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Abstract 

With the growth of Linked Open Data, more and more applications are developed to take full advantage of its massive data. 

However, all these applications face an inevitable problem - how to retrieve information from these datasets with different schemas, 

which results in that a query for a dataset may get none answer from other datasets. To solve this problem, ontology alignment has 

been adopted in some Linked Open Data querying systems. In this paper, we follow this idea and make further efforts to find more 

approximate answers by employing relations and probability values in the result of ontology alignment. The fundamental of our 

method is the similarity between entities, which is used to evaluate the similarity of rewritten query relative to original query. In 

order to facilitate user to query other dataset with original query, an algorithm for alignment-based approximate querying is 

proposed. In experiments, the SPARQL queries for DBpedia are rewritten on the basis of alignment result between DBpedia and 

YAGO. The results of experiments show that alignment-based approximate querying can not only retrieve approximate results, but 

also overcome the problem caused by imprecise result of ontology alignment, which is very common for most of alignment 

techniques. 
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1 Introduction 

 
Since the W3C Linked Open Data (LOD) project 

launched in 2007, more and more datasets were published 

in the web of Data, which have covered a diversity of 

areas such as nature, geography, government, and so on. 

It offered a great incentive for researchers to develop 

various applications based on the LOD. The Traffic 

LarKC combined DBpeida, a central part of LOD, with 

an eventful wrapper and datasets of two Milano 

municipalities to implement an intelligent question 

answering system about the traffic [1]. On the basis of 

information theory, Meymandpour R. et al. took 

advantage of LOD in the domain of university to rank 

universities and compare the results with the international 

ranking system [2]. Obviously, the inevitable problem for 

those applications is how to retrieve information form the 

LOD efficiently. 

There are several approaches to query the LOD and 

each of them has its own advantages and limitations [3]. 

Data warehouses and query federation, two traditional 

approaches for query answering over distributed data, can 

be employed to execute the complex and structured 

queries over LOD [4, 5]. The search engine for the LOD 

can retrieve the web by following RDF links and provide 

query interfaces for users to search information in the 

LOD, just as Sindice [6]. In contrast to above methods, 

traversal based query execution over LOD, a novel query 

execution paradigm, can intertwine query pattern 

matching over a continuously growing dataset with the 

traversal of links in order to discover data that might be 

relevant to answer the executed query [7]. However, no 

matter what approach the user adopts, the query patterns 

must be provided in advance, that means the user should 

be familiar with all schemas of the datasets he wants to 

query. 

In fact, it is an impossible task for a user because the 

number of datasets in LOD increases continuously and 

each dataset always has a particular schema. For example, 

DBpedia [8] and YAGO [9] have their respective 

properties to express the relationships between the 

instances even if two properties have the same meaning, 

such as “geo:long” and “yago:hasLongitude” shown in 

Figure 1. Suppose a user want to query the information of 

longitude, latitude and population about the city Chengdu, 

the SPARQL query in formula (1)1 can retrieve the 

results from DBpeida, but YAGO returns nothing 

because of the mismatches between query patterns and 

schemas of YAGO. Except for the above inconvenience, 

querying on a single dataset may lose the chance to get 

answer that exists in other datasets. In Figure 1, the 

property “dbo:capital” between “dbr:Sichuan” and 

“dbr:Chengdu” is not stated in DBpeida, so that the query 

pattern “dbr:Sichuan dbo:capital ?c” finds nothing in 

DBpedia. But, “yago:Sichuan yago:hasCapital ?c”, the 

query pattern with the same meaning, can make up for the 
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discount in DBpeida by obtaining the answer from 

YAGO. 

Select ?lat ?long ?p

Where { dbr:Chengdu geo:lat ?lat. 

              dbr:Chengdu  geo:long ?long. 

              dbr:Chengdu dbo:populationTotal ?p.}   

. (1) 

In order to solve those problems, the approach that 

user can follow is ontology alignment. By combining the 

mechanism of query federation with the results of 

ontology alignment, an alignment based Linked Open 

Data querying system (ALOQUS) was proposed in [10]. 

It can map concepts in an upper ontology or domain 

specific ontology to concepts in other datasets, providing 

the capability to answer queries which cannot be 

answered by other state of the art system for LOD query 

processing. In this paper, we follow the idea of ALOQUA 

and make further efforts. Our method can find more 

approximate answers and overcome the problem caused 

by imprecise result of ontology alignment. The 

contribution of this paper is three-fold:  

(1) We measure the similarity of rewritten query 

relative to the original query. The calculation of 

similarity depends on the result of ontology alignment, 

which include not only the relations between entities, but 

also the probability values of those relations.  

(2) We propose an algorithm for alignment-based 

approximate querying, which can help user to query other 

dataset by using the original query and result of ontology 

alignment.  

(3) We prove the validity of our approach through 

experiments on real-world datasets of LOD. The results 

show that alignment-based approximate querying can 

retrieve more answers. 

The remainder of this paper is organized as follows. 

Section 2 discusses related work. In section 3, the 

SPARQL query rewriting is described with a formal way. 

How to calculate similarity between entities and queries 

on the basis of alignment result are explained in section 4. 

Section 5 proposes an algorithm for alignment-based 

approximate querying. The experiment results and their 

evaluations are presented in section 6. The conclusion of 

this paper is in section 7. 

 

2 Related work 

 

Hurtado et al. propose an RDF query relaxation method 

through RDF(s) entailment producing more general 

queries for retrieving potential relevant answers [11]. In 

order to ensure the desired cardinality and quality of 

answers, Huang et al. use the similarity between relaxed 

queries and original query to control the relaxation 

process [12, 13]. However, these works relax the original 

query based on a single schema, which is not suitable for 

various schemas of datasets in LOD. In [14, 15], Reddy 

et al. attempt to make use of ontologies available on the 

web of data to produce approximate answers, and 

integrate the approximate steps with query execution to 

improve the performance of query processing. 

Nevertheless, the similarity measure of relaxed SPARQL 

queries and the experiments in [14] are still based on the 

dataset with a single schema.  

The purpose of ontology alignment is to find the sets 

of correspondences between entities belonging to the 

matched ontologies [16]. The result of ontology 

alignment is generated by hand or by ontology matchers 

and can be used for merging ontologies, linking datasets 

and transforming queries [17]. Just like ALOQUS 

introduced in [10], the best alignments in the result of 

BLOOMS mapping are used to transform the sub-queries, 

which are executed in the corresponding end-points later.  

FIGURE 1 An example of ontology alignment between DBpedia and YAGO 

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

dbo: <http://dbpedia.org/ontology/> dbr: <http://dbpedia.org/resource/>

yago: <http://yago-knowledge.org/resource/> 

dbr:Chengdudbr:Chengdudbr:Sichuandbr:Sichuan

dbo:isPartOf geo:lat

geo:long

dbo:populationTotal

rdf:type

30.66

104.06

11000670

yago:Chengduyago:Chengdu yago: Sichuanyago: Sichuan

yago:hasCapital
yago:hasLatitude

yago:hasLongitude

yago:hasPopulation

30.61

104.09

11000670

dbo:capital

0.99

0.99

0.47


0.60


0.79


0.87

0.78

0.97


0.98

0.95DBpedia YAGO

dbo:Citydbo:City

rdf:type

yago:wikicategory_Provi

ncial_capitals_in_China

yago:wikicategory_Provi

ncial_capitals_in_China0.97
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Here, BLOOMS is an ontology matcher for schema 

alignment and can find the relations of including and 

equivalence between the classes belonging to the matched 

ontologies [18]. In general, relations found by an 

ontology matcher have some associated metadata. A 

frequently-used metadata element is confidence in the 

correspondence (typically in the [0, 1] range). The higher 

confidence means the higher likelihood that the relation 

holds [19]. Some ontology matchers use probability to 

describe the likelihood of relation between the entities, 

such as probability scores in PARIS (Probabilistic 

Alignment of Relations, Instances, and Schema) [20]. 

PARIS is a holistic ontology matcher--aligning not only 

instances but also properties and classes, which is a 

significant feature that can be employed to transform 

queries. Figure 1 presents some alignment results of 

PARIS about properties and instances between DBpeida 

and YAGO (e.g. “geo:lat” is a sub relation of 

“yago:hasLatitude” with the probability score 0.79 

(Although values presented in this paper only reserve two 

decimal fractions, the type of values is double in the 

implementation procedure of alignment-based 

approximate SPARQL query)). In this paper, we will take 

the most advantage of PARIS to implement the 

approximate SPAQRL querying on LOD. 

 

3 SPARQL query rewriting 

 

With the purpose of retrieving the data stored in RDF 

format, W3C proposed SPARQL. The fundamental 

component of SPARQL query is triple pattern, which can 

be expressed as (s, p, o) ∈  (I ∪  V) × (I ∪  V) × (I ∪  V ∪  

L). Here, V is a set of variables, I is a set of IRIs 

(Internationalized URIs), and L is a set of literals. In 

general, a SPARQL query is built on some triple patterns 

with series operations of conjunction and disjunction. It is 

worth noting that other components of SPARQL query 

are not mentioned here. It is because that they have little 

influence on the SPARQL query rewriting. 

Given Q is a SPARQL query and all IRIs in triple 

patterns of Q come from the dataset D1, Q can be 

denoted as QD1, which means the Q is designed for D1 

and may retrieve some results from D1. Because of the 

diversity of datasets in LOD, the execution of QD1 on 

another dataset D2 may return nothing, just as the 

example introduced above. By replacing IRIs in triple 

patterns of QD1 with IRIs in D2, the SPARQL query 

rewriting can generate some new queries (denoted as QD2) 

that have the same or similar meaning with QD1. Then, 

users do not have to know the schema of D2 to query it 

with QD2. For example, the query for DBpedia in formula 

(1) can be transformed to the query in formula (2), so that 

user can achieve the desired answers from YAGO. 

Despite having the significant advantage, the SPARQL 

query rewriting faces a vital problem--how to choose IRIs 

in D2 to replace the IRIs in QD1. Apparently, the high 

similarity between them is preferred. 

Select ?lat ?long ?p

Where { yago:Chengdu yago:hasLatitude ?lat. 

              yago:Chengdu  yago:hasLongitude ?long. 

              yago:Chengdu yago:hasPopulation ?p.}   

. (2) 

 

4 Alignment-based similarity 

 

4.1 SIMILARITY BETWEEN ENTITIES 

 

To compute the similarity of IRIs from two different 

datasets, the results of ontology alignment can be 

employed. The result of ontology alignment between D1 

and D2 is a finite set S, including a certain number of 4-

tuples. Formally, a 4-tuple can be written as <e1, e2, r, p>. 

Here, e1 and e2 are entities in D1 and D2 respectively, 

and r is the relation between e1 and e2, such as 

equivalence (  ), including (  ), included (  ), and etc. 

The true probability value of the relation between e1 and 

e2 is p, which ranges from 0 to 1. For example, the 

relations between “geo:lat” and “yago:hasLatitude” in 

Figure 1 can be expressed as <geo:lat, yago:hasLatitude, 

 ,0.97> and <geo:lat, yago:hasLatitude,  ,0.79>. 

Nevertheless, <dbo:shipBeam, yago:hasLatitude, 

  ,0.78> also is a part of result when user adopts PARIS 

to align DBpeida and YAGO. At this time, the SPARQL 

query rewriting needs to decide which property is more 

similar with “yago:hasLatitude”.  

Taking the diversity of 4-tuple into account, our 

method computes the similarity between entities 

according to different conditions. First, the relationship 

between instances is always equivalence, so similarity 

between i1 and i2 is p when S includes <i1, i2,  , p>. 

Here, i1 and i2 are instances in D1 and D2 respectively. 

In Figure 1, <dbr:Chengdu, yago:Chengdu,  ,0.99> 

implies that similarity between “dbr:Chengdu” and 

“yago:Chengdu” is 0.99, indicated as  

  0 99Sim dbr : Chengdu , yago : Chengdu   . . (3) 

Second, class or property in dataset is usually viewed 

as a set that means r in 4-tuple could be any relations for 

set, which make the computation of similarity for them 

more complex than instance. For definiteness and without 

loss of generality, only computing methods for similarity 

between classes are introduced here. Given c1 and c2 are 

classes in D1 and D2 respectively, the similarity between 

two classes can be defined as: 

1 2
1 2

1 2

| c c |
Sim(c ,c )=

| c c |
, (4) 

where 1 2| c c |   is the cardinality of union of c1 and c2. 

It is clear that similarity between classes is in the [0, 1]. 

Suppose that the relation set of classes includes 

equivalence (  ), including (  ) and included ( ). Then, 

the calculations of similarity based on S are divided into 

the following cases: 
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(1) <c1,c2,  ,p>S. In this case, similarity between c1 

and c2 is p. 

Proof: Given U includes all instances of classes in D1 

and D2, and x is an element in U, then 

1 2
1 2 1 2 1 2

1 2

1 2

1 2
1 2

1 2 1 2

P( x c c )
P(c c )= P(x c c | x c c )

P(x c c )

| c c |

| c c ||U |
Sim(c ,c )

| c c | | c c |

|U |


   



  

. (5) 

(2) <c1, c2,  , p1>S and <c1, c2,   , p2>S. In 

this case, similarity between c1 and c2 is 

1 2
1 2

1 2 1 2

p p
Sim(c ,c )

p p p p




  
. (6) 

Proof: Given x is an element in U, then 

1 2
1 2 1 2 1

1

| c c |
P(c c )= P(x c c |x c )

| c |
    , (7) 

1 2
1 2 1 2 2

2

| c c |
P(c c )= P(x c c |x c )

| c |
    , (8) 

Because P(c1  c2) = p2 and P(c1  c2) = p1, then 

1 2
1

2

| c c |
| c |

p
 , (9) 

1 2
2

1

| c c |
| c |

p
 , (10) 

Now, bring formula (9) and (10) into the definition of 

similarity, the conclusion can be achieved with the 

following inference. 

1 2 1 2
1 2

1 2 1 2 1 2

1 2

1 2 1 2
1 2

2 1

1 2

1 2 1 2

| c c | | c c |
Sim(c ,c )=

| c c | | c | | c | | c c |

| c c |

| c c | | c c |
| c c |

p p

p p

p p p p


 



 




  

. (11) 

For example, <dbo:School, 

yago:wordnet_school_108276720,   ,0.64> and 

<dbo:School, yago:wordnet_school_108276720,   , 

0.78> are in the result of ontology alignment when 

PARIS is adopted to align DBpedia and YAGO. Hence, 

the similarity between “dbo:School” and 

“yago:wordnet_school_108276720” is 0.54. 

(3) <c1, c2,   , p1>  S or <c1, c2,    , p2>  S. Since 

only one relation between two classes found by ontology 

matcher, formula (6) cannot be used directly in this case.  

For optimal performance, ontology matchers always set 

some thresholds to reduce the amount of computations, 

such as PARIS assumes every value below to be zero 

[20]. It means the probability of undetected relation may 

be a value below the threshold. In addition, there are 

some relations between including probability and 

included probability. Table 1 presents some super classes 

of “dbo:School” in YAGO, which are found by PARIS. 

Obviously, more general super classes of original class c 

is prone to have bigger value of included probability and 

leads to smaller value of including probability – and vice 

versa. In order to approximately simulate the above-

mentioned relations between included probability and 

including probability, the formula (12) is adopted here. 
 
TABLE 1 Some super classes of “dbo:Hospital” in YAGO 

DBpeida Relation YAGO Probability 

dbo:School   
yago:wordnet_senior_hig

h_school_108409617 
0.47 

dbo:School   
yago:wordnet_secondary

_school_108284481 
0.61 

dbo:School 


 
yago:wordnet_school_10

8276720 
0.78 

dbo:School   
yago:wordnet_institution

_108053576 
0.78 

dbo:School   
yago:wordnet_educationa

l_institution_108276342 
0.78 

dbo:School 


 yago:yagoLegalActorGeo 0.79 

dbo:School 


 
yago:wordnet_entity_100

001740 
0.80 

 

1

P( c x )

T (max(c, ) P(c x))
max(c, ) min(c, )

max(c, ) min(c, )
max(c, ) min(c, )

T ( P(c x))



   
  

   
     

. (12) 

Here, T is threshold value of including relation, which 

is the upper limit for including relation, max(c,   ) is the 

maximum probability value in the superclass set of c, 

min(c,  ) is the minimum probability value in the 

superclass set of c. For example, max(dbo:School,   ) is 

0.80 and min(dbo:School,   ) is 0.47, just as shown in 

Table 1. Once P(c   x) gets calculated, the similarity 

between c and x can be easily achieved by bringing P(c   

x) and P(c  x) into formula (6).  

In fact, the computation of included probability based 

on including probability can adopt the same mechanism, 

just as formula (13) shows. In the same way, T’ is 

threshold value of included relation; max(c,   ) is the 

maximum probability value in the subclass set of c; 

min(c,   ) is the minimum probability value in the 

subclass set of c. 

1

T' (max(c, ) P(c x))
max(c, ) min(c, )

max(c, ) min(c, )P( c x )
max(c, ) min(c, )

T ' ( P(c x))

   
  

    
     

. (13) 

Although formula (12) and formula (13) are exactly 

similar, there are some tricks, that should be mentioned. 

For instance, T and T’ are two key parameters, which 
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reflect the tendency of users for precision or recall. If T’ 

is bigger than T, classes in subclass of c is prone to 

achieve higher similarity, that means these classes can 

take precedence to be selected during the process of 

query rewriting. Then, the precision of query results may 

increase according to the mechanism introduced in 

section 5. 

 

4.2 SIMILAR ENTITIES RETRIEVAL 

 

Based on the definition of similarity between entities, an 

algorithm is given here to obtain the similar entities of 

target entity. The steps of the algorithm consist of 

initialization, retrieval of similar entities, sorting the set 

of similar entities, and so on. The details of the algorithm 

are described as follows: 

 

Algorithm SER 

Input: an entity in original dataset e, a result set of 

ontology alignment resultSet, threshold value of including 

relation T, threshold value of included  relation T’. 

Output: a set of entity with similarity similarSet 

1: Initialize similarSet 

2: find equivalent set of e from resultSet, denoted as 

equalSet 

3: find superclass set of e from resultSet, denoted as 

superSet 

4: find subclass set of e from resultSet, denoted as subSet 

5: for each x in equalSet do 

6:  push <x, p> into similarSet according to formula 

(5); Here, p is probability value, with which e 

equals with x. 

7: end for 

8: for each x in superSet 

9:  if x is not in similarSet 

10:         if x is in subSet 

11:  calculate the similarity s between x and e 

according to formula (6) 

12:         else 

13:  calculate the similarity s between x and e 

according to T, formula (12) and formula 

(6) 

14:         end if 

15:         push <x, s> into similarSet 

16:  end if 

17: end for 

18: for each x in subSet 

19:  if x is not in similarSet 

20:  calculate the similarity s between x and e 

according to T’, formula (13) and 

formula (6) 

21:   push <x, s> into similarSet 

22:  end if 

23: end for 

24: sort similarSet in descending order by similarity 

25: return similarSet 

4.3 SIMILARITY BETWEEN QUERIES 

 

In general, a SPARQL query is composed of several 

triple patterns, so that the similarity between original 

triple pattern and rewritten triple pattern should be 

defined first. Suppose that qD1(sD1, p D1, o D1) is a triple 

pattern for the dataset D1 and qD2(sD2, pD2, oD2) is a 

rewritten triple pattern for the dataset D2, and then the 

similarity between qD1 and qD2 can be calculated by using 

formula (14). 

1 2 1 2 1 2

1 2

1

3

D D D D D D

D D

Sim( , ) ( Sim(s ,s ) Sim( p , p )

Sim( o , )

q

o )

q  



. (14) 

Considering Figure 1 and Algorithm SER, 

Sim(dbr:Chengdu, yago:Chengdu) is 0.99, Sim(geo:lat, 

yago:hasLatitude) is 0.77, and then Sim(“dbr:Chengdu 

geo:lat ?c”, “yago:Chengdu yago:hasLatitude ?c”) is 

0.92. 

Given an original query 1 1 1 1

1 2, ,( , )D D D D

nQ q q q  consists of n 

triple patterns and 2 2 2 2

1 2, ,( , )D D D D

nQ q q q  is the rewritten 

query, then the similarity between QD1 and QD2 is 

1 1 22

1

D D
n

D D

i i i

i

Sim( , ) w Sim(q ,q )Q Q


  , (15) 

where  0 1,iw  is the weight of triple pattern 1D

iq , which 

stands for the importance of 1D

iq  in QD1, When the value 

of each 
iw  is set to 1, the similarity between formula (1) 

and formula (2) is 0.78. 

 

5 Alignment-based approximate querying 

 

On the basis of result of ontology alignment, alignment-

based approximate querying can be implemented by 

executing the following procedures. At first, the query 

parser locates the entities in QD1 that should be replaced 

later, and then puts them into a container for subsequent 

processing. It is obvious that variables and constants in 

QD1 do not need to be added. Except for variables and 

constants, some IRIs that are widely used in most datasets 

should be skipped as well, such as “rdf:type”, 

“owl:sameAs”, and so on. In the second step, similar 

entities of each entity in the container are obtained by 

calling the algorithm SER. Then, some rewritten queries 

for the dataset D2 can be constructed by replacing 

original entities with similar entities. During the 

construction procedure, subject and object should be 

upside down when the property in dataset D1 is replaced 

by inverse property. For example, “dbo:creator” and 

“yago:created” have an inverse relationship. After sorting 

rewritten queries in descending order by similarity, the 

query engine executes these rewritten queries on dataset 

D2 one by one and records the query answers until the 

termination criterions are satisfied. In the following 

algorithm, the concrete termination criterions are not 
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given, because user can set particular criterions that fit 

the requirement of specific application. For some 

applications, it could be a reasonable termination 

criterion when top k of the most similar queries is 

executed on dataset D2. The details of algorithm for 

alignment-based approximate querying are described 

below. 

 

Algorithm AAQ 

Input: an query QD1 for the dataset D1, a result set of 

ontology alignment resultSet, threshold value of including 

relation T, threshold value of included  relation T’. 

Output: a result set with similarity queryResult 

 

1: Initialize queryResult 

2: Initialize sContainer. Here, sContainer is a container 

that includes entities in QD1 and their similar entity in 

dataset D2 

3: locate entities in QD1 that should be replaced 

4: put these entities into a container, denoted as 

eContainer 

5: for each e in eContainer  

6: Initialize similarSet 

7: similarSet = SER(e, resultSet, T, T’) 

8: put <e, similarSet > into sContainer 

9: end for 

10: rqSet = RewrittenQuery(QD1, sContainer); Here, the 

function RewrittenQuery is to construct similar 

queries; rqSet is a set that includes all rewritten query 

for  dataset D2 

11: sort rqSet in descending order by similarity 

12: for each q in rqSet 

13: if( terminationSatisfied() )  

14:  break 

15: end if 

16: tmpResult = Engine.query(q, D2) 

17: queryResult.add(tmpResult) 

18: end for 

19: return queryResult 

 

By analysing the algorithm AAQ, it can be easily 

concluded that the size of rewritten query set is closely 

related to two factors--one is the number of entities that 

should be replaced; the other is the number of similar 

entities of each entity, which depends on the algorithm 

SER. Hence, the size of queryResult can be counted with 

Formula (16). 

e eContainer

| queryResult | | SER(e,resultSet,T,T')|


  . (16) 

 

6 Experiments 

 

To testify the availability of alignment-based 

approximate SPARQL query, two key datasets in LOD 

(DBpedia and YAGO) are chosen as testing data sets in 

this paper. The versions of datasets are the same as the 

datasets used in [20]. The experiments show that the 

version of YAGO in [20] has no information about 

“rdf:type” facts of YAGO, therefore we download 

taxonomy data from the official website of YAGO and 

combine them with the above datasets. All data are 

imported into Virtuoso, which is an efficient RDF triple 

store and provides SPAQRL query language support. Just 

as explained in section 2, the results of ontology 

alignment found by PARIS are employed to evaluate the 

similarity between entities and rewrite queries. In 

addition, T and T’ are set to 0.3 and 0.1 respectively 

because they conform to the results of PARIS. 

In experiments, we construct five SPARQL queries 

based on the schema of DBpedia, which are listed in 

Table 2. The purpose of these queries is to retrieve all 

instances of specified type and some attributes about 

them. For instance, No.1 query is to find population size 

and council area of settlements in DBpedia; No.2 query is 

to find latitude and longitude of schools in DBpedia. 

Table 3 presents some experimental results. Here, these 

queries for DBpedia produce plenty of similar queries for 

YAGO, such as No.3 query having 13675 rewritten 

queries, similarity of which range from 0.51 to 0.43. The 

main reason why No.3 query derives so many rewritten 

queries is that 13670 subclasses and 7 super classes of 

“dbo:Organisation” are found in the results of ontology 

alignment. It is not necessary to execute all rewritten 

queries on YAGO because some queries with low 

similarity may return lots of inaccurate results. In this 

paper, only top 10 of rewritten queries are executed on 

YAGO, and the last column of Table 3 shows the number 

of result, which do not take duplicate results into account. 

We also submit the original queries to DBpeida and count 

the number of result set respectively, which are listed in 

the column of “Result Number of Original Query on 

DBpedia”. By comparing result numbers of original 

queries and rewritten queries, it can be concluded that 

rewritten queries can improve the recall to some extent. 

The similarity and the result number about top 10 of 

rewritten queries are listed in Table 4, in which two 

characteristics should be noticed. The first one is that few 

queries in the front of list of rewritten queries have 

distinctive similarity. In the rewritten queries of No.4 

query, the similarities of the first 3 rewritten queries are 

noticeably greater than others. That is because the entities 

replacing “dbo:GolfPlayer” in these rewritten queries 

have both including and included relations with 

“dbo:GolfPlayer” in the result of ontology alignment. 

“yago:wordnet_golfer_110136959”, ”yago:wikicategory_

American_golfers”, ”yago:wikicategory_PGA_Tour_golf

ers” are these entities. Obviously, the rewritten queries 

with these entities are more likely to achieve greater 

similarity according to the computational method of 

similarity introduced in section 4. Second, the rewritten 

query with the greatest similarity may return nothing 

despite obtaining many results in most cases. In Table 4, 

No.3 query is a typical example. By executing the 

algorithm SER on the result of PARIS, it is found that the 



 

 

 

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong  

302 
Information and Computer Technologies 

 

similarity between “dbo:Organisation” and 

“yago:yagoLegalActor” is greater than the similarity 

between “yago:wordnet_organization_108008335” and 

“dbo:Organisation”, which results in 

“yago:yagoLegalActor” is used to replace 

“dbo:Organisation” in the top 1 of rewritten queries of 

No.3 query. However, for literal meaning and answer size 

“yago:wordnet_organization_108008335” is a better 

substitute than “yago:yagoLegalActor”. The same 

phenomenon happens on No.5 query. The causation of 

this phenomenon is that the result of ontology alignment 

is not absolute precision. It means that approximate query 

is more suitable for the information retrieval based on 

ontology alignment--because the rewritten query with the 

“most” similar entity may miss chance to find the 

information meeting requirements. 
 
TABLE 2 Some SPARQL queries based on the schema of DBpedia 

No. Queries fo DBpedia 

1 SELECT ?s ?p  ?c WHERE {?s  rdf:type dbo:Settlement. ?s dbo:populationTotal  ?p. ?s dbo:councilArea ?c.} 

2 SELECT ?s ?lat ?long WHERE { ?s  rdf:type dbo:School.  ?s geo:lat ?lat. ?s geo:long ?long.} 

3 SELECT ?o ?c ?m WHERE { ?o rdf:type dbo:Organisation.  ?c dbo:creator ?o.  ?o dbo:motto ?m. } 

4 SELECT   ?g ?a WHERE {  ?g rdf:type dbo:GolfPlayer.  ?g dbo:award ?a. } 

5 SELECT  ?a ?n ?d WHERE {  ?a rdf:type dbo:Artist .  ?a dbo:notableWork ?n. ?a dbo:deathDate ?d } 

 

TABLE 3 Some features of original queries and their rewritten query 

No. 
Number of 

Rewritten Query 

Max of 

Similarity 

Min of 

Similarity 

Result Number of Original 

Query on DBpedia 

Result Number of Top 10 of 

Rewritten Queries on YAGO 

1 7500 0.52 0.41 495 210 

2 2506 0.75 0.58 9304 2973 

3 13675 0.51 0.43 5 23 

4 187 0.7 0.5 754 29 

5 8345 0.53 0.42 1310 93 

 

TABLE 4 Experimental details about top 10 of rewritten queries 

No.     

. 

Top10RQ. 

1 2 3 4 5 

Similarity |Result| Similarity |Result| Similarity |Result| Similarity |Result| Similarity |Result| 

1 0.52 108        0.75 2837 0.51 0 0.70 8 0.53 0 
2 0.51 23         0.73 116 0.50 23 0.61 0 0.53 0 

3 0.50 31         0.70 1 0.46 0 0.60 4 0.49 1 
4 0.49 45         0.63 23 0.46 0 0.54 4 0.45 67 

5 0.45 0          0.63 13 0.46 0 0.54 23 0.45 6 

6 0.45 0          0.63 1 0.46 0 0.54 0 0.45 0 
7 0.45 1          0.63 0 0.46 0 0.54 0 0.45 6 

8 0.45 0          0.63 0 0.46 0 0.54 0 0.45 2 
9 0.45 2          0.63 5 0.46 0 0.54 0 0.45 1 

10 0.45 0          0.63 11 0.46 0 0.54 0 0.45 10 

7 Conclusion 

 

Aiming at the problem that various schemas of datasets 

make it inconvenience to retrieve information from LOD, 

an approach of approximate SPARQL querying based on 

ontology alignment is proposed in this paper. On the 

basis of the formal result of ontology alignment, our 

approach quantitatively measures the similarity between 

entities in different conditions, and then the similarity 

between rewritten queries. Further, our approach can use 

these rewritten queries to obtain approximate answers 

from other dataset. The experiments show that alignment-

based approximate SPARQL querying can not only 

retrieve approximate answers, but also overcome the 

problem caused by imprecise result of ontology 

alignment, which is very common for the techniques of 

ontology alignment. In the future work, we will improve 

alignment-based approximate querying from two aspects: 

one aspect is to increase the accuracy of ontology 

alignment between datasets in LOD; the other is to 

combine alignment-based approximate querying with 

other query execution paradigm, such as traversal based 

query execution over LOD [7]. 
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