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Abstract 

On the basis of collimated Gaussian beams, the paper focused on the modelling and simulating of the transmission of laser beams using 

two-dimension random phase screens in the atmospheric turbulence channel. Firstly, with the analysis of the transmission model of 

Gaussian beams through the phase screens, the simulation theory of random phase screens and the depth range model of the phase 

screens were proposed. Then, In accordance with Kolmogorov atmospheric turbulence theories, a two-dimension random phase screen 

was built using Fourier transform. Numerical simulation experiments were conducted with low frequency compensation to simulate 

the propagation of Gaussian collimated beam in Kolmogorov turbulence. Finally, the two-dimension random phase screen was testified 

by the phase structure function. The results showed that the approach of simulating the random phase screen using Fourier transform 
was appropriate after compensating the low frequency. 
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1 Introduction  

 

Atmospheric turbulence is one of the important factors 

affecting the beam propagation. Numerical simulation 

method for beam propagation is an effective way to study 

the atmospheric turbulence besides experimental and 

theoretical research. Several numerical simulation 

methods have been proposed to generate the random phase 

screen for numerically simulating the atmospheric 

turbulence [1, 2]. Numerical simulating methods can be 

basically divided into two categories. The first one was 

proposed by Mc Glamery, which was indirect simulation 

of the frequency field using Fourier transform. The other 

was direct simulation of the spatial domain, which can 

represent the phase front using an orthogonal complete set 

of Zernike polynomial [3]. Moreover, Yan put forward a 

random numerical simulation method of the atmospheric 

turbulence based on fractals, Wang et al, proposed a 

simulating model on laser transmission in the atmosphere 

through any thick random phase screen, and Andrews et 

al, studied the statistical characteristics of the transmission 

in thin random phase screen [4]. 

In order to study effect of atmospheric turbulence on 

the propagation properties of the laser beam, in the paper, 

the random phase screen established by the Fourier 

transform is simulated in compliance with Kolmogorov 

atmospheric turbulence theories. A new method for laser 

beam propagation research in atmospheric turbulence is 
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put forward to overcome the limitations of experimental 

and theoretical approaches.  

 

2 Simulating theories on random phase screen 

 

As to the collimated Gaussian beams propagation through 

the atmospheric turbulence, let 
0  be the beam-waist 

radius at the input end. And denote bean-waist radius as 

  after the beams transmit a distance of Lkm . In this 

process, if the changes caused by the fluctuation of 

atmospheric refractivity is sufficiently small, the 

continuous atmospheric turbulence can be divided into a 

series of phase screens (sampling grid) with 
z  per 

thickness. The collimated Gaussian beams located in the 

front surface of 
iZ  screen will be transmitted to the back 

surface of the screen through the atmospheric turbulence 

with z  thickness. Then the phase modulation caused by 

the phase screen in the atmospheric turbulence forms the 

ultimate optical field distribution 
iE . After Field 

iE  

passes through the same atmospheric turbulence and is 

modulated, it arrives at the back surface of 1iZ  . There are 

three steps to generate the two-dimension phase screens 

using Fourier transform. First, a matrix with random 

numerals obeying the Gaussian distribution is generated. 

Second, the air power spectral function adhering to the 

Kolmogorov turbulence distribution filters the matrix 

generated in the first step. Finally, the new filtered 
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complex Gaussian matrix is computed with the inverse 

Fourier transform to obtain the random phase. In this 

process, the phase distortion occurring on each phase 

screen is accumulated on Gaussian optical field E , and the 

optical fielding after passing through i phase screens is 

expressed as follows [5, 6]: 

1

1 { [ exp( )] exp( )}i i iE F F E i is

     . (1) 

In order to ensure that the phase changes caused by 

each phase screen is sufficiently small and meanwhile the  

propagation distance L in the atmospheric turbulence can 

be substituted by calculus of z , Thus, the thickness of 

the two-dimension random phase screen should be 

infinitely thin so that the generated optical waves will only 

affect the phase of the Gaussian optical waves while with 

no obvious influence on the amplitude. Therefore, the 

following condition must be satisfied. 

/ nz    , (2) 

where,   is the wavelength of Gauss beam and 2

n  is the 

average variance of the refraction rates fluctuation [5].  

The adjacent phase screens should be mutually 

independent and meanwhile spatially connected. And the 

front and back phase screen should have some extent of 

correlation. Therefore, the depth of the phase screen z  

should exceed the outer scale of the turbulence. That is:  

0z L  , (3) 

where 
0L  is the outer scale of the turbulence [5].  

In Fourier transform and inverse Fourier transform, the 

thickness z  of a random phase screen replaced the 

thickness calculus of the whole screen. However, the 

prerequisite to do so is that the refraction in the phase 

screen is evenly distributed and the transmission of optical 

lights follows the principles of geometric optics. Hence, 

the scale of Fresnel should be smaller than that inside the 

turbulence. That is: 

2

0 /z l   , (4) 

where 
0l is the inner scale of the turbulence. 

z

0 

Input 
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Output 
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FIGURE 1 Model of the transmission of Gaussian beams through the phase screen 

3 The construction of the random phase screens 

 

Along the propagation direction of the Gaussian beams, 

the atmospheric turbulence (0, )L  is uniformly divided 

into N  phase screens. Thus, the thickness of each phase 

screen is the same as /z L N  . First, using the Fourier 

transform and the Kolmogorov turbulence distribution 

theories, each phase screen grid with no spatial correlation 

is calculated to obtain the complex Gaussian random 

matrix. Then the modified Von Karman model is used for 

filtering. Moreover, the random phase is obtained based on 

the spatially correlated phase screens after inverse Fourier 

transformation. Finally, the same method is used to 

generate the next new phase screen with the same spatial 

distribution. The newly generated random numbers of the 

screens are not completely new and thus the new screens 

have a spatial correlation with both the front and the back 

screens [7]. The above process can be defined as [8, 9]: 

( /2) 1 ( /2) 1

' ( )/2 ' ( )/2
( , ) [ ( , )

' '
( , )] exp[2 ( )]

Nx Ny

x y m Nx n Ny

x y

m n a m n

m m n n
jb m n j

N N


 

 
    

 

 
, (5) 

where 
xN  and yN  represent the dimensions in the 

direction of ,x y  in the matrix, xk  and y  are the 

intervals of the sampling grid in the direction of ,x y . 

( , )a m n  and ( , )b m n  are mutually independent Hermitian 
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Gaussian random numbers with the mean zero. The 

variance is [10]: 

5/6

2 2 00.00058
( , ) ( , )

( , , ) ( , )

x y

x y x y n x y

r
a m n b m n

G G

k k F m k n k z k k



  

      

, (6) 

where ( , , )x yF m k n k z   is the filtering function and can 

be rewritten as the following equation: 

3 2

2 2 2 11/6 2 2 1/2

0

( , , ) [(2 ) /

0.33 ( ) exp( / )]

x y

n m

F m k n k z z

C k k k k

 



    

 
, (7) 

where 2 2 1/22 [1/ ( ) 1/ ( ) ]x yk m k m k     , and   refers 

to the overall average. ( )F   is the spatial filtering function 

of the phase screen, and it is also the function of the 

propagation distance z . 
xk  and yk  are the grid 

intervals on the phase screens. 
xG  and yG  represent the 

size of the phase screen, 
0r  is the atmospheric coherence 

length and z  is the depth of the turbulence layer. ( )n   

is the function calculating the refraction power density. 

Here the power spectral density function derived from the 

Kolmogorov model is adopted. 

If the modified Von Karman power spectral density is 

substituted for power spectral density function ( )n  . And 

the plane wave can be given by the following Equation 

[11]: 

2 2

5/3

0 2 2

0

exp( / )
( ) 0.49

( 2 )

m

n

k k
r

k k

 
  


, (8) 

where 2k f , 
0 02k f  and 2m mk f . 

As seen from above equations, it is easy to use inverse 

Kolmogorov to construct the two-dimension random phase 

screens, but the lack of samples on the spatially low 

frequency part leads to the absence of power spectrum at 

the low frequency components in this phase screen, thus 

resulting in a relatively low accuracy of the generated 

phase screen. Hence low frequency compensation is 

necessary for improving the accuracy. With the help of 

Lane’s ideas, interpolation merge is conducted based on 

the re-sampling of the Fourier low frequency 

subharmonics so as to make low frequency compensation 

to the subharmonics in this screen. The equation can be 

rewritten as follows: 

1 1

' 1 ' 1 1
( , ) [ ( , )

' '
( , )] exp[2 3 ( )]

pN

SH x y m n p

p

x y

m n a m n

m m n n
jb m n j

N N


  



    

  

  
, (9) 

where p  refers to the subharmonic series.  

The inverse transform method is adopted to simulate 

the Kolmogorov spectrum phase screens under the 

conditions that the wave length is 1.06×10-5m, the size of 

the phase screen is 4.8m×4.8m, 6

0 0.8 10W m  , the 

propagation distance is 
0 10L km , the sampling points is 

1024x yN N  , and the interval between each phase 

screen is 500z m  . 

 
FIGURE 2a Two-dimension figure of the random phase screen after the 

harmonics are added 

 
FIGURE 2b Three-dimension figure of the random phase screen after 

the harmonics are added 

From Figure 2a and 2b the low frequency part of phase 

screen is more apparent after the overlay of sub-harmonics, 

which shows the overlay of harmonics can effectively 

compensate the lack of low frequency caused by the 

Fourier transform.  

 

4 Propagation step by step 

 

As illustrated in Figure 1, in the beam propagation process, 

the collimated Gaussian beams are quite similar to the 

Gaussian beams at the transmitting terminal (the input 

plane) with the same beam-waist radius 
0 . After the 

beams transmit for a distance of L in the atmospheric 

turbulence, they remain similar to Gaussian beams at the 

receiving terminal with the beam-waist radius  . 

According to the Gauss equation, the optical field 

distribution in the input plane is [12]: 

2 2

( , , ) exp
( ) 2 ( )

G

A x y
U x y z ik

q z q z

 
  

 
. (10) 
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We can obtain the following equation from Collins integral 

equation: 

2

2

1 1

( ) ( ) ( )

i M

q z R z W z




  , (11) 

were: 
2

2 2
0

2

0

( ) ( ) 1
z

W z W z
W





  
    
   

,

2

2

0

( ) 1
z

R z z
W





  
    
   

. 

are the isophase surface curvature radius and the beam 

radius of the Gaussian beam respectively. 2M  is defined 

as the beam quality factor and for the fundamental-mode 

Gaussian beam, its value is 1. 
0W is the beam waist radius, 

  is the wavelength of the laser being transmitted and z  

is the position where the laser is located on its transmitting 

route.  

From the equation of ( )R z , we can find ( )R z  . 

Substituting ( )R z   into Equation (11), the result is:  

2

0

2
( )

i W
q z

M




 . (12) 

If q(z) is substituted into Equation (10), the optical field 

distribution is as follows: 

2 2 2
2

2 2

0 0

( , , ) expG

iA M x y
U x y z M

W W





 
   

 
. (13) 

Diffraction occurs after the beams are collimated, and the 

diffracted beam continue to transmit for a distance of z , 

in the end we can represent the optical field distribution 

as follows based on Fresnel diffraction integral: 

2

2 2 2 1 1 1

2 22

2 1 2 1

1 22

0

exp( )
( , , ) ( , , )

( ) ( )
exp

G G

ikz
U x y z U x y z

i z

x x y yi M
dx dx

z W







 

 
  



   
 

 

 
. (14) 

 

5 Simulating 

 

When the quasi-Gaussian beam propagates some distance, 

beam expander will occur. For expanded beam, the 

emission aperture and receiving aperture will change, its 

new diffraction diameter and receiving aperture is defined 

as [13]: 

1 1

0,

'
rev

z
D D c

r


  , (15) 

2 2

0,

'
rev

z
D D c

r


  , (16) 

where 0,revr  is atmospheric coherence diameter for back-

propagation and c  is an adjustment factor of turbulence 

sensitive. 
In order to simulate the beam propagation process with 

more accuracy, sampling points of the transmit and receive 

aperture plane aperture plane, sampling interval, 

maximum allowable interval between planes and 

minimum number of transmission steps should be selected 

[14]. The phase difference between two adjacent points on 

the phase screen should be smaller than   according to 

the Nyquist law. In other words, the grid sampling 

intervals 
xk  and yk  on the phase screen satisfy the 

conditions [7]: 

( , , ) ( , , )x x y x yk k k z k k z     , (17) 

( , , ) ( , , )x y y x yk k k z k k z     . (18) 

The parameters of the system are selected as follows for 

the purpose of simulation: 

 

 

TABLE 1 The values of the simulation parameters and their physical significance 

Parameter Value Physical significance 

0W  0.05m Beam waist 

  1.06μm The wavelength of the reflected laser 

z  500m Interval between the phase screens 

,x yN N  1024 Sampling points 

0L  20m Outer turbulence scale 

0l  5m Inner turbulence scale 

2

nC  10-17m-2/3 Atmosphere structure parameters 

2M  1 Gaussian beam quality factors 

xG ,
yG  4.8m Size of the phase screen 

0r  0.810mm Atmospheric coherence length 

1D  0.1m Transmitter aperture diameter 

2D  0.2m Receiver calibre diameter 
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After the Kolmogorov atmospheric turbulence is 

introduced into the optical propagation route, the light 

intensity and phase distribution in receiving aperture are 

shown in Figures 3a and 3b.  

 
FIGURE 3a Three-dimension figure of Optical field distribution of 

collimated Gaussian beams in the receiving plane 

 
FIGURE 3b Two-dimension figure of Optical field distribution of 

collimated Gaussian beams in the receiving plane 

 

6 Testifying the results after simulating the turbulent 

atmosphere 

 

The statistical characteristics of the atmospheric 

turbulence phase can be depicted by the phase structure 

function, thus the structure function can be used as a 

benchmark to testify if the simulated phase screen is 

correct. Thus, Fried offered the definition equation of the 

structure function corresponding to Kolmogorov spectrum 

[15]: 

5/3

0( ) 6.88( / )D r r r  (19) 

 
FIGURE4 Comparison between values of the phase structure function 

In the experiment, r0=0.810mm and Y-axis are the 

values of the phase structure function. It can be found from 

Figure 4 that due to the sampling frequency of the Fourier 

transform, part of the low frequency is lost in the phase 

screen generated. Thus the structure function of the phase 

screen obviously lacks low frequency part compared to the 

theoretical situation, while the performance is the same in 

the high frequency parts.  

 

7 Conclusions 

 

Based on Kolmogorov turbulence theory and power 

spectral inversion method, the model and simulation 

method on laser beams propagation through two-

dimension random phase screens in the atmospheric 

turbulence channel were proposed and testified by phase 

structure function. In the method, the random phase screen 

was established by the Fourier transform, and step-by-step 

transmitting approach was used to simulate the 

propagation of collimated Gaussian beams in Kolmogorov 

turbulence. According to the divergence between phase 

structure function and theoretical results, the accuracy of 

simulated phase screen was analysed. Simulation results 

showed the proposed method in the paper was appropriate 

after compensating the low frequency and can be used to 

calculate the light propagation, which will be more 

practical meaningful to evaluate and test the phase screen. 
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