

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

296
Information and Computer Technologies

Alignment-based approximate SPARQL querying on linked open
data

Yu Liu1, 2, Lei Chen1*, Shihong Chen1
1School of Computer Science and Technology, Wuhan University, Wuhan 430072, Hubei, China

2School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 430065, China

Received 1 June 2014, www.cmnt.lv

Abstract

With the growth of Linked Open Data, more and more applications are developed to take full advantage of its massive data.

However, all these applications face an inevitable problem - how to retrieve information from these datasets with different schemas,

which results in that a query for a dataset may get none answer from other datasets. To solve this problem, ontology alignment has

been adopted in some Linked Open Data querying systems. In this paper, we follow this idea and make further efforts to find more

approximate answers by employing relations and probability values in the result of ontology alignment. The fundamental of our

method is the similarity between entities, which is used to evaluate the similarity of rewritten query relative to original query. In

order to facilitate user to query other dataset with original query, an algorithm for alignment-based approximate querying is

proposed. In experiments, the SPARQL queries for DBpedia are rewritten on the basis of alignment result between DBpedia and

YAGO. The results of experiments show that alignment-based approximate querying can not only retrieve approximate results, but

also overcome the problem caused by imprecise result of ontology alignment, which is very common for most of alignment

techniques.

Keywords: Linked Open Data, Approximate Querying, Ontology Alignment, SPARQL

* Corresponding author e-mail: Chen_lei0605@sina.com
1All queries in this paper omit the definition of prefixes declared in Figure 1

1 Introduction

Since the W3C Linked Open Data (LOD) project

launched in 2007, more and more datasets were published

in the web of Data, which have covered a diversity of

areas such as nature, geography, government, and so on.

It offered a great incentive for researchers to develop

various applications based on the LOD. The Traffic

LarKC combined DBpeida, a central part of LOD, with

an eventful wrapper and datasets of two Milano

municipalities to implement an intelligent question

answering system about the traffic [1]. On the basis of

information theory, Meymandpour R. et al. took

advantage of LOD in the domain of university to rank

universities and compare the results with the international

ranking system [2]. Obviously, the inevitable problem for

those applications is how to retrieve information form the

LOD efficiently.

There are several approaches to query the LOD and

each of them has its own advantages and limitations [3].

Data warehouses and query federation, two traditional

approaches for query answering over distributed data, can

be employed to execute the complex and structured

queries over LOD [4, 5]. The search engine for the LOD

can retrieve the web by following RDF links and provide

query interfaces for users to search information in the

LOD, just as Sindice [6]. In contrast to above methods,

traversal based query execution over LOD, a novel query

execution paradigm, can intertwine query pattern

matching over a continuously growing dataset with the

traversal of links in order to discover data that might be

relevant to answer the executed query [7]. However, no

matter what approach the user adopts, the query patterns

must be provided in advance, that means the user should

be familiar with all schemas of the datasets he wants to

query.

In fact, it is an impossible task for a user because the

number of datasets in LOD increases continuously and

each dataset always has a particular schema. For example,

DBpedia [8] and YAGO [9] have their respective

properties to express the relationships between the

instances even if two properties have the same meaning,

such as “geo:long” and “yago:hasLongitude” shown in

Figure 1. Suppose a user want to query the information of

longitude, latitude and population about the city Chengdu,

the SPARQL query in formula (1)1 can retrieve the

results from DBpeida, but YAGO returns nothing

because of the mismatches between query patterns and

schemas of YAGO. Except for the above inconvenience,

querying on a single dataset may lose the chance to get

answer that exists in other datasets. In Figure 1, the

property “dbo:capital” between “dbr:Sichuan” and

“dbr:Chengdu” is not stated in DBpeida, so that the query

pattern “dbr:Sichuan dbo:capital ?c” finds nothing in

DBpedia. But, “yago:Sichuan yago:hasCapital ?c”, the

query pattern with the same meaning, can make up for the

mailto:Chen_lei0605@sina.com

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

297
Information and Computer Technologies

discount in DBpeida by obtaining the answer from

YAGO.

Select ?lat ?long ?p

Where { dbr:Chengdu geo:lat ?lat.

 dbr:Chengdu geo:long ?long.

 dbr:Chengdu dbo:populationTotal ?p.}

. (1)

In order to solve those problems, the approach that

user can follow is ontology alignment. By combining the

mechanism of query federation with the results of

ontology alignment, an alignment based Linked Open

Data querying system (ALOQUS) was proposed in [10].

It can map concepts in an upper ontology or domain

specific ontology to concepts in other datasets, providing

the capability to answer queries which cannot be

answered by other state of the art system for LOD query

processing. In this paper, we follow the idea of ALOQUA

and make further efforts. Our method can find more

approximate answers and overcome the problem caused

by imprecise result of ontology alignment. The

contribution of this paper is three-fold:

(1) We measure the similarity of rewritten query

relative to the original query. The calculation of

similarity depends on the result of ontology alignment,

which include not only the relations between entities, but

also the probability values of those relations.

(2) We propose an algorithm for alignment-based

approximate querying, which can help user to query other

dataset by using the original query and result of ontology

alignment.

(3) We prove the validity of our approach through

experiments on real-world datasets of LOD. The results

show that alignment-based approximate querying can

retrieve more answers.

The remainder of this paper is organized as follows.

Section 2 discusses related work. In section 3, the

SPARQL query rewriting is described with a formal way.

How to calculate similarity between entities and queries

on the basis of alignment result are explained in section 4.

Section 5 proposes an algorithm for alignment-based

approximate querying. The experiment results and their

evaluations are presented in section 6. The conclusion of

this paper is in section 7.

2 Related work

Hurtado et al. propose an RDF query relaxation method

through RDF(s) entailment producing more general

queries for retrieving potential relevant answers [11]. In

order to ensure the desired cardinality and quality of

answers, Huang et al. use the similarity between relaxed

queries and original query to control the relaxation

process [12, 13]. However, these works relax the original

query based on a single schema, which is not suitable for

various schemas of datasets in LOD. In [14, 15], Reddy

et al. attempt to make use of ontologies available on the

web of data to produce approximate answers, and

integrate the approximate steps with query execution to

improve the performance of query processing.

Nevertheless, the similarity measure of relaxed SPARQL

queries and the experiments in [14] are still based on the

dataset with a single schema.

The purpose of ontology alignment is to find the sets

of correspondences between entities belonging to the

matched ontologies [16]. The result of ontology

alignment is generated by hand or by ontology matchers

and can be used for merging ontologies, linking datasets

and transforming queries [17]. Just like ALOQUS

introduced in [10], the best alignments in the result of

BLOOMS mapping are used to transform the sub-queries,

which are executed in the corresponding end-points later.

FIGURE 1 An example of ontology alignment between DBpedia and YAGO

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

dbo: <http://dbpedia.org/ontology/> dbr: <http://dbpedia.org/resource/>

yago: <http://yago-knowledge.org/resource/>

dbr:Chengdudbr:Chengdudbr:Sichuandbr:Sichuan

dbo:isPartOf geo:lat

geo:long

dbo:populationTotal

rdf:type

30.66

104.06

11000670

yago:Chengduyago:Chengdu yago: Sichuanyago: Sichuan

yago:hasCapital
yago:hasLatitude

yago:hasLongitude

yago:hasPopulation

30.61

104.09

11000670

dbo:capital

0.99

0.99

0.47


0.60


0.79


0.87

0.78

0.97


0.98

0.95DBpedia YAGO

dbo:Citydbo:City

rdf:type

yago:wikicategory_Provi

ncial_capitals_in_China

yago:wikicategory_Provi

ncial_capitals_in_China0.97

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

298
Information and Computer Technologies

Here, BLOOMS is an ontology matcher for schema

alignment and can find the relations of including and

equivalence between the classes belonging to the matched

ontologies [18]. In general, relations found by an

ontology matcher have some associated metadata. A

frequently-used metadata element is confidence in the

correspondence (typically in the [0, 1] range). The higher

confidence means the higher likelihood that the relation

holds [19]. Some ontology matchers use probability to

describe the likelihood of relation between the entities,

such as probability scores in PARIS (Probabilistic

Alignment of Relations, Instances, and Schema) [20].

PARIS is a holistic ontology matcher--aligning not only

instances but also properties and classes, which is a

significant feature that can be employed to transform

queries. Figure 1 presents some alignment results of

PARIS about properties and instances between DBpeida

and YAGO (e.g. “geo:lat” is a sub relation of

“yago:hasLatitude” with the probability score 0.79

(Although values presented in this paper only reserve two

decimal fractions, the type of values is double in the

implementation procedure of alignment-based

approximate SPARQL query)). In this paper, we will take

the most advantage of PARIS to implement the

approximate SPAQRL querying on LOD.

3 SPARQL query rewriting

With the purpose of retrieving the data stored in RDF

format, W3C proposed SPARQL. The fundamental

component of SPARQL query is triple pattern, which can

be expressed as (s, p, o) ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪

L). Here, V is a set of variables, I is a set of IRIs

(Internationalized URIs), and L is a set of literals. In

general, a SPARQL query is built on some triple patterns

with series operations of conjunction and disjunction. It is

worth noting that other components of SPARQL query

are not mentioned here. It is because that they have little

influence on the SPARQL query rewriting.

Given Q is a SPARQL query and all IRIs in triple

patterns of Q come from the dataset D1, Q can be

denoted as QD1, which means the Q is designed for D1

and may retrieve some results from D1. Because of the

diversity of datasets in LOD, the execution of QD1 on

another dataset D2 may return nothing, just as the

example introduced above. By replacing IRIs in triple

patterns of QD1 with IRIs in D2, the SPARQL query

rewriting can generate some new queries (denoted as QD2)

that have the same or similar meaning with QD1. Then,

users do not have to know the schema of D2 to query it

with QD2. For example, the query for DBpedia in formula

(1) can be transformed to the query in formula (2), so that

user can achieve the desired answers from YAGO.

Despite having the significant advantage, the SPARQL

query rewriting faces a vital problem--how to choose IRIs

in D2 to replace the IRIs in QD1. Apparently, the high

similarity between them is preferred.

Select ?lat ?long ?p

Where { yago:Chengdu yago:hasLatitude ?lat.

 yago:Chengdu yago:hasLongitude ?long.

 yago:Chengdu yago:hasPopulation ?p.}

. (2)

4 Alignment-based similarity

4.1 SIMILARITY BETWEEN ENTITIES

To compute the similarity of IRIs from two different

datasets, the results of ontology alignment can be

employed. The result of ontology alignment between D1

and D2 is a finite set S, including a certain number of 4-

tuples. Formally, a 4-tuple can be written as <e1, e2, r, p>.

Here, e1 and e2 are entities in D1 and D2 respectively,

and r is the relation between e1 and e2, such as

equivalence (), including (), included (), and etc.

The true probability value of the relation between e1 and

e2 is p, which ranges from 0 to 1. For example, the

relations between “geo:lat” and “yago:hasLatitude” in

Figure 1 can be expressed as <geo:lat, yago:hasLatitude,

 ,0.97> and <geo:lat, yago:hasLatitude,  ,0.79>.

Nevertheless, <dbo:shipBeam, yago:hasLatitude,

 ,0.78> also is a part of result when user adopts PARIS

to align DBpeida and YAGO. At this time, the SPARQL

query rewriting needs to decide which property is more

similar with “yago:hasLatitude”.

Taking the diversity of 4-tuple into account, our

method computes the similarity between entities

according to different conditions. First, the relationship

between instances is always equivalence, so similarity

between i1 and i2 is p when S includes <i1, i2,  , p>.

Here, i1 and i2 are instances in D1 and D2 respectively.

In Figure 1, <dbr:Chengdu, yago:Chengdu,  ,0.99>

implies that similarity between “dbr:Chengdu” and

“yago:Chengdu” is 0.99, indicated as

  0 99Sim dbr : Chengdu , yago : Chengdu . . (3)

Second, class or property in dataset is usually viewed

as a set that means r in 4-tuple could be any relations for

set, which make the computation of similarity for them

more complex than instance. For definiteness and without

loss of generality, only computing methods for similarity

between classes are introduced here. Given c1 and c2 are

classes in D1 and D2 respectively, the similarity between

two classes can be defined as:

1 2
1 2

1 2

| c c |
Sim(c ,c)=

| c c |
, (4)

where 1 2| c c | is the cardinality of union of c1 and c2.

It is clear that similarity between classes is in the [0, 1].

Suppose that the relation set of classes includes

equivalence (), including () and included (). Then,

the calculations of similarity based on S are divided into

the following cases:

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

299
Information and Computer Technologies

(1) <c1,c2,  ,p>S. In this case, similarity between c1

and c2 is p.

Proof: Given U includes all instances of classes in D1

and D2, and x is an element in U, then

1 2
1 2 1 2 1 2

1 2

1 2

1 2
1 2

1 2 1 2

P(x c c)
P(c c)= P(x c c | x c c)

P(x c c)

| c c |

| c c ||U |
Sim(c ,c)

| c c | | c c |

|U |


   



  

. (5)

(2) <c1, c2,  , p1>S and <c1, c2,  , p2>S. In

this case, similarity between c1 and c2 is

1 2
1 2

1 2 1 2

p p
Sim(c ,c)

p p p p




  
. (6)

Proof: Given x is an element in U, then

1 2
1 2 1 2 1

1

| c c |
P(c c)= P(x c c |x c)

| c |
    , (7)

1 2
1 2 1 2 2

2

| c c |
P(c c)= P(x c c |x c)

| c |
    , (8)

Because P(c1  c2) = p2 and P(c1  c2) = p1, then

1 2
1

2

| c c |
| c |

p
 , (9)

1 2
2

1

| c c |
| c |

p
 , (10)

Now, bring formula (9) and (10) into the definition of

similarity, the conclusion can be achieved with the

following inference.

1 2 1 2
1 2

1 2 1 2 1 2

1 2

1 2 1 2
1 2

2 1

1 2

1 2 1 2

| c c | | c c |
Sim(c ,c)=

| c c | | c | | c | | c c |

| c c |

| c c | | c c |
| c c |

p p

p p

p p p p


 



 




  

. (11)

For example, <dbo:School,

yago:wordnet_school_108276720,  ,0.64> and

<dbo:School, yago:wordnet_school_108276720,  ,

0.78> are in the result of ontology alignment when

PARIS is adopted to align DBpedia and YAGO. Hence,

the similarity between “dbo:School” and

“yago:wordnet_school_108276720” is 0.54.

(3) <c1, c2,  , p1> S or <c1, c2,  , p2> S. Since

only one relation between two classes found by ontology

matcher, formula (6) cannot be used directly in this case.

For optimal performance, ontology matchers always set

some thresholds to reduce the amount of computations,

such as PARIS assumes every value below to be zero

[20]. It means the probability of undetected relation may

be a value below the threshold. In addition, there are

some relations between including probability and

included probability. Table 1 presents some super classes

of “dbo:School” in YAGO, which are found by PARIS.

Obviously, more general super classes of original class c

is prone to have bigger value of included probability and

leads to smaller value of including probability – and vice

versa. In order to approximately simulate the above-

mentioned relations between included probability and

including probability, the formula (12) is adopted here.

TABLE 1 Some super classes of “dbo:Hospital” in YAGO

DBpeida Relation YAGO Probability

dbo:School 
yago:wordnet_senior_hig

h_school_108409617
0.47

dbo:School 
yago:wordnet_secondary

_school_108284481
0.61

dbo:School


yago:wordnet_school_10

8276720
0.78

dbo:School 
yago:wordnet_institution

_108053576
0.78

dbo:School 
yago:wordnet_educationa

l_institution_108276342
0.78

dbo:School


 yago:yagoLegalActorGeo 0.79

dbo:School


yago:wordnet_entity_100

001740
0.80

1

P(c x)

T (max(c,) P(c x))
max(c,) min(c,)

max(c,) min(c,)
max(c,) min(c,)

T (P(c x))



   
  

   
     

. (12)

Here, T is threshold value of including relation, which

is the upper limit for including relation, max(c, ) is the

maximum probability value in the superclass set of c,

min(c, ) is the minimum probability value in the

superclass set of c. For example, max(dbo:School, ) is

0.80 and min(dbo:School, ) is 0.47, just as shown in

Table 1. Once P(c  x) gets calculated, the similarity

between c and x can be easily achieved by bringing P(c 

x) and P(c  x) into formula (6).

In fact, the computation of included probability based

on including probability can adopt the same mechanism,

just as formula (13) shows. In the same way, T’ is

threshold value of included relation; max(c, ) is the

maximum probability value in the subclass set of c;

min(c, ) is the minimum probability value in the

subclass set of c.

1

T' (max(c,) P(c x))
max(c,) min(c,)

max(c,) min(c,)P(c x)
max(c,) min(c,)

T ' (P(c x))

   
  

    
     

. (13)

Although formula (12) and formula (13) are exactly

similar, there are some tricks, that should be mentioned.

For instance, T and T’ are two key parameters, which

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

300
Information and Computer Technologies

reflect the tendency of users for precision or recall. If T’

is bigger than T, classes in subclass of c is prone to

achieve higher similarity, that means these classes can

take precedence to be selected during the process of

query rewriting. Then, the precision of query results may

increase according to the mechanism introduced in

section 5.

4.2 SIMILAR ENTITIES RETRIEVAL

Based on the definition of similarity between entities, an

algorithm is given here to obtain the similar entities of

target entity. The steps of the algorithm consist of

initialization, retrieval of similar entities, sorting the set

of similar entities, and so on. The details of the algorithm

are described as follows:

Algorithm SER

Input: an entity in original dataset e, a result set of

ontology alignment resultSet, threshold value of including

relation T, threshold value of included relation T’.

Output: a set of entity with similarity similarSet

1: Initialize similarSet

2: find equivalent set of e from resultSet, denoted as

equalSet

3: find superclass set of e from resultSet, denoted as

superSet

4: find subclass set of e from resultSet, denoted as subSet

5: for each x in equalSet do

6: push <x, p> into similarSet according to formula

(5); Here, p is probability value, with which e

equals with x.

7: end for

8: for each x in superSet

9: if x is not in similarSet

10: if x is in subSet

11: calculate the similarity s between x and e

according to formula (6)

12: else

13: calculate the similarity s between x and e

according to T, formula (12) and formula

(6)

14: end if

15: push <x, s> into similarSet

16: end if

17: end for

18: for each x in subSet

19: if x is not in similarSet

20: calculate the similarity s between x and e

according to T’, formula (13) and

formula (6)

21: push <x, s> into similarSet

22: end if

23: end for

24: sort similarSet in descending order by similarity

25: return similarSet

4.3 SIMILARITY BETWEEN QUERIES

In general, a SPARQL query is composed of several

triple patterns, so that the similarity between original

triple pattern and rewritten triple pattern should be

defined first. Suppose that qD1(sD1, p D1, o D1) is a triple

pattern for the dataset D1 and qD2(sD2, pD2, oD2) is a

rewritten triple pattern for the dataset D2, and then the

similarity between qD1 and qD2 can be calculated by using

formula (14).

1 2 1 2 1 2

1 2

1

3

D D D D D D

D D

Sim(,) (Sim(s ,s) Sim(p , p)

Sim(o ,)

q

o)

q  



. (14)

Considering Figure 1 and Algorithm SER,

Sim(dbr:Chengdu, yago:Chengdu) is 0.99, Sim(geo:lat,

yago:hasLatitude) is 0.77, and then Sim(“dbr:Chengdu

geo:lat ?c”, “yago:Chengdu yago:hasLatitude ?c”) is

0.92.

Given an original query 1 1 1 1

1 2, ,(,)D D D D

nQ q q q consists of n

triple patterns and 2 2 2 2

1 2, ,(,)D D D D

nQ q q q is the rewritten

query, then the similarity between QD1 and QD2 is

1 1 22

1

D D
n

D D

i i i

i

Sim(,) w Sim(q ,q)Q Q


  , (15)

where  0 1,iw is the weight of triple pattern 1D

iq , which

stands for the importance of 1D

iq in QD1, When the value

of each
iw is set to 1, the similarity between formula (1)

and formula (2) is 0.78.

5 Alignment-based approximate querying

On the basis of result of ontology alignment, alignment-

based approximate querying can be implemented by

executing the following procedures. At first, the query

parser locates the entities in QD1 that should be replaced

later, and then puts them into a container for subsequent

processing. It is obvious that variables and constants in

QD1 do not need to be added. Except for variables and

constants, some IRIs that are widely used in most datasets

should be skipped as well, such as “rdf:type”,

“owl:sameAs”, and so on. In the second step, similar

entities of each entity in the container are obtained by

calling the algorithm SER. Then, some rewritten queries

for the dataset D2 can be constructed by replacing

original entities with similar entities. During the

construction procedure, subject and object should be

upside down when the property in dataset D1 is replaced

by inverse property. For example, “dbo:creator” and

“yago:created” have an inverse relationship. After sorting

rewritten queries in descending order by similarity, the

query engine executes these rewritten queries on dataset

D2 one by one and records the query answers until the

termination criterions are satisfied. In the following

algorithm, the concrete termination criterions are not

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

301
Information and Computer Technologies

given, because user can set particular criterions that fit

the requirement of specific application. For some

applications, it could be a reasonable termination

criterion when top k of the most similar queries is

executed on dataset D2. The details of algorithm for

alignment-based approximate querying are described

below.

Algorithm AAQ

Input: an query QD1 for the dataset D1, a result set of

ontology alignment resultSet, threshold value of including

relation T, threshold value of included relation T’.

Output: a result set with similarity queryResult

1: Initialize queryResult

2: Initialize sContainer. Here, sContainer is a container

that includes entities in QD1 and their similar entity in

dataset D2

3: locate entities in QD1 that should be replaced

4: put these entities into a container, denoted as

eContainer

5: for each e in eContainer

6: Initialize similarSet

7: similarSet = SER(e, resultSet, T, T’)

8: put <e, similarSet > into sContainer

9: end for

10: rqSet = RewrittenQuery(QD1, sContainer); Here, the

function RewrittenQuery is to construct similar

queries; rqSet is a set that includes all rewritten query

for dataset D2

11: sort rqSet in descending order by similarity

12: for each q in rqSet

13: if(terminationSatisfied())

14: break

15: end if

16: tmpResult = Engine.query(q, D2)

17: queryResult.add(tmpResult)

18: end for

19: return queryResult

By analysing the algorithm AAQ, it can be easily

concluded that the size of rewritten query set is closely

related to two factors--one is the number of entities that

should be replaced; the other is the number of similar

entities of each entity, which depends on the algorithm

SER. Hence, the size of queryResult can be counted with

Formula (16).

e eContainer

| queryResult | | SER(e,resultSet,T,T')|


  . (16)

6 Experiments

To testify the availability of alignment-based

approximate SPARQL query, two key datasets in LOD

(DBpedia and YAGO) are chosen as testing data sets in

this paper. The versions of datasets are the same as the

datasets used in [20]. The experiments show that the

version of YAGO in [20] has no information about

“rdf:type” facts of YAGO, therefore we download

taxonomy data from the official website of YAGO and

combine them with the above datasets. All data are

imported into Virtuoso, which is an efficient RDF triple

store and provides SPAQRL query language support. Just

as explained in section 2, the results of ontology

alignment found by PARIS are employed to evaluate the

similarity between entities and rewrite queries. In

addition, T and T’ are set to 0.3 and 0.1 respectively

because they conform to the results of PARIS.

In experiments, we construct five SPARQL queries

based on the schema of DBpedia, which are listed in

Table 2. The purpose of these queries is to retrieve all

instances of specified type and some attributes about

them. For instance, No.1 query is to find population size

and council area of settlements in DBpedia; No.2 query is

to find latitude and longitude of schools in DBpedia.

Table 3 presents some experimental results. Here, these

queries for DBpedia produce plenty of similar queries for

YAGO, such as No.3 query having 13675 rewritten

queries, similarity of which range from 0.51 to 0.43. The

main reason why No.3 query derives so many rewritten

queries is that 13670 subclasses and 7 super classes of

“dbo:Organisation” are found in the results of ontology

alignment. It is not necessary to execute all rewritten

queries on YAGO because some queries with low

similarity may return lots of inaccurate results. In this

paper, only top 10 of rewritten queries are executed on

YAGO, and the last column of Table 3 shows the number

of result, which do not take duplicate results into account.

We also submit the original queries to DBpeida and count

the number of result set respectively, which are listed in

the column of “Result Number of Original Query on

DBpedia”. By comparing result numbers of original

queries and rewritten queries, it can be concluded that

rewritten queries can improve the recall to some extent.

The similarity and the result number about top 10 of

rewritten queries are listed in Table 4, in which two

characteristics should be noticed. The first one is that few

queries in the front of list of rewritten queries have

distinctive similarity. In the rewritten queries of No.4

query, the similarities of the first 3 rewritten queries are

noticeably greater than others. That is because the entities

replacing “dbo:GolfPlayer” in these rewritten queries

have both including and included relations with

“dbo:GolfPlayer” in the result of ontology alignment.

“yago:wordnet_golfer_110136959”, ”yago:wikicategory_

American_golfers”, ”yago:wikicategory_PGA_Tour_golf

ers” are these entities. Obviously, the rewritten queries

with these entities are more likely to achieve greater

similarity according to the computational method of

similarity introduced in section 4. Second, the rewritten

query with the greatest similarity may return nothing

despite obtaining many results in most cases. In Table 4,

No.3 query is a typical example. By executing the

algorithm SER on the result of PARIS, it is found that the

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

302
Information and Computer Technologies

similarity between “dbo:Organisation” and

“yago:yagoLegalActor” is greater than the similarity

between “yago:wordnet_organization_108008335” and

“dbo:Organisation”, which results in

“yago:yagoLegalActor” is used to replace

“dbo:Organisation” in the top 1 of rewritten queries of

No.3 query. However, for literal meaning and answer size

“yago:wordnet_organization_108008335” is a better

substitute than “yago:yagoLegalActor”. The same

phenomenon happens on No.5 query. The causation of

this phenomenon is that the result of ontology alignment

is not absolute precision. It means that approximate query

is more suitable for the information retrieval based on

ontology alignment--because the rewritten query with the

“most” similar entity may miss chance to find the

information meeting requirements.

TABLE 2 Some SPARQL queries based on the schema of DBpedia

No. Queries fo DBpedia

1 SELECT ?s ?p ?c WHERE {?s rdf:type dbo:Settlement. ?s dbo:populationTotal ?p. ?s dbo:councilArea ?c.}

2 SELECT ?s ?lat ?long WHERE { ?s rdf:type dbo:School. ?s geo:lat ?lat. ?s geo:long ?long.}

3 SELECT ?o ?c ?m WHERE { ?o rdf:type dbo:Organisation. ?c dbo:creator ?o. ?o dbo:motto ?m. }

4 SELECT ?g ?a WHERE { ?g rdf:type dbo:GolfPlayer. ?g dbo:award ?a. }

5 SELECT ?a ?n ?d WHERE { ?a rdf:type dbo:Artist . ?a dbo:notableWork ?n. ?a dbo:deathDate ?d }

TABLE 3 Some features of original queries and their rewritten query

No.
Number of

Rewritten Query

Max of

Similarity

Min of

Similarity

Result Number of Original

Query on DBpedia

Result Number of Top 10 of

Rewritten Queries on YAGO

1 7500 0.52 0.41 495 210

2 2506 0.75 0.58 9304 2973

3 13675 0.51 0.43 5 23

4 187 0.7 0.5 754 29

5 8345 0.53 0.42 1310 93

TABLE 4 Experimental details about top 10 of rewritten queries

No.

.

Top10RQ.

1 2 3 4 5

Similarity |Result| Similarity |Result| Similarity |Result| Similarity |Result| Similarity |Result|

1 0.52 108 0.75 2837 0.51 0 0.70 8 0.53 0
2 0.51 23 0.73 116 0.50 23 0.61 0 0.53 0

3 0.50 31 0.70 1 0.46 0 0.60 4 0.49 1
4 0.49 45 0.63 23 0.46 0 0.54 4 0.45 67

5 0.45 0 0.63 13 0.46 0 0.54 23 0.45 6

6 0.45 0 0.63 1 0.46 0 0.54 0 0.45 0
7 0.45 1 0.63 0 0.46 0 0.54 0 0.45 6

8 0.45 0 0.63 0 0.46 0 0.54 0 0.45 2
9 0.45 2 0.63 5 0.46 0 0.54 0 0.45 1

10 0.45 0 0.63 11 0.46 0 0.54 0 0.45 10

7 Conclusion

Aiming at the problem that various schemas of datasets

make it inconvenience to retrieve information from LOD,

an approach of approximate SPARQL querying based on

ontology alignment is proposed in this paper. On the

basis of the formal result of ontology alignment, our

approach quantitatively measures the similarity between

entities in different conditions, and then the similarity

between rewritten queries. Further, our approach can use

these rewritten queries to obtain approximate answers

from other dataset. The experiments show that alignment-

based approximate SPARQL querying can not only

retrieve approximate answers, but also overcome the

problem caused by imprecise result of ontology

alignment, which is very common for the techniques of

ontology alignment. In the future work, we will improve

alignment-based approximate querying from two aspects:

one aspect is to increase the accuracy of ontology

alignment between datasets in LOD; the other is to

combine alignment-based approximate querying with

other query execution paradigm, such as traversal based

query execution over LOD [7].

Acknowledgments

This work was partly supported by the Science Guidance

Project of Education Department of Hubei Province

under Grant No. B2014085, Science Foundation for

Yong Teachers of Wuhan University of Science and

Technology under Grant No. 2012XZ015.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 296-303 Liu Yu, Chen Lei, Chen Shihong

303
Information and Computer Technologies

References

[1] Celino I, Dell'Aglio D, Della E, et al. 2011 Integrating Machine

Learning in a Semantic Web Platform for Traffic Forecasting and
Routing Proc. of the 3rd ESWC Workshop on Inductive Reasoning

and Machine Learning

[2] Meymandpour R, Davis J G 2013 Ranking universities using linked
open data Proc. of the 6th Workshop on Linked Data on the Web

[3] Hartig O, Langegger A 2010 A database perspective on consuming
linked data on the web Datenbank-Spektrum 10(2) 57-66

[4] Weiss C, Karras P, Bernstein A 2008 Hexastore: sextuple indexing

for semantic web data management Proc. of the 34th International
Conference on Very Large Data Bases 1(1) 1008-19

[5] Quilitz B, Leser U 2008 Querying distributed RDF data sources
with SPARQL Springer Berlin Heidelberg 524-38

[6] Oren E, Delbru R, Catasta M, et al. 2008 Sindice. com: a

document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1) 37-52

[7] Hartig O, Freytag J C 2012 Foundations of traversal based query
execution over linked data Proc. of the 23rd ACM conference on

Hypertext and social media 43-52

[8] Bizer C, Lehmann J, Kobilarov G, et al. 2009 DBpedia-A
crystallization point for the Web of Data Web Semantics: Science,

Services and Agents on the World Wide Web 7(3) 154-65
[9] Hoffart J, Suchanek F M, Berberich K, et al. 2013 YAGO2: A

spatially and temporally enhanced knowledge base from Wikipedia

Journal of Artificial Intelligence 194 28-61
[10] Joshi A K, Jain P, Hitzler P, et al. 2012 Alignment-based querying

of linked open data Proc. of On the Move to Meaningful Internet
Systems 807-24

[11] Hurtado C A, Poulovassilis A, Wood P T 2006 A Relaxed

Approach to RDF Querying Proc. of the 5th International Semantic
Web Conference 314–28

[12] Hai Huang, Chengfei Liu, Xiaofang Zhou 2008 Computing Relaxed

Answers on RDF Databases Proc. of Workshop on Web
Information Systems Engineering 163-75

[13] Hai Huang, Chengfei Liu, Xiaofang Zhou Approximating query
answering on RDF databases World Wide Web 15 89–114

[14] Reddy B R K, Kumar P S 2010 Efficient approximate SPARQL

querying of Web of Linked Data Proc. of 6th international
workshop on Uncertainty Reasoning for the Semantic Web 37-48

[15] Reddy K B R, Kumar P S 2013 Efficient trust-based approximate
sparql querying of the web of linked data Proc. of 9th international

workshop on Uncertainty Reasoning for the Semantic Web 315-30

[16] Euzenat J, Shvaiko P 2007 Ontology matching Springer Heidelberg
[17] David J, Euzenat J, Scharffe F, et al. 2011 The alignment api 4.0.

Journal of Semantic Web 2(1) 3-10
[18] Jain P, Hitzler P, Sheth A P, et al. 2010 Ontology alignment for

linked open data Proc. of The 9th International Semantic Web

Conference 402-17
[19] Shvaiko P, Euzenat J 2013 Ontology matching: state of the art and

future challenges IEEE Transactions on Knowledge and Data
Engineering 25(1) 158-76

[20] Suchanek F M, Abiteboul S, Senellart P 2011 Paris: Probabilistic

alignment of relations, instances, and schema Proc. of the 37th
International Conference on Very Large Data Bases 5(3) 157-68

Authors

Yu Liu, born on January 20, 1980, China

Current position, grades: PhD candidate in School of Computer Science and Technology of Wuhan University.
University studies: master degree in School of Computer Science and Technology of Huazhong University of Science and Technology.
Scientific interests: semantic web and knowledge engineering.

Lei Chen, born on November 21, 1978, China

Current position, grades: instructor in School of Computer Science and Technology of Wuhan University.
University studies: master degree in National University of Singapore and doctoral degree in Huazhong University of Science and
Technology.
Scientific interests: knowledge engineering and complex system.

Shihong Chen, born on May 12, 1949, China

Current position, grades: professor in School of Computer Science and Technology of Wuhan University. He also is the deputy director of
the national engineering research center for multimedia software.
Scientific interests: software engineering and knowledge engineering.

