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Abstract 

Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal 

patterns. In this paper, we introduce a new box-covering algorithm to compute the generalized fractal dimensions of complex 

networks. We apply our method on networks built on disease-related gene microarray data and PPI networks. For each microarray 

data, we compare the difference of multifractal behaviour between gene networks that reconstructed from patients and normal 

micorarrays. The result suggests that multifractality exists in all the gene networks we generated and the differences in the shape of 

the Dq curves are obvious for all microarray data sets. Meanwhile, multifractal analysis could provide a potentially useful tool for 

gene clustering and identification between healthy people and patients. For the analysis of PPI networks, the results support that the 

algorithm is a suitable and effective tool to perform multifractal analysis of complex networks, and this method can be a useful tool 

to cluster and classify real PPI networks of organisms. 
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1 Introduction 

 

Complex networks have been studied extensively due to 

their relevance to many real-world systems such as the 

World Wide Web, the internet, energy landscapes, and 

biological and social systems. After analysing a variety of 

real complex networks, Song et al. [1] found that they 

consist of self-repeating patterns on all length scales, i.e., 

they have self-similar structures. In order to unfold the 

self-similar property of complex networks, Song et al. [1] 

calculated their fractal dimension, a known useful 

characteristic of complex fractal sets [2-4], and found that 

the box counting method is a proper tool for further 

investigations of network properties. The tools of fractal 

analysis provide a global description of the heterogeneity 

of an object. However, this approach is not adequate 

when the object may exhibit a multifractal behaviour. 

Multifractal analysis is a useful way to systematically 

characterize the spatial heterogeneity of both theoretical 

and experimental fractal patterns. It was initially 

proposed to treat turbulence data, and has recently been 

applied successfully in many different fields including 

time series analysis [5], financial modelling [6], 

biological systems [7б8] and geophysical systems [9].  

In recent years, bioinformatics has become a more 

and more notable research field since it allows biologists 

to make full use of the advances in computer science and 

computational statistics in analysing the data of an 

organism at the genomic, transcriptomic and proteomic 

levels [10]. DNA technology, i.e. microarray of large sets 

of nucleotide sequences, is a modern tool that is used to 

obtain information about expression levels of thousands 

of genes simultaneously. The gene networks built based 

on microarray data become a popular research field.  

In this paper, we aim to compare the difference of 

multifractal behaviours between gene networks that 

reconstructed from patients and normal people 

microarrays and some PPI networks. However, work in 

such high dimensional and large data is extremely 

difficult. So for gene microarrays, firstly, we apply Fuzzy 

Membership test (FM-test) [11] to get the most important 

genes that are related with the disease; then we construct 

networks based on the microarray data of the selected 

genes by calculating the correlation coefficient. Next we 

apply the modified fixed-size box-covering method on 

them to detect their multifractal behaviours. For PPI 

networks, we firstly use cytoscape to we need to find the 

largest connected part of each data set, and then we adopt 

our method to check multifractal characteristics in 

different organisms. Secondly, we also we randomly 

chose several sub-networks from different parts of the 

human PPI network with the same nodes and compare 

multifractal characteristic between them. 

 

2 Methods 

 

The most common algorithms of traditional multifractal 

analysis are the fixed-size box-counting algorithms [12]. 

For a given measure μ with support E in a metric space, 

we consider the partition sum: 
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where the sum is evaluated over all different nonempty 

boxes B of a given size   in a grid covering of the 

support T. The exponent ( )q is defined by: 
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and the generalized fractal dimensions of the measure are 
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fractal dimensions are numerically estimated through a 

linear regression of (ln ( )) / ( 1)Z q q   against ln  for 

1q  , and similarly through a linear regression of 1,Z   

against ln  for 1q  . The D(q) corresponding to 

negative values of q deal with the structure and the 

properties of the regions where the measure value is 

small. 

Our group proposed a new box-covering algorithm to 

compute the generalized fractal dimensions of network 

[13]. For a network, we denote the matrix of shortest path 

lengths by ( )ij N NB b  , where ijb  is the length of the 

shortest path between nodes i and j. Then we use 

( )ij N NB b   as input data for multifractal analysis based 

on our fixed-size box counting algorithm as follows: 

a) Initially, all the nodes in the network are marked as 

uncovered and no node has been chosen as a seed or 

centre of a box. 

b) Set t=1, 2,…, T appropriately. Group t nodes into T 

different ordered random sequences. More 

specifically, in each sequence, nodes which will be 

chosen as seed or centre of a box are randomly 

arrayed. 

Remark: T is the number of random sequences and is 

also the value over which we take the average of the 

partition sum ( )rZ q . In this study, we set T=1000 for 

all the networks in order to compare them. 

c) Set the size of the box in the range r [1, d], where d 

is the diameter of the network. 

Remark: When r=1, the nodes covered within the 

same box must be connected to each other directly. 

When r=d, the entire networks could be covered in 

only one box no matter which node was chosen as the 

centre of the box. 

d) For each centre of a box, search all neighbours within 

distance r and cover all nodes which are found but 

have not been covered yet. 

e) If no newly covered nodes have been found, then this 

box is discarded. 

f) For the nonempty boxes B, we define their measure as

( ) /BB N N  , where BN  is the number of nodes 

covered by the box B, and N is the number of nodes of 

the entire network. 

g) Repeat (d) until all nodes are assigned to their 

respective boxes. 

h) Repeat (c) and (d) for all the random sequences, and 

take the average of the partition sums 

( ) ( ( )) /
t

r rZ q Z q T  , and then ( )rZ q  for linear 

regression. 

Linear regression is an essential step to get the 

appropriate range of min max[ , ]r r r  and to get the 

generalized fractal dimensions Dq. In our approach, we 

run the linear regression of [ln ( )] / ( 1)rZ q q  against 

ln(r/d) for 1q  , and similarly the linear regression of 

1,rZ  against ln(r/d) for q=1, where 

1, ( ) 0
( ) ln ( )r B

Z B B


 


  and d is the diameter of the 

network. 

 

3 Results and discussion 

 

3.1 MULTIFRACTAL ANALYSIS OF GENE 

NEWORKS 

 

Four different gene microarray data sets are used in our 

work: Colorectal cancer gene microarray data [16]; Type 

II diabetes gene microarray data [17]; Type I diabetes 

gene microarray data [18] and Lung cancer gene 

microarray data [11]. There are two parts in each data, the 

first part consists of genes expression values from 

patients or drugs sensitive people; the second part 

consists of  genes expression values from healthy 

donators or patients after medication or treatment. For 

each original data, we firstly use FM-test [11] to select 

around 2000 genes which are most possibly related with 

disease, then build patients gene networks and normal 

people gene networks respectively. For colorectal data, 

CP is the patient gene networks, HP is healthy people 

gene network; for type II diabetes data, IR is insulin 

resistant people network and IS is insulin sensitive people 

network; for type I diabetes data, TP is patients network 

and TM is patients after medication network; for lung 

cancer data, LP is patients network and LN is normal 

people network. We analysed multifractal behaviour of 

two networks for each microarray data. All the networks 

are full connected. 

We calculated the Dq spectra for these gene networks 

of different datasets and then summarize the numerical 

results in Table 1 including the number of nodes (N), 

number of the threshold t, maximum value of Dq, limit of 

Dq, and ∆Dq. Figures 1 and 2 show that the generalized 

fractal dimension Dq of these gene networks are 

decreasing functions of q and multifractality exists in 

these networks. From the table and figures we see, 

multifractal characteristic exists in all the gene networks 
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we analysed. Meanwhile, the Dq curves of gene networks 

from normal people are mostly higher than the ones from 

patients, especially for the first three microarray data.  

 
TABLE 1 Numerical results on gene networks  

Networks N t Max Dq Lim Dq ΔDq 

CP 2000 0.72 3.44 1.20 2.24 

CH 2000 0.85 3.22 2.23 0.99 

IR 2304 0.95 2.34 1.47 0.87 
IS 2299 0.95 2.14 1.08 1.06 

TP 2000 0.72 3.39 1.3 2.05 

TH 2000 0.81 3.36 2.20 1.16 
LC 2000 0.97 2.36 1.91 0.45 

LN 2000 0.96 2.43 1.90 0.53 

 

  
a) b) 

Figure 1 a) Colorectal cancer microarray data, b) Type II diabetes microarray data 

 

  
a) b) 
Figure 2 a) Type I diabetes microarray data; () lung cancer microarray data 

 

3.2 MULTIFRACTAL ANALYSIS OF PPI NEWORKS 

 

The protein-protein interaction data we used here are 

mainly downloaded from two databases: the PPI 

networks of Drosophila melanogaster (fruit fly), 

C.elegans, Arabidopsis thaliana (a type of plant) are 

downloaded from BioGRID. The PPI networks of S. 

cerevisiae (baker's yeast), E.coli and H.pylori are 

downloaded from DIP [19]. We also use the same human 

PPI network data as in Lee and Jung [20]. 

Our fractal and multifractal analyses are based on 

connected networks which do not have separated parts or 

isolated nodes. In order to apply them to protein-protein 

interaction networks, some preparation is needed in 

advance. Firstly, we need to find the largest connected 

part of each data set. For this purpose many tools and 

methods could be used. In our study, we adopt Cytoscape 

[21] which is an open bioinformatics software platform 

for visualizing molecular interaction networks and 

analysing network graphs of any kind involving nodes 

and edges. In using Cytoscape, we could get the largest 
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connected part of each interacting PPI data set and this 

connected part is the network on which fractal and 

multifractal analyses are performed. 

We calculated the Dq spectra for seven PPI networks of 

different organisms and summarize the corresponding 

numerical results in Table 2 including the number or 

nodes (N), number of edges (E), diameter of the network 

(d), maximum value of Dq, limit of Dq, and ∆Dq. These 

results show multifractality exists in PPI networks. 

 
TABLE 2 Numerical results of Protein-protein interaction networks 

Networks N E d Max Dq Lim Dq ΔDq 

Human 8934 41341 14 4.89 2.65 2.24 

D.melanogaster 7476 26534 11 4.84 2.87 1.97 
S.cerevisiae 4976 21875 10 4.62 2.48 2.14 

E.coli 2516 11465 12 4.15 2.10 2.05 

H.pylori 686 1351 9 3.47 1.91 1.56 
Arabidopsis 

thaliana 
1298 2767 25 2.51 1.62 0.88 

C.elegans 3343 6437 13 4.47 1.49 2.98 

 
TABLE 3 Numerical results of sub-networks of Human PPI 

Networks N E d Max Dq Lim Dq ΔDq 

Subnetwork of Human PPI 3505 4651 24 3.65 1.99 1.66 

Subnetwork of Human PPI 3505 5262 27 2.97 2.83 0.14 
Subnetwork of Human PPI 3505 5353 22 3.95 2.19 1.76 

Subnetwork of Human PPI 3505 7055 15 4.22 2.28 1.94 

Subnetwork of Human PPI 3505 7509 15 3.55 2.94 0.61 
Subnetwork of Human PPI 3505 8750 16 3.81 2.59 1.22 

Subnetwork of Human PPI 3505 10652 10 4.02 2.47 1.55 

 

From Figure 3a we could see that all PPI networks are 

multifractal and there are two clear groupings of 

organisms based on the peak values of their Dq curves. 

The first group includes human, Drosophila 

melanogaster, S.cerevisiae, and C.elegans. The second 

group just includes two bacteria E.coli and H. pylori. We 

could also see that the PPI networks of the seven 

organisms have similar shape for the Dq curves. They 

reach their peak values around q = 2, then decrease 

sharply as q > 2 and finally reach their limit value when 

q > 10. So we can take limDq = D(20) and use ∆Dq = 

maxDq – limDq to verify how the Dq function changes 

along each curve.  

Then we randomly chose several sub-networks from 

different parts of the human PPI network. These sub-

networks all contain 3505 nodes and different numbers of 

edges. Since these sub-networks are chosen randomly, 

overlapping between them is allowed. Then we calculated 

the Dq spectra for sub-networks of human protein-protein 

interaction network [20] and summarize the 

corresponding numerical results in Table 3 including the 

number or nodes (N), number of edges (E), diameter of 

the network (d), maximum value of Dq, limit of Dq, and 

∆Dq. These results show multifractality exists in PPI 

networks. 

From Figure 3b we could see that not all parts of a 

PPI network have the same multifractal behaviour. More 

specifically, among these sub-networks, the ∆Dq values 

vary from one to another which means that the edge 

distribution of some parts of a network is symmetric 

while that of the other parts may not be. This may help to 

understand the diversity and complexity of protein-

protein interactions. 

 

  

a) b) 

Figure 3 (a) The Dq curves for PPI networks; (b) The Dq curves for sub-networks of human PPI networks 
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4 Conclusions 

 

A modified algorithm for analysing the multifractal 

behaviours of complex networks is introduced in this 

paper. We apply this modified fixed-size box-covering 

method on gene networks reconstructed from patients and 

normal gene microarrays. Firstly, we use the fuzzy 

membership test to get the most important genes that 

related with the disease; then we construct networks 

based on the microarray data of the selected genes by 

calculated the correlation coefficient. From the results we 

see, multifractality exists in all the gene networks we 

generated and the difference in the shape of the Dq curves 

are obvious for these microarray datasets. Thus 

multifractal analysis could provide a potentially useful 

tool for gene clustering and identification between 

healthy people and patients. We also apply our method on 

some PPI networks, these results support that multifractal 

analysis can be a useful tool to cluster and classify real 

networks such as the PPI networks of organisms.  
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