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Abstract 

As a model of concept representation, ontology has widely applied to various disciplines. Ontology mapping is used to create the link 

between different ontologies. In this paper, we present a new ontology mapping algorithm by virtue of bilinear model. The linear 

mapping pair is given by the iterative procedure. Two strategies are manifested to obtain the finally ontology mapping. The 

simulation experimental results show that the proposed new technologies have high accuracy and efficiency on ontology mapping in 
certain applications. 
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1 Introduction 
 

As a knowledge representation and conceptual shared 

model, ontology has been applied in image retrieval, 

knowledge management and information retrieval search 

extension. Acting as an effective concept semantic model, 

ontology is also employed in disciplines beyond 

computer science, such as social science (for instance, see 

[1]), biology science [2] and geography science [3]. 

The ontology model is actually a graph G=(V,E), each 

vertex v in an ontology graph G represents a concept and 

each edge e=vivj on an ontology graph G represents a 

relationship between concepts vi and vj. The aim of 

ontology mapping is to bridge the link between two or 

more ontologies. Let G1 and G2 be two ontology graphs 

corresponding to ontology O1 and O2 respectively. For 

each vG1, find a set Sv V(G2) where the concepts 

corresponding to vertices in Sv are semantically close to 

the concept corresponding to v. One method to get such 

mapping is, for each vG1, to compute the similarity 

S(v,vj) where vj V(G2) and to choose a parameter 

0<M<1. Then Sv is a collection such that the element in Sv 

satisfies S(v,vj)M. In this point of view, the essence of 

ontology mapping is to obtain a similarity function S and 

select a suitable parameter M. In our article, we focus on 

the technologies to yield an optimal similarity function S 

from dimensionality reduction standpoint. In fact, our 

approach for obtaining such similarity function is based 

on the linear mapping pair. 

For ontology similarity measure, there are several 

effective learning tricks. Wang et al. [4] proposed to 

learn a score function which mapping each vertex to a 

real number, and the similarity between two vertices can 

be measured according to the difference of real number 

they correspond to. Huang et al., [5] presented a fast 

ontology algorithm for calculating the ontology similarity 

in a short time. Gao and Liang [6] raised that the optimal 

ontology function can be determined by optimizing 

NDCG measure, and applied such idea in physics 

education. Gao and Gao [7] deduced the ontology 

function using the regression approach. Huang et al., [8] 

obtained ontology similarity function based on half 

transductive learning. Gao and Xu [9] explored the 

learning theory approach for ontology similarity 

computation using k-partite ranking method. Zhu and 

Gao [10] proposed a new criterion for ontology 

computation from AUC and multi-dividing standpoint. 

Gao et al., [11] presented a new ontology mapping 

algorithm using harmonic analysis and diffusion 

regularization on hypergraph. Very recently, Gao and Shi 

[12] proposed a new ontology similarity computation 

technology such that the new calculation model considers 

operational cost in the real implement. 

In this paper, we determine the new ontology 

mapping algorithm based on dimensionality reduction 

idea and bilinear learning model. Using the optimization 

algorithm, we determine the linear mapping (L1, L2) to 

compute the similarity of vertices from two ontologies. 

The experiment is designed to show the efficiency of the 

algorithm. 

 

2 Model and algorithm 
 

For each vertex v, we use a vector to represent all its 

information. For two ontologies O1 and O2, their 

structures can be determined by two ontology graphs 
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G1=(V1,E1) and G2=(V2,E2) respectively. Suppose that 
1

1

d
V   and 2

2

d
V  . That is to say, we use a vector 

with dimension d1 to represent the information of 

vertex in V1 and use a vector with dimension d2 to 

represent the information of vertex in V2. For any vi
V1, and vjV2, S(vi,vj)=Sij indicates the similarity 

between concepts corresponding to vi and vj. Our goal 

is to learn an optimal similarity function S based on the 

sample triple D={(vi,vj,Sij)}, where viV1, vjV2. For 

such triple D, let  1 1

D

iV v V  ,  2 2

D

jV v V  , 

1 1

Dn V  and 
2 2

Dn V . 

We are interested in searching a linear mapping pair 

(L1,L2) such that the corresponding images 1

T

iL v  and 

2

T

jL v  are in the same d-dimensional latent space L with 

 1 2min ,d d d  and the degree of similarity between 

ontology vertices viV1 and vjV2 can be reduced to 

L’s dot product: 

 
1 2, 1 2, T T

L L i j i jD v v v L L v . 

By virtue of the trick used in [13] for kernel 

learning, we aim to maximize the following expected 

version: 

    

  
1 2, ,

1 2

, ,

, .

i j

i j i

v v i j L L i j

T T

v i j i jv v

E S v v D v v

E E S v v v L L v


 (1) 

The Equation (1) could be estimated as follows: 

1 2

1 2

1 2

1

D D
i j

T T

ij i j

v V v V

S v L L v
n n  

  . 

Hence, the ontology mapping problem is boiled down 

to 

1 2
1 2

1 2
, 1 2

1
argmax

D D
i j

T T

ij i j
L L v V v V

S v L L v
n n  

  , (2) 

s.t. L1H1, L2H2, where H1 and H2 are the hypothesis 

spaces for L1 and L2 respectively. Since the final 

computational model is linear in view of both ontology 

vertices vi and vj, learning model (2) is actually a 

bilinear model for calculating similarity in two spaces.  

We apply l1 norm and l2 norm constraints on L1 and 

L2. Let   and   be l1-norm and l2-norm respectively, 

and 
iv xl  and 

jv yl  be the x-th and y-th row of L1 and L2. 

Specifically, we introduce two hypothesis spaces as: 

 1 1 1| , , 1,...,
i i i iv x v v x vH L l l x d     , 

 2 2 1| , , 1,...,
j j j jv y v v y vH L l l y d     , 

where  , , ,
i i j jv v v v     are parameters selected by 

experts. Here the constraints relying on l1-norm will 

induce row-wise sparsity in L1 and L2. Furthermore, the 

l2-norm on rows with regularization can avoid 

degenerative solutions. By virtue of the definition of H1 

and H2, we infer the following program: 

1 2
1 2

1 2
, 1 2

1
argmax

D D
i j

T T

ij i j
L L v V v V

S v L L v
n n  

  , (3) 

s.t.: 

, , ,
i i i i j j j jv x v v x v v y v v y vl l l l       ,  11,...,x d , 

21,...,y d . 

In practice reality, we solve the following variant 

version of Equation (3) for easier computation 

1 2
1 2

1 2

1 2
, 1 2

1 1

1
arg min

,

D D
i j

i j

T T

ij i j
L L v V v V

d d

v x v y

x y

S v L L v
n n

l l 

 

 

 



 

 

 (4) 

s.t. ,
i i j jv x v v y vl l   ,  11,...,x d , 

21,...,y d , 

where β > 0 and γ > 0 are the balance parameters to 

control the trade-off between objective term and 

penalty term. For given L2, the objective mapping of 

Equation (4) can be re-represented as: 

1

1 2

2

1 1 2

1
i i

D D
i j

T
d

x T

i ij j v x v x

x v V v V

v S L v l l
n n


  

   
    

   

   . 

By using 
1 2, ,...,

T
d

x x x x     ω to represent the d-

dimensional 

1 2

2

1 2

1

D D
i j

x T

i ij j

v V v V

v S L v
n n  

  , we infer the 

optimal 
iv xl  as: 

      
*

max ,0 sign
i i i i

k k k

v x v v vl C     ,  1,...,k d , (5) 

where 
i

k

v xl  is the k-th element of 
iv xl :

 

1, 0

sign 0, 0

1, 0

x

x x

x




 
 

, 

and 
ivC  is a constant which makes *

i iv x vl   if there 

exist non-zero elements in 
*

iv xl , and 0
iv

C   otherwise. 

For given L1, the objective mapping of Equation (4) can 

similarly re-written as: 
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2

1 2

1

1 1 2

1
j j

D D
i j

T
d

y T

j ij i v y v y

y v V v V

v S L v l l
n n


  

   
   
 
   

   . 

In terms of the same fashion, we use 

1 2, ,...,
T

d

y y y y     η to represent the d-dimensional 

1 2

1

1 2

1

D D
i j

y T

j ij i

v V v V

v S L v
n n  

  , we yield the optimal 
jv yl  as: 

 
*

(max( ,0)sign( ))
j j j j

k k k

v y v v vl C     ,  1,...,k d , (6) 

where 
j

k

v yl  is the k-th element of 
jv yl , and 

jvC  is a 

constant which makes *

j jv y vl   if there exist non-zero 

elements in 
*

jv yl , and 0
jvC   otherwise. 

Let: 

1 21 2

1
i

D D
i j

x

v x i ij j

v V v V

w v S v
n n  

    

and 

1 21 2

1
j

D D
i j

y

v y j ij i

v V v V

w v S v
n n  

   , 

which does not depend on the change of L1 and L2, and 

can be pre-calculated. It is easy to verify that:

1 2

2 2

1 2

1
i

D D
i j

x T T

i ij j v x

v V v V

v S L v L w
n n  

  =  

and 

1 2

1 1

1 2

1
j

D D
i j

y T T

j ij i v y

v V v V

v S L v L w
n n  

  . 

Let 
iv

N  be the average number of non-zeros in all vi 

per dimension and 
jvN  be the average number of non-

zeros in all vj per dimension, 
1n  be the average number of 

related vi samples per vj and 
2n  be the average number of 

related vj samples per vi, c1 be the average number of non-

zeros in each vi sample and c2 be the average number of 

non-zeros in each vj sample. Now, we present the 

following two algorithms: 

Algorithm 1. Calculating 
iv xw  and 

jv yw  

Input D={(vi,vj,Sij)}, where 1  i n1 and 1 j n2. 

For x=1:d1, 0
iv xw  ; For y=1:d2, 0

jv yw  . 

For x=1:d1, i=1:n1, j=1:d2, 
1 2

1
i i

x

v x v x i ij jw w v S v
n n

  . 

For y=1:d2, i=1:n1, j=1:d2, 
1 2

1
j j

y

v y v y j ij iw w v S v
n n

  . 

Output: 1

1{ }
i

d

v x xw   and 2

1{ }
j

d

v y yw  . 

Algorithm 2. Calculating 1

tL  and 2

tL .  

Input 1

1{ }
i

d

v x xw  , 2

1{ }
j

d

v y yw  , d, β, γ, θ1, θ2, and set 
0

1L  and 

0

2L  randomly t←0. 

While t ≤ T. For x=1:d1, compute 
xω  using 1( )

i

t T

v xL w  and 

determine 
*( )

iv xl in terms of Equation (5), update 
1

1

tL 
;  

For y=1:d2, compute yη  using 2( )
j

t T

v yL w  and determine 

*( )
jv yl in terms of Equation (6), update 

1

2

tL 
; t←t+1. 

Output 1

tL  and 2

tL . 

The complexities of Algorithm 1 and Algorithm 2 are 

1 2 2 2 1 1( )
i jv vO d N n c d N n c  and 

1 1 2 2( )O d W d d W d  

respectively, where W1 is the number of non-zeros for 

each 
iv xw on average and W2 is the number of non-zeros 

for each 
jv yw on average. 

After the similarity between vertices are determined 

by bilinear model, we select a strategy to derive finally 

ontology mapping. Following two strategies could be 

used for getting ontology mapping. 

Strategy 1. For each vV(Gi), i=1,2. Let N  be a 

parameter, and: 

  1
' ( )
max , '

iv V G
v S v v


 , 

  
1

2
' ( ), '

max , '
iv V G v v

v S v v
 

 , 

  
1 2

3
' ( ), ' , '

max , '
iv V G v v v v

v S v v
  

 , 

  
1 2 1' ( ), ' , ' , , '

max , '
i N

N
v V G v v v v v v

v S v v
   

 . 

Then, we deduce: 

   1 2, , , Nmap v v v v . 

Strategy 2. For each vV(Gi), i=1,2. Let M   be a 

parameter, and  

      , ' ' imap v S v v M v V G   . 

 

3 Experiment 

 

Experiment of relevance ontology mapping is designed 

below. In order to adjacent to the setting of ontology 

algorithm, we use a vector to express each vertex’s 

information. Such vector contains the information of 

name, instance, attribute and structure of vertex. Here the 

instance of vertex refers to the set of its reachable vertex 

in the directed ontology graph.  

We use physical education ontologies O1 and O2 (the 

structures of O1 and O2 are presented in Figures 1 and 2 

respectively) for our experiment. The goal of this 

experiment is to determine ontology mapping between O1 
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and O2 via linear mapping L1 and L2 which is deduced by 

Algorithm 1 and Algorithm 2. P@N criterion (Precision 

Ratio, see Craswell and Hawking, [14]) is applied to 

measure the equality of the experiment. We first give the 

closest N concepts for each vertex on the ontology graph 

with the help of experts, and then we obtain the first N 

concepts for every vertex on ontology graph by the 

algorithm and compute the precision ratio. Also, ontology 

algorithms in [11, 5] and [6] are employed to “physical 

education” ontology, and we compare the precision ratio 

which we get from four methods. Several experiment 

results refer to Table 1.  

 

Physics in Nature and Daily Life

Sustainable Dvelopment

Energy Conservation of EnergyVarious forms of Move& energy

Explore

Mechanical 

Movement
LightSound

Thermal Ph-

enomenon

Internal 

Energy

Electro 

Energy

Mecha 

Energy

Material Structure of matter

Properties of matter

Force Magnetic

Molecular 

Themal 

Motionic

The Motion & Int-

eraction of Matter

The use 

of new 

Materias

FIGURE 1 “Physical Education” Ontology O1

Nature Sound

The sound Generation & Transmission

Sound Characteristics

Kinds of Sound

We Can Hear We Can Not Hear

Music Noise Ultrasonic Wave Infrasonic Wave
 

 
FIGURE 2 “Physical Education” Ontology O2 

The experiment results in Table 1 reveal that the 

precision ratio in terms of our algorithm higher than the 

precision ratio determined by algorithms proposed in [11, 

5] and [6] by taking N= 1, 3 or 5. Specially, as N becomes 

large, such precision ratios in terms of our algorithm are 

increasing apparently. In this point of view, our algorithm 

is more efficient than algorithms raised in [11, 5] and [6] 

especially when N is sufficiently large.  

 

TABLE 1 The experiment data of ontology mapping 

 P@1 average precision ratio P@3 average precision ratio P@5 average precision ratio 

Algorithm presented in our paper 70.97% 79.37% 90.48% 

Algorithm presented in [11] 67.74% 77.42% 89.68% 
Algorithm presented in [5] 61.29% 73.12% 79.35% 

Algorithm presented in [6] 69.13% 75.56% 84.52% 

4 Conclusions 

 

In this paper, we propose a new computation model for 

ontology mapping application. The model is bilinear and 

the algorithm is essentially a kind of dimensionality 

reduction algorithm which maps the high-dimensional 

ontology space into low-dimensional. At last, simulation 

data shows that our new algorithm has high efficiency in 

physics education ontologies. The algorithm achieved in 

our paper illustrates the promising application prospects 

for ontology mapping. The technologies raised in our 

paper contribute to the state of the art. 
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