tree is that 

it maintains probability information of each transaction 

itemset into a tail-node of the transaction itemset. This way 

the IT-Tree is as compact as the original FP-Tree, while it 

does not lose information with respect to the distinct 

probability values for transaction itemsets. We also give 

an algorithm named IT-Mine to mine frequent itemsets 

from IT-Tree without additional scans of dataset. 

Experiments were performed on both real sparse and 

dense dataset, and IT-Mine outperforms the algorithm 

MBP and UF-Growth in terms of running time; the 

performance of IT-Mine is also quite stable with the 

changing of the minimum expected support number.  

There are two models in mining frequent itemsets from 

uncertain transaction dataset: one is based on the expected 

support number of an itemset; the other is based on 

occurring probability of an itemset. IT-Mine is developed 

on expected support number, but it can also be applied to 

the latter model, because after getting probability 

information from the tree, the data structure itself is 

irrelevant with the calculation of the expected support 

number or the occurring probability of an itemset. 

Although IT-Mine has achieved better performance on 

testing dataset, construction of global IT-Tree and 

conditional IT-Trees consumes much time. We hope to 

improve the speed of IT-Tree construction in future work.  
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