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Abstract 

Scientific workflows are a topic of great interest in the Grid community that sees in the workflow model an attractive paradigm for 

programming distributed wide area Grid infrastructures. Scientific workflows have recently emerged as a new paradigm for scientists 

to formalize and structure complex and distributed scientific processes to enable and accelerate many scientific discoveries. In contrast 

to business workflows, which are typically control flow oriented, scientific workflows tend to be dataflow oriented, introducing a new 

set of requirements for system. In this paper, we consider a general workflow setting in which input data sets are processed by a graph 

of transformations to produce output results. Our goal is to perform efficient selective refresh of elements in the output data, i.e., 

compute the latest values of specific out-put elements when the input data may have changed. The data provenance is investigated to 

be used to enable efficient refresh. The proposed approach is based on capturing one level data provenance at each transformation 

when the workflow is run initially. Then at refresh time provenance is used to determine (transitively) which input elements are 

responsible for given output elements, and the workflow is rerun only on that portion of the data needed for refresh. The reported 

preliminary experimental results are developed on the overhead of provenance capture, and on the crossover point be-tween selective 
refresh and full workflow computation development. 

Keywords: scientific workflows, scientific workflow management system, semantic technologies 

 

1 Introduction 

 

Scientific workflows have recently emerged as a new 

paradigm for scientists to integrate, structure, and 

orchestrate a wide range of local and remote 

heterogeneous services and software tools into complex 

scientific processes to enable and accelerate many 

scientific discoveries. Significant scientific advances are 

increasingly achieved through complex sets of 

computations and data analyses. These computations may 

com-prise thousands of steps, where each step might 

integrate diverse models and data sources that different 

groups develop. The applications and data might be also 

distributed in the execution environment. The assembly 

and management of such complex distributed 

computations present many challenges, and increasingly 

ambitious scientific inquiry is continuously pushing the 

limits of current technology. 

Workflows have recently emerged as a paradigm for 

representing and managing complex distributed scientific 

computations, accelerating the pace of scientific progress. 

Scientific workflows orchestrate the dataflow across the 

individual data transformations and analysis steps, as well 

as the mechanisms to execute them in a distributed 

environment. Each step in a workflow specifies a process 

or computation to be executed according to the data flow 

and dependencies among them. The representation of these 

computational workflows contains many details required 

to carry out each analysis step developed within the 

context of an earthquake science application. 
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Workflow systems exploit these explicit 

representations of complex computational processes at 

various levels of abstraction to manage their life cycle and 

automate their execution. In addition to automation, 

workflows can provide the information necessary for 

scientific reproducibility, result derivation, and result 

sharing among collaborators. By providing automation 

and enabling reproducibility, they can accelerate and 

transform the scientific analysis process. 

This traditional best effort execution model commonly 

does not fully consider the dynamic and course-grain 

nature of Grid environments dominated by a broad set of 

performance overheads such as large latencies (several 

seconds), unpredictable queuing times, sudden 

unavailability of existing resources, external load on 

shared-memory computers, unexpected jobs on shared 

local queues, and inaccurate predictions for new processor 

architectures, which can severely deteriorate the workflow 

execution that is likely to deviate from the expected 

schedules. In addition, although the Grid provides in 

theory an unlimited amount of compute power, currently 

existing Grid test beds offer a limited amount of high-

performance resources that are important to be used 

efficiently. 

Over the years, performance analysis tools have 

emerged as an important means for detecting bottlenecks 

in high performance computing applications for which 

optimizing compilers rarely deliver satisfactory results. 

Grid computing is sensitive to similar problems. Running 

workflows based on pure scheduling techniques without 

understanding what really happens during the execution 
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may easily lead to poor execution times and inefficient 

usage of computing resources. Performance analysis tools 

are there-fore an important asset for understanding the 

behaviour and reasons for performance losses required to 

improve runtime middleware environments and, 

ultimately, the workflow executions in dynamic Grid 

infrastructures. Such a tool for high-level performance 

analysis of scientific Grid work-flows is currently missing. 
 

 
FIGURE 1 a) The position of an SWFMS within a software stack; b) zoom-in view of the reference architecture for SWFMSs 

 

In this paper, we propose a systematic approach to 

building a tool for performance analysis and steering of 

scientific workflow applications in heterogeneous and 

distributed Grid environments. We introduce a theoretical 

reference parameter, called ideal execution time, that 

provides a realistic bound for the lowest (that is, “fastest”) 

execution time achievable by a workflow in a certain Grid 

infrastructure. To address this issue, we propose the first 

reference architecture for SWFMSs based on a 

comprehensive survey of the literature and identification 

of key requirements. According to the proposed reference 

architecture, we further propose a service-oriented 

architecture for the VIEW system. Leveraging SOA, 

VIEW consists of six loosely coupled service components, 

each of which corresponds to a functional component that 

is identified in the reference architecture, whose 

functionality is exposed as a Web service. We 

implemented the VIEW system to validate the feasibility 

of the proposed architectures. We present a VIEW based 

scientific workflow application system (SWFAS), to 

demonstrate the capabilities of VIEW in support of user 

interaction intensive, visualization intensive, and compute 

intensive scientific workflows in a heterogeneous and 

distributed computing environment. 

The rest of the paper is organized as follows. Section 2 

identifies the related work of the proposed method. Section 

3 proposes our reference architecture for SWFMSs. 

Section 4 we evaluate five representative SWFMSs using 

the proposed reference architecture. Finally, Section 5 

concludes the paper and comments on future work. 

 

 

 

 

2 Related works 

 

Although the term “scientific workflows” were first coined 

by Vouk and Singh in 1996 [1] for workflow applications 

in scientific PSEs, only recently, there is an increasing 

momentum for the research and development of SWFMSs 

and their applications, due to the increasingly demanding 

requirements of many compute-intensive and data 

intensive scientific applications, enabled by the underlying 

advances of computing technologies, notably Services 

computing [2], Grid computing [3], and Cloud computing 

[4]. Scientific workflows leverage existing techniques 

developed for business workflows but deviate from them 

as a result of a different set of requirements raised from a 

wide range of science and engineering problems [5]. While 

business workflows are control flow oriented with the 

mission of carrying out business logic to achieve a 

business goal, scientific workflows tend to be dataflow 

oriented and aimed at enabling, facilitating, and speeding 

up the derivation of scientific results from raw data sets. 

There has been a large body of work in lineage and 

provenance over the past two decades. Surveys are 

presented in, e.g., [6-8], and formal models for provenance 

are presented in, e.g., [9-12]. Provenance in the context of 

schema mappings is studied in [13-15]. None of these 

papers exploits provenance for selective refresh in a 

general workflow environment. There also has been a large 

body of work in incremental view maintenance: the 

efficient propagation of base data modifications, usually in 

a relational setting [16, 17]. Our work considers general 

workflows, rather than relational views. Also, in contrast 

to the view maintenance problem, selective refresh 

considers efficiently computing the up-to-date value of 

individual output elements, rather than keeping the entire 

view up to date by propagating changes made to the base 

data. Reference [18] provides a framework to explain 

“missing” answers in queries. There is some high-level 
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similarity between how explanations provided by their 

framework are created and how we support efficient 

refresh using data provenance. However, the details are 

quite different, and their framework supports SQL queries 

rather than general workflows. Reference [19] considers 

the problem of “update exchange” be-tween data peers 

linked by mappings. A problem they address is 

determining when a derived data element is no longer valid, 

but they do not provide a means to selectively refresh out-

of-date values. Also, transformations in [19] are restricted 

to those that can be expressed in data log. 

 

3 Incorporating semantic to data oriented workflow 

 

Although the reference architecture proposed by WfMC, 

has been widely used for BWFMSs, this reference 

architecture does not satisfy key requirements R1-R5 for 

SWFMSs identified in the previous section. In this section 

we propose a reference architecture for SWFMSs. As 

shown in Figure 1b, the reference architecture consists of 

four logical layers, seven major functional subsystems, 

and six inter-faces. Figure 1a shows a typical software 

stack of a scientific workflow application: on top of an 

operating system, a data management system and a service 

management are used by an SWFMS for data management 

and service management, respectively. An SWFAS is 

developed over an SWFMS by the introduction of 

additional domain specific application data and 

functionalities. 

 

3.1 DIFFERENT LAYERS OF THE PROPOSED 

METHOD 

 

The first layer is the Operational Layer, which consists of 

a wide range of heterogeneous and distributed data sources, 

software tools, services, and their operational 

environments, including high-end computing 

environments. The separation of the Operational Layer 

from other layers isolates data sources, software tools, 

services, and their associated high-end computing 

environments from the scope of an SWFMS, thus 

satisfying requirement R5. 

The second layer is called the Task Management Layer. 

Tasks are the building blocks of scientific workflows. 

Tasks consume input data products and produce output 

data products. At the same time, provenance is captured 

automatically to record the derivation history of a data 

product, including original data sources, intermediate data 

products, and the steps that are applied to produce the data 

product. This layer abstracts underlying heterogeneous 

data into data products, services, and software tools into 

tasks, and provides efficient management for data products, 

tasks, and provenance metadata. Therefore, the Task 

Management Layer satisfies requirements R2, R3, and R4. 

Moreover, the separation of the Task Management Layer 

from the Operational Layer promotes the extensibility of 

the Operational Layer with new services and new high-end 

computing facilities, and localizes system evolution due to 

hardware or software advances to the interface between the 

Operational Layer and the Task Management Layer. The 

task-level interoperability requirement (R7: level 1) should 

be addressed in this layer. 

The third layer is the Workflow Management Layer, 

which is responsible for the execution and monitoring of 

scientific workflows. At this layer, the building blocks of 

a scientific workflow are the tasks provided by the 

underlying Task Management Layer. In this layer, an 

execution of a scientific workflow is called a workflow run, 

which consists of a coordinated execution of tasks, each of 

which is called a task run. Therefore, the Workflow 

Management Layer addresses requirements R6 and R7. 

The separation of the Workflow Management Layer from 

the Task Management Layer concerns two aspects as 

follows:  

1) it isolates the choice of a workflow model from the 

choice of a task model, so changes to the workflow 

structure do not need to affect the structures of tasks and  

2) it separates workflow scheduling from task 

execution, thus improves the performance and scalability 

of the whole system. The interoperability of workflows 

(requirement R7: level 2) has to be addressed by 

standardizing workflow models, workflow run models, 

and workflow languages. 

The fourth layer is the Presentation Layer, which 

provides the functionality of workflow design and various 

user interfaces and visualizations for all assets of the whole 

system. The Presentation Layer has interfaces to each 

lower layer (not shown in the figure for simplicity). The 

separation of the Presentation Layer from other layers 

provides the flexibility of customizing the user interfaces 

of the system and promotes the reusability of the rest of 

system components for different scientific domains. Thus, 

this separation supports requirement R1. The 

interoperability of workflows (requirement R7: level 2) 

should be addressed by standardizing the workflow layout 

(e.g., look-and-feel) at this layer. 

 

3.2 MIDDLEWARE OVERHEAD 

 

The middleware overhead is due to the work performed by 

the middleware services to support the proper execution 

and completion of the workflow, which we further divide 

into several components based on the service functionality. 

Resource brokerage. This represents the time required 

by the Resource Broker to query the information service 

and provide to the Scheduler the processors and activity 

deployments needed to execute the application. Addition-

ally, this overhead has an important latency component 

(few seconds), mostly due to the mutual host 

authentication. This service latency is a common overhead 

component present in all our middleware services. 

Performance prediction. This represents the time to 

provide forecast information about the execution time of 

individual activities on the Grid sites indicated by the 

Scheduler, for example, using a polynomial fitting 

heuristic based on historical or training data. 
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Scheduling. This represents the time to appropriately 

map the workflow activities onto the Grid resources, which 

includes the following two sub overheads:  

1) a scheduling algorithm, which represents the time 

required to compute a schedule (often using time-

consuming optimization heuristics if the scheduling 

problem is NP-complete), and  

2) rescheduling, which represents the time needed to 

make a new scheduling decision, for example, because of 

a performance contract violation or if the workflow 

changes its runtime structure. 

 

3.3 SUBSYSTEMS 

 

The seven major functional subsystems correspond to the 

key functionalities required for an SWFMS. Although the 

reference architecture allows the introduction of additional 

subsystems and their features in each layer, this paper only 

focuses on the major subsystems and their essential 

functionalities. 

The Workflow Design subsystem is responsible for the 

design and modification of scientific workflows. 

Workflow Design produces workflow specifications 

represented in a workflow specification language that 

supports a particular workflow model. One can design and 

modify a scientific workflow using a standalone or Web-

based workflow designer, which supports both graphical- 

and scripting-based design interfaces. The interoperability 

of workflows (requirement R7: level 2) should be 

addressed in this subsystem by the standardization of 

workflow languages. 

The Presentation and Visualization subsystem is very 

important especially for data-intensive and visualization-

intensive scientific workflows, in which the presentation 

of workflows and visualization of various data products 

and provenance metadata in multi-dimension is the key to 

gain insights and knowledge from large amount of data and 

metadata. These two subsystems are located at the 

Presentation Layer to meet requirement R1. In this 

subsystem, the interoperability of workflows (requirement 

R7: level 2) should be addressed by the standardization of 

scientific workflow layout. 

The Workflow Engine subsystem is at the heart of the 

whole system and is the subsystem that provides 

management and execution environments for workflow 

runs. The Workflow Engine creates and executes 

workflow runs according to a workflow run model, which 

defines the state transitions of each scientific workflow 

and its constituent task runs. The interoperability of 

workflows (requirement R7: level 2) should be addressed 

by the standardization of interfaces, workflow models, and 

workflow run models, so that a scientific workflow or its 

constituent subworkflows can be scheduled and executed 

in multiple Workflow. 

Engines that are provided by various vendors. In 

SWFMSs, multiple Workflow Engine subsystems can be 

distributed, and each Workflow Engine can execute 

several workflows in parallel. 

The Workflow Monitoring subsystem meets 

requirement R6 and is in charge of monitoring the status 

of workflow execution during workflow runtime and if 

failures occur, provides tools for failure handling [18]. 

The Task Management subsystem addresses 

heterogeneity and distribution issues (requirement R3) and 

provides management and execution environment for tasks, 

according to a task model and task run model, respectively. 

The interoperability of tasks between various workflow 

environments (requirement R7: level 1) can be addressed 

in this subsystem. 

The Provenance Management subsystem meets 

requirement R2 and is mainly responsible for the 

management of scientific workflow provenance metadata, 

including their representation, storage, archival, searching, 

and visualization. The Data Product Management 

subsystem meets requirement R4 and is mainly 

responsible for the management of heterogeneous data 

products. One key challenge for data product management 

is the heterogeneous and potentially distributed nature of 

data products, making efficient access and movement of 

data products an important research problem. The 

interoperability of data products between various 

workflow environments (requirement R7: level 1) can be 

addressed in this subsystem. 

 

3.4 SYSTEM PROTOTYPE 

 

We have built a prototype system that implements all 

features and algorithms presented in this paper. This 

system, built initially to support refresh, has been evolving 

into a more ambitious sys-tem we call Panda (for 

Provenance and Data), supporting several other aspects of 

provenance and data in addition to refresh [17]. 

In this paper we focus our system description on 

features relevant to refresh. For the time being, all data sets 

handled by Panda are encoded in relational tables, but as 

we have seen, our formal under-pinnings and algorithms 

do not rely on the relational model. The high-level 

architecture of the Panda system. The main backend is a 

SQLite server, storing all data sets, relational (SQL) 

transformations, provenance, and workflow information. 

The Panda system supports “opaque” transformations 

programmed in Python; they are stored separately in files. 

Users interact with Panda through a simple command-

line inter-face; we intend to build a GUI in the near future. 

There are three types of user commands:  

1) Creating or modifying input data sets;  

2) Creating transformations that generate newly-

defined data sets from existing ones, to build up workflows;  

3) Refresh commands.  

The Panda Layer processes all user commands: it 

stores workflow graphs and their transformations, creates 

and maintains auxiliary provenance tables, generates 

provenance predicates and forward filters for output 

elements, and runs the refresh algorithms.  

The Panda system also supports transformations 

specified as SQL queries, including 
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queries/transformations involving multiple input tables. 

Provenance predicates are created automatically for SQL 

transformations, following known definitions and 

techniques [5, 7, 10]: Single table Select statements are 

one-one, so their output provenance predicates can select 

on declared keys from the input data set. Multi-table Select 

statements generate provenance predicates for each input 

table separately, again relying on declared keys. Finally, 

Group-by queries generate provenance predicates based on 

the grouping attribute(s). The command to create a new 

SQL transformation is similar to the command shown in 

Section 8.1, except followed by a SQL query, whose from 

clause must refer to already-defined tables. The steps 

performed by the Panda Layer are also similar to those 

outlined in Section 8.1; forward filters are never needed 

since SQL queries cannot produce many-many 

transformations. 

When workflows are created and run, Panda stores 

everything needed to support selective refresh: provenance 

predicates and intermediate data sets for backward tracing; 

transformations and forward filters for forward 

propagation. The Panda system assumes that all 

transformations, provenance, and workflows satisfy the 

requirements specified in this paper. Automatically 

detecting when the requirements are satisfied—

particularly the most interesting requirement of workflow 

safety is an important area of future work. Under the 

assumption of all requirements being satisfied, Panda 

supports selective refresh using the exact algorithms given 

in this paper. 

 

4 Experimental results 

 

We implemented our approach as a distributed online 

performance analysis tool within the ASKALON 

programming and computing environment for the Grid. 

We implemented P-C and P-SC correlators in Python as 

WSRF-compliant Web services exposing all unprocessed 

events as reference properties. We translate our formal rule 

correlation algebra to a lower level open source correlation 

engine called the Simple Event Correlator. 

We employ the PyGnuplot module that is a Python 

wrapper to the Gnuplot program to display two different 

kinds of execution graphs in real time, as presented in this 

section. We describe experiments of applying our tool for 

online analysis of the main overheads, using the WIEN2k 

workflow. We chose a problem case that we solved using 

193 parallel k-points and a problem size of 8.5, which 

represents the number of plane waves that is equal to the 

size of the eigenvalue problem (that is, the size of the 

matrix to be diagonalized). 

We created three groups of peers, one for each city 

location. The group in Innsbruck consists of four P-Cs and 

one P-SC, whereas in Linz and Salzburg, we only started 

one P-SC as we only had one Grid site available. We 

elected the Innsbruck P-SC as the coordinator. 

The first histogram in Figure 2 illustrates a generic 

technique that we use to represent the major online phases 

that occur during the workflow execution. We defined for 

all overheads a performance contract membership function 

with a low step threshold that generates a contract variable 

with a critical value at every polling instance (we disabled 

the rescheduling action). The horizontal line indicates the 

overhead that holds at any execution instance, whereas the 

vertical lines are drawn for readability purposes only. The 

histogram shows that at the beginning of the execution, we 

experienced some delay due to the operations performed 

by the middleware services, more precisely the Resource 

Broker to retrieve the list of available Grid sites and the 

Scheduler to compute the mapping of the workflow onto 

the Grid sites. One characteristic of this workflow is that 

the number of activities in the parallel regions is unknown 

until the first activity completes its execution. Since this 

cardinality port is statically unknown, the Scheduler 

assumed one activity in each case and serialized all 

workflow activities onto one Grid site. After another 

preparatory step to create remote directory structures 

required to run the legacy applications that implement the 

workflow activities, the Enactment Engine submitted the 

first activity and therefore added some queuing overhead. 

After this first activity completed, the output files were 

broadcasted to all sites, which added a small data transfer 

overhead. 

 

FIGURE 2 Online overhead histogram 

 

After the cardinality port was instantiated, a 

rescheduling event was triggered upon contract violation, 

and the Scheduler mapped the new workflow onto the Grid 

using the Heterogeneous Earliest Finish Time heuristic 

which added a corresponding overhead. Thereafter, all 

193activities were submitted in parallel, since the number 

of processors available on the Grid test bed was large 

enough to accommodate them. Since our Grid contains 

heterogeneous processors, some of the activities 

completed before the others, which produced a slight load 

imbalance. As lapw1_k is the most time-consuming 

activity type of the workflow, we did not experience any 

significant overhead during this phase, which means that 

the workflow was performing a useful computation. After 

this positive execution phase, a large number of files had 

to be gathered onto one single site where a small activity 
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called lapp1_fermi processed them, which caused a rapid 

increase in the severity of the data transfer. 

Figure 3 depicts another online-generated histogram 

that represents the aggregated severity of each analysed 

over-head at every time instance during execution. The last 

four sites in our Grid test bed are workstation networks that 

are automatically restarted in Linux Grid mode during 

night, weekend, and public holidays and are manually 

rebooted by students and lecturers during the weekdays in 

Windows mode for their laboratory classes when they are 

no longer available for our Grid experiments. After this 

first positive phase in the workflow execution, we decided 

to exploit the dynamic characteristic of our Grid test bed 

and removed the availability of the last four Grid sites by 

manually turning off the workstations that run the GRAM 

gatekeepers. This eliminated 51 per cent from the total 

number of available processors, and as a consequence, the 

Resource Broker created an appropriate event signalling 

that at time instance, an important number of 

computational resources had been lost. The arrival of the 

(simplified) event and, therefore, the serialization 

overhead, which indicated that some of the lapw2_k 

parallel activities had to wait in the queue and were 

executed sequentially due to the lack of available Grid sites. 

 

FIGURE 3 Online overhead severity histogram 

 

Our tool is able to automatically generate real-time 

graphs that represent the chain of events that led to this 

serialization overhead using the Pydot wrapper to the 

GraphViz program, as illustrated in Figure 4. At the same 

time, our tool can automatically produce an online over-

head correlation tree for any workflow region at any 

execution instance. Figure 5 shows this tree for the 

workflow region indicating that 76.6 per cent of its time is 

due to the total identified overhead, which is further split 

into five overheads: queuing, load imbalance, job 

preparation, data transfer, and serialization, each of them 

with its own severity value. 

 

FIGURE 4 Overhead severities for various optimizations. 

 

 

FIGURE 5 Runtime comparison for various optimizations 

 

6 Conclusions 

 

In this paper, we presented a systematic analysis model 

consisting of a theoretical ideal execution time and a 

detailed hierarchy of overheads that help the application 

developers understand the sources of bottlenecks that 

affect the distributed execution of scientific workflows in 

heterogeneous Grid infrastructures. We carefully defined 

the overheads to be as little overlapping as possible, which 

gives us an important indication of whether any 

performance loss remained unidentified. We adjusted 

well-known normalized metrics from parallel processing 

to the Grid computing scope, including overhead severity, 

speed-up, and efficiency, which are invaluable parameters 

to be considered before scheduling when the efficient use 

of resources is an important issue. 

We implemented our approach as a distributed online 

performance analysis tool within the Grid programming 

and computing environment. We proposed a distributed 

super architecture for performance analysis, in which 

individual peers local to Grid sites correlate large numbers 

of events to find small sets of meaningful overheads at a 

higher level of abstraction. To the best of our knowledge, 

this is the first attempt of applying the event correlation 

technology, highly successful in the networking field, to 

the performance analysis of workflow applications in Grid 

environments. Additionally, we extended the current best 

effort practice in executing scientific Grid workflows by 
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defining performance contracts as QoS parameters to be 

enforced during execution through event-correlation-

based fuzzy logic rules. We illustrated experiments for the 

postmortem and online analysis of two real-world 

workflow applications with a dynamic structure (that is, 

statically unknown before the execution) in a real and 

dynamic Grid environment. The postmortem analysis 

presents the advantage of detail and rigor through 

repetitive executions and measurements, whereas the 

online analysis is invaluable for runtime adaptation, QoS 

enforcement, and steering. We learned that the 

serialization of independent activities, load imbalance, job 

preparation and management, and transfer of large 

numbers of data dependencies are the most severe 

overheads for our case-study applications that have to be 

carefully tuned for achieving good speedup and the 

efficient use of Grid resources. In this context, we 

introduced several generic optimization and tuning 

techniques including workflow partitioning, data archiving, 

data collection streaming, and runtime steering 
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