

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

264
Information and Computer Technologies

An algorithm for mining frequent itemsets on uncertain dataset

Si Tian1, Shui Wang1*, Yang Liu2, Le Wang1
1School of Information Engineering, Ningbo Dahongying University, Ningbo, Zhejiang, China, 315175

2School of Innovation Experiment, Dalian University of Technology, Liaoning, China, 116024

Received 1 March 2014, www.cmnt.lv

Abstract

Mining frequent itemsets from uncertain transaction dataset is a research topic in data mining. Some algorithms are based on FP-

Growth, but they construct the tree structure in a manner that cannot be as compact as the original FP-Tree, so the tree is easily

developed to huge size and this hinders their performance. In this paper, we propose a new tree structure called IT-Tree (Itemset Tail-

node Tree) to efficiently maintain probability information of itemsets in tail-nodes; we also propose a corresponding algorithm IT-

Mine to mine frequent itemsets from IT-Tree without additional dataset scans. We evaluate our approach on real sparse and dense

datasets with different minimum support numbers that can produce non-null frequent k-itemsets (k≥2); the results show that IT-Mine
outperforms other algorithms in terms of execution time, especially for large dataset or small minimum expected support number.

Keywords: frequent itemset, frequent pattern, uncertain transaction dataset, data mining

1 Introduction

Uncertain transaction dataset describes the existential

probability of each item in a transactional process. Many

applications create uncertain datasets; for example, as

indicated by [1,2] and [3], measurement errors of RFID,

GPS and other sensors are part of the major sources of

uncertain data, because the sensor readings are constantly

fluctuating and can hardly be precise, such as the location

of an object provided by RFID or GPS. Another kind of

uncertainty comes from statistical laws; for example, in

medical field, the illness or disease diagnosed for a patient

cannot be completely determined by one or more

symptoms; in market analysis, customer purchase

behaviours, computed from basket data for predicting what

a customer will buy in the future, are also statistical

probabilities [4, 5]. With the development of applications

using uncertain datasets, the issue of data mining over

uncertain dataset has become a hot topic in data mining in

recent years [4-12].

Table 1 shows an example of an uncertain transaction

dataset. Each transaction in Table 1 represents that a

customer buy a certain item with a probability. The

decimal value associated with an item is called the

existential probability of the item. For instance, the first

transaction T1 in Table 1 shows that the customer A might

purchase products “a”, “b”, “c” and “d” with 60%, 20%,

30% and 50% chances in the future, respectively. The

probability values in Table 1 may be obtained from the

analysis of the customers’ browsing online-shop history: if

customer A visited an online-shop ten times in a certain

period of time, out of which “a” product was clicked six

times, then it might be established that customer A has a

60% probability to buy “a” in the future. The probability

*Corresponding author’s e-mail: seawan@163.com

values may also be obtained from data mining results on

the supermarket basket data.

TABLE 1 An example of uncertain transaction dataset

TID Customer Transaction itemset

T1 A (a: 0.6), (b: 0.2), (c: 0.3), (d,0.5)

T2 B (a: 0.7), (e: 0.25), (d,0.8)
T3 C (a: 0.3), (c: 0.8) ,(d,0.4)

T4 D (c: 0.7), (e: 0.2), (d,0.3)

T5 E (a: 0.5), (b: 0.3), (e: 0.3)

Mining frequent itemsets from uncertain transaction

dataset is to discover those itemsets whose sum of

probability values or occurring probability exceeds the

user specified threshold. Because of its probablistic nature,

frequent itemsets mining on uncertain transaction dataset

is different from that on precise dataset, which has already

been well defined and studied [13, 14], and many

algorithms have been proposed, such as Apriori [13], FP-

Growth [14], MAFIA [15], COFI [16], Pincer-search [17],

CHARM [18], Index-BitTableFI [19] etc. Researchers

usually extrapolate the existing algorithms on precise data

to get their new algorithms on uncertain data. The papers

[5, 7, 10-12] proposed algorithms based on Apriori. These

algorithms bear the same bottleneck as Apriori: the

generating & processing of the candidate itemsets. And

with the increasing of the number of long transactions and

the decreasing of the minimum expected support, their

performance deteriorates rapidly. The algorithms proposed

in papers [6,8,9] are based on FP-Growth; in building their

UF-Tree, two items with the same name but different

existential probabilities are considered as different nodes;

this approach leads to excessive memory requirement to

maintain the tree.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

265
Information and Computer Technologies

Our approach is also inspired by FP-Growth, and tries

to amend the defects of the above tree-based algorithms:

we propose a more efficient tree structure, named IT-Tree

(Itemset Tail-node Tree), to maintain the probability

information of transaction itemsets, and give an algorithm,

named IT-Mine, to mine frequent itemsets from the IT-

Tree. An IT-Tree is created by two scans of the dataset,

and IT-Mine mines frequent itemsets from the IT-Tree

without additional scan of the dataset, and without

generating candidate itemsets.

1.1 CONTRIBUTIONS OF THIS PAPER

1) A tree structure named IT-Tree is proposed for

maintaining transaction itemsets of an uncertain dataset.

2) An algorithm named IT-Mine is proposed for

discovering frequent itemsets from uncertain dataset based

on IT-Tree.

3) Both real and synthetic datasets are used in our

experiments to evaluate the performance of the proposed

algorithm with the state-of-the-art algorithm MBP.

1.2 THE CONSTRUCTION OF THIS PAPER

The rest of this paper is organized as follows: Section 2 is

the description of the problem and definitions; Section 3 is

related works; Section 4 is our proposed algorithm IT-

Mine; Section 5 is the experimental results; and Section 6

is the conclusion and discussion.

2 Problem definitions

An uncertain transaction dataset D={T1,T2,…,Tn} contains

n transaction itemsets and m distinct items i.e. I

={i1,i2,…,im}, and each transaction itemset Td (1≤d≤n) is

represented as {i1:p1, i2:p2,…, iv:pv} or

{{i1,i2,…,iv},{p1,p2,…,pv}}, where {i1,i2,…,iv} is a subset

of I, and pu is the probability of the item iu (1≤u≤v) in

transaction itemset Td. An itemset X={i1,i2,…,ik} is called

a k-itemset, and k is the length of the itemset X.

We adopt definitions similar to those presented in the

previous works [5, 11, 13].

Definition 1: According to the paper [13], the support

number (sn) of an itemset X is the number of transaction

itemsets containing X.

Definition 2: The probability of an item ir in

transaction itemset Td is denoted as p(ir,Td), and is defined

by

(,)r d rp i T p . (1)

For example, in Table 1, p({a},T1)=0.6, p({d},T1)=0.5.

Definition 3: The probability of an itemset X in a

transaction itemset Td is denoted as p(X,Td), and is defined

by

,
(,) (,)

r d
d r di X X T

p X T p i T

 . (2)

For example, in Table 1, p({a,d},T1)=0.6×0.5 = 0.3,

p({a, d},T2)=0.7×0.8=0.56, p({a, d},T3)=0.3×0.4=0.12.

Definition 4: The expected support number (exp) of an

itemset X in an uncertain transaction dataset is denoted as

E(X), and is defined by

() (,)
d

dT D
E X P X T

 . (3)

For example, in Table 1, E({a, d})=p({a, d},T1)+p({a,

d},T2)+p({a, d},T3)=0.3+0.56+0.12=0.98.

Definition 5: According to the probability theory, the

occurring probability of the itemset X occurring in k

mutually independent transaction itemsets (0≤k≤|D|) is

denoted as ()kP X , and is defined by

,| |
() ((,) (1

(,)))

d d
k dS D S k T S T D S

d

P X P X T

P X T

. (4)

For example, in Table 1,

P2({a,d})=p({a,d},T1)×p({a,d},T2)×

(1-p({a,d},T3))+p({a,d},T1)×p({a,d},T3)×

(1-p({a,d},T2))+p({a,d},T2)×p({a,d},T3)×

(1-p({a,d},T1))=0.21072;

P3({a,d})=p({a,d},T1)×p({a,d},T2)×p({a,d},T3)=0.02016.

Definition 6: According to the probability theory, the

occurring probability of the itemset X occurring in more

than k mutually independent transaction itemsets (0≤k≤|D|)

is denoted as ()kP X
, and is defined by

,| |
() ((,)

(1 (,)))

d

d

k dS D S k T S

dT D S

P X P X T

P X T

 (5)

For example, in Table 1,

P≥2({a,d})=P2({a,d})+P3({a,d})+P≥4({a,d})=

0.21072+0.02016+0=0.23088.

Note P≥4({a,d}) is 0 because there is only 3 transaction

itemsets containing the itemset {a,d}.

3 Related work

The approaches of finding frequent itemsets from precise

dataset can be classified into two categories: the level-wise

approach and the pattern-growth approach. The algorithms

Apriori [13] and FP-Growth [14] are representative ones

for mining frequent itemsets from precise transaction

dataset, and they are representative ones for the level-wise

approach and pattern-growth approach, respectively.

Apriori is to iteratively generate frequent (k+1)-itemsets

using frequent k-itemsets (k≥1):

1) a (k+1)-itemset X is a candidate itemset if its k sub

k-itemsets are frequent itemsets;

2) the support number of X is calculated by one scan of

dataset if X is a candidate itemset;

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

266
Information and Computer Technologies

3) the itemset X is frequent if its support number is not

less than the specified minimum support number.

One advantage is that it has a high time performance

when the dataset is sparse, does not contain many long

transaction itemsets, and the minimum support number is

not small. Its main shortcoming is that it requires multiple

scans of dataset, and generating candidate itemsets.

Pattern-growth also employs the iteration approach:

1) it finds the set of frequent 1-itemsets (the set is

denoted as F) under the condition of a k-itemset X (k≥1),

2) any itemset X∪f (f∈F) is a frequent (k+1)-itemset.

It maintains all transaction itemsets on a tree by one scan

of dataset, and generates a conditional sub-tree for each

frequent itemset X. Thus, it will find all frequent itemsets

under the condition of X by scanning this conditional sub-

tree, instead of scanning the whole dataset.

An important difference between precise and uncertain

transaction dataset is that each transaction itemset of the

former only contains items, and that of the latter contains

items and their existential probabilities. Thus, the existing

algorithms of mining frequent itemsets from precise

dataset cannot be used directly on uncertain transaction

dataset. Recently, some algorithms have been proposed for

mining frequent itemsets from uncertain transaction

dataset.

U-Apriori [7] was proposed in 2007 to find frequent

itemsets from uncertain transaction dataset, and it was a

level-wise approach. The difference of U-Apriori and

Apriori is that U-Apriori calculates the sum of probability

of a candidate itemset/item X in all transaction itemsets

while Apriori calculates the number of transaction itemsets

containing X when they scan a dataset to judge whether the

candidate itemset/item X is frequent. U-Apriori and

Apriori have the same advantage and disadvantage. The

time and memory performance may be worse with the

increasing of the number of long transaction itemsets and

the decreasing of the minimum expected support number.

In 2007, Leung et al. [8] propose a tree-based algorithm,

named UF-Growth, for mining frequent itemsets from

uncertain transaction dataset using the same definition of

frequent itemsets as in paper [7]. UF-Growth is based on

FP-Growth, and is a pattern-growth approach. UF-Growth

also constructs a UF-Tree using the given uncertain

transaction dataset. But, if two items have the same item

name but different existential probabilities, they are

considered as different items, and they cannot share the

same node when they are added to a tree. For example, two

sorted itemsets {a:0.90, b:0.70, c:0.73} and {a:0.95, b:0.85,

c:0.70}, they will not share the same node “a” because the

probabilities of item “a” in two itemsets are different. After

the first UF-Tree is built, UF-Growth retrieves the frequent

itemsets from the UF-Tree or sub UF-Trees recursively as

the method of FP-Growth. However, the UF-Growth

algorithm requires a lot of memory to store tree nodes and

a large amount of computational time to process tree nodes.

In 2008, Leung et al. [9] proposed two improvements

to boost the time and memory performance of UF-Growth.

The first improved algorithm uses the idea of the co-

occurrence frequent itemset tree [16] to avoid creating of

sub UF-Trees. The second improved algorithm considers

that the items, which have the same k-digit value after the

decimal point, have the same probability. For example, for

two sorted itemsets {a:0.90, b:0.70, c:0.73} and {a:0.95,

b:0.85, c:0.70}, both probabilities of item “a” are 0.9 and

they will share the node “a”. When they are inserted to a

UF-Tree if k is set as 1; both probabilities of item “a” are

0.90 and 0.95 respectively and they will not share the node

“a” if k is set as 2. This improved algorithm has a better

performance than its original algorithm UF-Growth.

However, the improved algorithm still does not build a

UFP-Tree as compact as the original FP-Tree [14], and it

may loss some frequent itemsets.

In 2009, Aggarwal et al. [6] proposed the two

algorithms UH-mine and UFP-Growth respectively. These

two algorithms employ the pattern-growth approach.

Aggarwal also performed a comparison on three frequent

itemsets mining algorithms U-Apriori, UH-Mine and

UFP-Growth, and concluded that U-Apriori outperforms

the other two algorithms.

In the papers [6-9], the proposed algorithms are based

on the expected support number of an itemset. An itemset,

whose expected support number is not less than the user

specified minimum expected support number, is called as a

frequent itemset.

In 2008, Zhang et al. [12] proposed an approximate

algorithm for mining frequent itemsets from uncertain

transaction dataset based on Definition 6, which defines an

itemset to be a frequent itemset if its occurring probability

is not less than the user specified minimum probability.

In 2009, Bernecker et al. [5] developed a dynamic-

programming-based algorithm based on Definition 6, to

mine frequent itemsets from uncertain transaction dataset,

which employs the level-wise approach. This algorithm

inherits the advantage and disadvantage of Apriori.

In 2010, Sun et al. [10] proposed algorithms p-Apriori

and TODIS to mine frequent itemsets from uncertain

transaction dataset. The algorithm p-Apriori is based on

Apriori, and applies a divide-and-conquer approach in

calculating the occurring probability of an itemset. The

difference between TODIS and p-Apriori is that TODIS

works in a top-down manner and p-Apriori works in a

bottom-up manner. However calculating the occurring

probability of an itemset requires a large amount

computation, the time performance of the algorithms

proposed in the papers [5, 10, 12] is low.

The problem of getting the occurring probability of an

itemset is changed to the problem of getting the expected

support number of an itemset in the paper [11], because a

Poisson binomial distribution can be well approximated by

a Poisson distribution [20] and calculating the occurring

probability of an itemset requires a large amount

computation. The paper [11] also proposed an algorithm

MPB based on U-Apriori. MPB can fast identify frequent

and non-frequent itemsets from candidate itemsets without

scanning the whole dataset; it can achieve a better

performance than U-Apriori in terms of time and space. In

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

267
Information and Computer Technologies

this paper, we propose a mining algorithm based on the

expected support number of an itemset.

4 Our proposed method

Our proposed algorithm IT-Mine mainly includes two

procedures: firstly, create an IT-Tree or sub IT-Tree;

secondly, mine frequent itemsets from the IT-Tree or sub

IT-Tree. We descript the structure of IT-Tree in Section 4.1,

give an example of the construction of IT-Tree in Section

4.2, and describe the process of mining frequent itemsets

from the tree with an example in Section 4.3.

4.1 STRUCTURE OF IT-TREE

Definition 7: Let X be a sorted k-itemset {i1, i2, i3,…, ik},

where ik is the tail-item. When the itemset X is inserted into

a tree T in this order, the node N on the tree that represents

this tail-item is defined as a tail-node for itemset X. The

itemset X is called tail-node-itemset for node N.

Definition 8: Let an itemset X containing itemset Y be

added to a conditional sub-tree T of the itemset Y. On the

tree T, the base probability of an itemset X is denoted as

BP(X,Y), and is defined by

 , (,)BP Y X P Y X . (6)

The structure of IT-tree is illustrated in Figure 1. There

are two types of nodes on the IT-tree: one is normal node,

as shown in Figure 1a, where N records the item name of

each node, Parent records the parent node, Children list

records all children nodes; and the other is tail-node, as

shown in Figure 1b, where S records support number, BP

is base probability value of a transaction itemsets, and

ItemsP is an array which records probability values of all

items in corresponding tail-node-itemset. We use a “list”

to maintain BP and ItemsP values because there may be

many itemsets sharing the same tail-node.

FIGURE 1 Structure of nodes on IT-Tree

4.2 CONSTRUCTION OF AN IT-TREE

The construction of an IT-Tree needs two scans of dataset.

In the first scan, create a header table to maintain the

support number and expected support of each item; delete

those items whose expected support number is less than

the user specified minimum expected support number from

the header table; arrange remaining items of the header

table in descending order of support numbers. In the

second scan, all transaction itemsets are inserted into an

IT-tree. The process is as follows:

1) Delete items that are not in the header table from the

transaction itemset;

2) Sort remaining items in the transaction itemset

according to the order of the header table;

3) Insert the modified transaction itemset into an IT-

tree, and store support number and probability value of

each item in each modified transaction itemset to the tail-

node of the itemset.

To facilitate tree traversals, links in the header table are

also maintained (not shown in the Figure 2 for simplicity).

For example, consider the transaction dataset in Table

1. Here the user specified minimum expected support

number is set to 0.8.

FIGURE 2 Construction of an IT-Tree

Figure 2a is a header table created in the first scan of

dataset. Initially, the IT-Tree is created with a root R.

When the transaction itemset T1 is retrieved, the algorithm

IT-Mine firstly deletes the item “b”; and then arranges the

itemset in the order as the header table in Figure 2a; last,

inserts the sorted itemset into the IT-tree. The resulting IT-

Tree is shown in Figure 2b. On tail-node “c”, “1”

represents the support number of this transaction itemset,

“{1}” represents the base probability, “{0.6,0.5,0.3}”

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

268
Information and Computer Technologies

represents the probability values of items “a”, ”d” and ”c”

respectively.

Now insert the transaction itemset T2 into the IT-Tree.

Since the path “root-a-d” can be shared, the algorithm IT-

Mine changes the node “d” to a tail-node for the

transaction itemsets T2. The resulting IT-Tree is shown in

Figure 2c.

Afterwards, insert the transaction itemsets T3 into the

IT-Tree. Since the path “root-a-d-c” can be shared, only

the probability information of this itemsets needs to be

stored into tail node “c”. The resulting IT-Tree is shown in

Figure 2d. On the tail node “c”, “{1,1}” represents the base

probability values of two transaction itemsets,

“{{0.6,0.5,0.3},{0.3,0.4,0.8}}” represents the probability

values of items “a”, ”d” and ”c” in two transaction itemsets

respectively.

Figure 2e is the result after adding all transaction

itemsets in Table 1 are added to the tree; this is the first IT-

Tree, and we also call it the global IT-Tree. Since the

conditional base-itemset of the first IT-Tree is null, the

base probability of any tail node on the first IT-Tree is set

to 1.

4.3 MINING FREQUENT ITEMSETS FROM THE

TREE

Start processing from the last item (denoted as Z) in the

header table (denoted as HT):

Step 1. Add item Z to the current base-itemset (which

is initialized as null). Each new base-itemset is a frequent

itemset.

Step 2. Let Z.links contain k nodes whose item name is

Z; we denote these k nodes as N1,N2,…,Nk respectively;

because item Z is in the last of the header table, all these k

nodes are tail nodes, i.e., each of these nodes contains

probability information (S, list of BP, list of ItemsP).

Substep 2.1. Since each one of these k nodes contains

the probability of each item, create a sub header table

through scanning these k branches whose paths are from

these k nodes to the root.

Substep 2.2. Go to Step 3 if the sub header table is null.

Substep 2.3. Create a sub IT-tree for the current base-

itemset {Z} according to the sub header table and these k

branches. The probability values of items in the current

base-itemset are stored to the corresponding tail-nodes.

Substep 2.4. Perform a recursive mining process on

this sub IT-Tree.

Step 3. Remove the item Z from the base-itemset.

Step 4. For each of the k nodes (which we denote as Ni,

1≤i≤k), modify its tail-information:

Substep 4.1. Delete item Z’s probability from list of

BP of these k nodes.

Substep 4.2. Move the probability information (S, list

of BP, list of ItemsP) on each node to the parent of each

node.

Step 5. Process the next item in the header table HT

using the same method.

FIGURE 3 Mining the frequent itemsets

The following is the detailed explanation of the mining

process illustrated in Figure 2 and Figure 3.

In Figure 2a, item “c” is the last item in the header table.

Firstly, add item “c” to the base-itemset, and get a frequent

itemset {c}; then create a header table for the current base-

itemset by scanning the branches “root-a-d-c” and “root-d-

c”. For branch “root-a-d-c”, under the condition of the

current base-itemset {c}, the probability values of items

“a” and “d” are calculated as 0.42 (=0.3*0.6+0.8*0.3) and

0.47 (=0.3*0.5+0.8*0.4); for branch “root-d-c”, under the

condition of the current base-itemset {c}, the probability

value of item “d” is calculated as 0.21 (=0.7*0.3). The

expected support numbers of items “a” and “d”, 0.42 and

0.68 (=0.47+0.21), are less than the user specified

minimum expected support number 0.8. So remove item

“c” from the base-itemset, and remove the probability of

each node “c” from ItemsP of each node, then pass the

modified probability information to the parent node of this

node. The resulting IT-Tree is shown in Figure 3a.

Afterwards, begin processing the item “d” in the header

table in Figure 2a.

Add item “d” to the current base-itemset, we get a

frequent itemset {d}; then create a header table for the

current base-itemset {d} by scanning the branch “root-a-

d” in Figure 3a; as the result, under the condition of the

current base-itemset {d}, the expected support number of

item “a” is calculated as 0.98 (= 0.5 * 0.6 + 0.4 * 0.3 + 0.8

* 0.7). Since this expected support number is not less than

minimum expected support number 0.8, create a

conditional sub IT-Tree and a sub header table for the

current base-itemset {d}, as shown in Figure 3b. On tail-

node “a” of Figure 3b, “{0.8,0.5,0.4}” represents the base

probability values of 3 transaction itemsets containing the

itemset {da}, “{{0.7},{0.6},{0.3}}” represents the

probability value of the item “a” in 3 transaction itemsets

respectively.

Now, the item “a” in header table in Figure 3b is

processed.

Add item “a” to the current base-itemset {d}, and get a

frequent itemset {da}. After the sub IT-tree in Figure 3b is

processed, return to process previous tree in Figure 3a.

Go on processing the next item “a” of the header table

in Figure 2a.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

269
Information and Computer Technologies

After finish processing item “a”, we get a new frequent

itemset {a}.

Lastly, we find 4 frequent itemsets from the dataset in

Table 1: {c}, {d}, {da} and {a}.

5 Experimental results

In this section, we compare the performance of the

proposed algorithm IT-Mine, the level-wise algorithm

MBP and the pattern-growth algorithm UF-Growth using

five datasets.

TABLE 2 Dataset characteristics

Dataset |D| |I| ML DS (%) Type

retail 88162 16470 10.3 0.06 sparse
T20I6D100K 100000 980 20 2.03 sparse

mushroom 8124 119 23 19.33% dense

connect 67557 129 43 33.33 dense

T20I6D200K 200000 980 20 2.03 sparse

Table 2 shows the characteristics of 5 datasets used in

our experiments. “|D|” represents the number of

transactions; “|I|” represents the number of distinct items;

“ML” represents the mean length of all transaction

itemsets; “DS” represents the degree of sparse or dense.

The datasets retail, mushroom and connect are real-world

and obtained from FIMI Repository [21]. The datasets

T20I6D100K and T20I6D200K came from the IBM Data

Generator [13]. Because the original datasets do not

provide probability values for each item, to use these

dataset as uncertain transaction dataset, we assign a

randomly generated existential probability from range (0,

1] to each item of each transaction itemset. The runnable

programs and testing datasets used in our experiments can

be downloaded from the following address:

http://code.google.com/p/it-tree/downloads/list.

The configuration of the testing platform is as follows:

Windows 7 operating system, 3G memory, Intel(R)

Core(TM) i5-2300 CPU @ 2.80 GHz; Java heap size is

1024M.

The minimum expected support number is set from 130

down to 40 with the decreasing of 10 on retail, from 160

down to 70 with the decreasing of 10 on T20I6D100K,

from 550 down to 100 with the decreasing of 50 on

mushroom, and is set from 9000 down to 7200 with the

decreasing of 200 on connect. The more the number of

frequent itemsets is, the smaller the minimum expected

support number is set. Under the upper bound of the

minimum expected number on our experiments, there are

at least frequent 2-itemsets on those datasets. As shown in

Figures 4-7, they show the distribution of frequent itemsets

(FIs) under different minimum expected support number.

 total number frequent 1-itemsets

 frequent 2-itemsets

 frequent 3-itemsets

 frequent 4-itemsets

130 120 110 100 90 80 70 60 50 40

10

100

1000

N
u

m
b

e
r

o
f
fr

e
q

u
e

n
t
ite

m
se

ts
 (

#
)

Minimum expected support number

FIGURE 4 Distribution of FIs of retail

160 150 140 130 120 110 100 90 80 70

10

100

1000

10000

Minimum expected support number

N
u

m
b

e
r

o
f
fr

e
q

u
e

n
t
it
e

m
s
e

ts
 (

#
)

 total number

 frequent 1-itemsets

 frequent 2-itemsets

FIGURE 5 Distribution of FIs of T20I6D100K

TABLE 3 Number of candidate itemsets under varied minimum expected support number

retail T20I6D100K mushroom connect

Min_exp
Candidate

itemsets (#)
Min_exp

Candidate

itemsets (#)
Min_exp

Candidate

itemsets (#)
Min_exp

Candidate

itemsets (#)

130 143524 160 367899 550 2002 9000 7758
120 193308 150 375253 500 2403 8800 7829
110 246261 140 384624 450 2777 8600 8078
100 327889 130 392468 400 3533 8400 8524
90 435082 120 404535 350 4589 8200 9496
80 576580 110 417895 300 5692 8000 10761
70 786105 100 436599 250 7860 7800 11986
60 1142949 90 467162 200 12275 7600 13524
50 1713089 80 516153 150 19595 7400 15263
40 2756787 70 596506 100 40061 7200 17221

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

270
Information and Computer Technologies

130 120 110 100 90 80 70 60 50 40

0

5

10

15

20

25

30
R

u
n

n
in

g
 t
im

e
 (

S
)

Minimum expected support number

 MBP

 UF-Growth

 IT-Mine

FIGURE 8 Running time on retail

160 150 140 130 120 110 100 90 80 70

50

100

150

200

250

300

350

400

450

500

550

Minimum expected support number

R
u

n
n

in
g

 t
im

e
 (

S
)

 MBP

 UF-growth

 IT-Mine

FIGURE 9 Running time on T20I6D100K

550 500 450 400 350 300 250 200 150 100

0

10

20

30

40

50

60

70

Minimum expected support number

R
u

n
n

in
g

 t
im

e
 (

S
)

 MBP

 UF-Growth

 IT-Mine

FIGURE 10 Ru3nning time on mushroom

9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2

0

50

100

150

200

250

R
u

n
n

in
g

 t
im

e
 (

S
)

Minimum expected support number (K)

 MBP

 IT-Mine

FIGURE 11 Running time on connect

100 120 140 160 180 200

8

16

32

64

128

256

512

1024

2048

Number of transaction itemsets (K)

R
u

n
n

in
g

 t
im

e
 (

S
)

 MBP

 UF-Growth

 IT-Mine

FIGURE 12 Scalability for the algorithms on the sparse

dataset

50 70 90 110 130

0

400

800

1200

1600

2000

R
u

n
n

in
g

 t
im

e
 (

S
)

Number of transaction itemsets (K)

 MBP

 IT-Mine

FIGURE 13 Scalability for the algorithms on the dense
dataset

Figures 8-11 show the running time of 3 algorithms on

four testing datasets under different minimum expected

support number. On the dense dataset connect, UF-Growth

is out of memory although the minimum expected support

number is set 9000 because the dataset connect is very

dense and the length of each transaction itemset is 43. The

time performance of UF-Growth is low because UF-

Growth generates too many tree nodes and requires too

much time to process these tree nodes. The number of

candidate itemsets generated by MBP increases with the

decreasing of the minimum expected support number, as

shown in Table 3. For example, the number of candidate

itemsets is up to 2756787 from 143524 when the minimum

expected support number is down to 40 from 130 on retail,

thus the running time of MBP increases quickly with the

decreasing of the minimum expected support number.

Figures 8-11 shows that IT-Mine has a high time

performance on those four dataset under different

minimum expected support number.

In the following experiments, we evaluate the

scalability of IT-Mine, UF-Growth and MBP on sparse

datasets using the synthetic sparse dataset T20I6D200K;

we vary the size of the dense dataset connect to evaluate

the scalability of IT-Mine, UF-Growth and MBP on dense

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

271
Information and Computer Technologies

datasets; The minimum expected support number is set

120 and 8000 on the sparse dataset and dense dataset

respectively.

MBP requires generating candidates and identifying

frequent itemsets from the candidates by scanning the

dataset, thus its time performance is dependent on the

numbers of candidates, the size of dataset and the length of

transaction itemsets. As shown in Figure 12 and Figure 13,

the time performance of MBP slows down drastically with

the increasing of number of transaction itemsets. Both IT-

Mine and UF-Growth have a stable time performance on

the sparse dataset. On the dense dataset, because the length

of each transaction itemset is long and the dataset is very

dense, UF-Growth is out of memory in our experiment of

dense dataset and the time performance of MBP also slows

down with the increasing of the size of dataset. Figure 12

and Figure 13 show that the strong scalability of IT-Mine

is obvious.

6 Conclusion and discussion

In this paper, we propose a novel tree structure, named IT-

Tree, to represent transaction itemsets of an uncertain

transaction dataset. An important feature of IT-Tree is that

it maintains probability information of each transaction

itemset into a tail-node of the transaction itemset. This way

the IT-Tree is as compact as the original FP-Tree, while it

does not lose information with respect to the distinct

probability values for transaction itemsets. We also give

an algorithm named IT-Mine to mine frequent itemsets

from IT-Tree without additional scans of dataset.

Experiments were performed on both real sparse and

dense dataset, and IT-Mine outperforms the algorithm

MBP and UF-Growth in terms of running time; the

performance of IT-Mine is also quite stable with the

changing of the minimum expected support number.

There are two models in mining frequent itemsets from

uncertain transaction dataset: one is based on the expected

support number of an itemset; the other is based on

occurring probability of an itemset. IT-Mine is developed

on expected support number, but it can also be applied to

the latter model, because after getting probability

information from the tree, the data structure itself is

irrelevant with the calculation of the expected support

number or the occurring probability of an itemset.

Although IT-Mine has achieved better performance on

testing dataset, construction of global IT-Tree and

conditional IT-Trees consumes much time. We hope to

improve the speed of IT-Tree construction in future work.

Acknowledgements

This work is partially supported by National Natural

Science Foundation of P. R. China (Grant No. 61173163,

51105052, 2013A610115), Ningbo Natural Science

Foundation (2013A610115, 2014A610073,

2014A610020), and General Scientific Research Fund of

Zhejiang Provincial Education Department (Y201432717).

References

[1] Sistla A Prasad 2003 Querying the uncertain position of moving

objects Proceedings of Seminar Temporal Databases: Research and

Practice Dagstuhl Germany
[2] Khoussainova N, Balazinska M, Suciu D 2006 Towards correcting

input data errors probabilistically using integrity constraints MobiDE

2006: 5th ACM International Workshop on Data Engineering for
Wireless and Mobile Access Chicago IL United states

[3] Hung C, Peng W 2010 Model-driven traffic data acquisition in

vehicular sensor networks 39th International Conference on Parallel
Processing, ICPP San Diego CA United states

[4] Aggarwal C C, Yu P S 2009 Knowledge and Data Engineering IEEE

Transactions 21(5) 609-23
[5] Bernecker T 2009 Probabilistic frequent itemset mining in uncertain

databases Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining Paris France
[6] Aggarwal C C 2009 Frequent pattern mining with uncertain data 15th

ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining KDD Paris France
[7] Chui C, Kao B, Hung E 2007 Mining frequent itemsets from

uncertain data 11th Pacific-Asia Conference on Knowledge

Discovery and Data Mining PAKDD Nanjing China
[8] Leung C K, Carmichael C L, Hao B 2007 Efficient mining of

frequent patterns from uncertain data 17th IEEE International

Conference on Data Mining Workshops, ICDM Workshops Omaha
NE United states

[9] Leung CK, Mateo M A F, Brajczuk D A 2008 A tree-based approach

for frequent pattern mining from uncertain data 12th Pacific-Asia
Conference on Knowledge Discovery and Data Mining PAKDD

Osaka Japan

[10] Sun L 2010 Mining uncertain data with probabilistic guarantees
Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining Washington DC United

states

[11] Wang L, Cheung, D W-L, Cheng R, Sau D L, Yang X S 2012 IEEE
Transactions on Knowledge and Data Engineering 24(12) 2170-83

[12] Zhang Q, Li F, Yi K 2008 Finding frequent items in probabilistic

data Proceedings of the ACM SIGMOD International Conference on
Management of Data Vancouver BC Canada

[13] Agrawal R, Srikant R 1994 Fast algorithms for mining association

rules in large databases Proceedings of the 20th International
Conference on Very Large Data Bases Santiago Chile

[14] Han J, Pei J, Yin Y 2000 Mining frequent patterns without candidate

generation ACM SIGMOD - International Conference on
Management of Data Dallas TX United states

[15] Burdick D, Calimlim M, Flannick, J, Gehrke J, Yiu T 2005 IEEE

Transactions on Knowledge and Data Engineering 17(11) 1490-504
[16] El-hajj M, Zaïane O R 2003 COFI-tree mining: a new approach to

pattern growth with reduced candidacy generation IEEE.

International Conference on Frequent Itemset Mining
Implementations

[17] Lin D I, Kedem Z M 1998 Pincer search: A new algorithm for

discovering the maximum frequent set 1377 105-105
[18] [18] Zaki MJ, Hsiao C 2002 CHARM: An efficient algorithm for

closed itemset mining ACM SIGMOD - International Conference on

Management of Data Dallas TX United states
[19] Song W, Yang B, Xu Z 2008 Index-BitTableFI: An improved

algorithm for mining frequent itemsets Knowledge-Based Systems

21(6) 507-13
[20] Cam L L 1960 An approximation theorem for the Poisson binomial

distribution In Pacific Journal of Mathematics 4(10) 1181-97

[21] Goethals B 2011 Frequent itemset mining dataset repository
http://fimi.cs.helsinki.fi/data/ Accessed 11

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cheung,%20D.W.-L..QT.&searchWithin=p_Author_Ids:37289713400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Cheng,%20R..QT.&searchWithin=p_Author_Ids:37279222000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sau%20Dan%20Lee.QT.&searchWithin=p_Author_Ids:37337214200&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yang,%20X.S..QT.&searchWithin=p_Author_Ids:38490691500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Burdick,%20D..QT.&searchWithin=p_Author_Ids:37566573400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calimlim,%20M..QT.&searchWithin=p_Author_Ids:37550306700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Calimlim,%20M..QT.&searchWithin=p_Author_Ids:37550306700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Gehrke,%20J..QT.&searchWithin=p_Author_Ids:37270015700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Yiu,%20T..QT.&searchWithin=p_Author_Ids:37557811800&newsearch=true

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 264-272 Tian Si, Wang Shui, Liu Yang, Wang Le

272
Information and Computer Technologies

Authors

Si Tian, born on July 20, 1967, Xiangcheng Henan, China

Current position, grades: professor in Department of Scientific Research at Ningbo Dahongying University.
University studies: Ningbo Dahongying University.
Scientific interest: data mining and image processing.
Publications: 2 SCI, 7 EI.

Shui Wang, born on November 17, 1967, Nanyang Henan, China

Current position, grades: professor in the School of Information Engineering, Ningbo Dahongying University, China.
University studies: Lanzhou University.
Scientific interest: data mining and software engineering.
Publications number or main: 9 EI, 2 books.

Yang Liu, born on February 16, 1993, Huaian Jiangsu, China

Current position, grades: master in computer technology and application towards Ningbo Dahongying University, China.
University studies: M.S. degree in Dalian University of Technology.
Scientific interest: data mining
Publications: none

Le Wang, born on August 15, 1978, Nanyang Henan, China

Current position, grades: associate professor in the School of Information Engineering, Ningbo Dahongying University, China.
University studies: PhD degree in Computer Application from Dalian University of Technology, China, in 2013.
Scientific interest: frequent pattern mining, high utility pattern mining, data streams and big data.
Publications:2 SCI, 10 EI.

