

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

401
Information and Computer Technologies

Data oriented workflow using semantic technologies

Hui Bu*, Ran Liu

School of Software, North China University of Water Resources and Electric Power, China

Received 1 March 2014, www.cmnt.lv

Abstract

Scientific workflows are a topic of great interest in the Grid community that sees in the workflow model an attractive paradigm for

programming distributed wide area Grid infrastructures. Scientific workflows have recently emerged as a new paradigm for scientists

to formalize and structure complex and distributed scientific processes to enable and accelerate many scientific discoveries. In contrast

to business workflows, which are typically control flow oriented, scientific workflows tend to be dataflow oriented, introducing a new

set of requirements for system. In this paper, we consider a general workflow setting in which input data sets are processed by a graph

of transformations to produce output results. Our goal is to perform efficient selective refresh of elements in the output data, i.e.,

compute the latest values of specific out-put elements when the input data may have changed. The data provenance is investigated to

be used to enable efficient refresh. The proposed approach is based on capturing one level data provenance at each transformation

when the workflow is run initially. Then at refresh time provenance is used to determine (transitively) which input elements are

responsible for given output elements, and the workflow is rerun only on that portion of the data needed for refresh. The reported

preliminary experimental results are developed on the overhead of provenance capture, and on the crossover point be-tween selective
refresh and full workflow computation development.

Keywords: scientific workflows, scientific workflow management system, semantic technologies

1 Introduction

Scientific workflows have recently emerged as a new

paradigm for scientists to integrate, structure, and

orchestrate a wide range of local and remote

heterogeneous services and software tools into complex

scientific processes to enable and accelerate many

scientific discoveries. Significant scientific advances are

increasingly achieved through complex sets of

computations and data analyses. These computations may

com-prise thousands of steps, where each step might

integrate diverse models and data sources that different

groups develop. The applications and data might be also

distributed in the execution environment. The assembly

and management of such complex distributed

computations present many challenges, and increasingly

ambitious scientific inquiry is continuously pushing the

limits of current technology.

Workflows have recently emerged as a paradigm for

representing and managing complex distributed scientific

computations, accelerating the pace of scientific progress.

Scientific workflows orchestrate the dataflow across the

individual data transformations and analysis steps, as well

as the mechanisms to execute them in a distributed

environment. Each step in a workflow specifies a process

or computation to be executed according to the data flow

and dependencies among them. The representation of these

computational workflows contains many details required

to carry out each analysis step developed within the

context of an earthquake science application.

*Corresponding author e-mail: buhuiemail@126.com

Workflow systems exploit these explicit

representations of complex computational processes at

various levels of abstraction to manage their life cycle and

automate their execution. In addition to automation,

workflows can provide the information necessary for

scientific reproducibility, result derivation, and result

sharing among collaborators. By providing automation

and enabling reproducibility, they can accelerate and

transform the scientific analysis process.

This traditional best effort execution model commonly

does not fully consider the dynamic and course-grain

nature of Grid environments dominated by a broad set of

performance overheads such as large latencies (several

seconds), unpredictable queuing times, sudden

unavailability of existing resources, external load on

shared-memory computers, unexpected jobs on shared

local queues, and inaccurate predictions for new processor

architectures, which can severely deteriorate the workflow

execution that is likely to deviate from the expected

schedules. In addition, although the Grid provides in

theory an unlimited amount of compute power, currently

existing Grid test beds offer a limited amount of high-

performance resources that are important to be used

efficiently.

Over the years, performance analysis tools have

emerged as an important means for detecting bottlenecks

in high performance computing applications for which

optimizing compilers rarely deliver satisfactory results.

Grid computing is sensitive to similar problems. Running

workflows based on pure scheduling techniques without

understanding what really happens during the execution

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

402
Information and Computer Technologies

may easily lead to poor execution times and inefficient

usage of computing resources. Performance analysis tools

are there-fore an important asset for understanding the

behaviour and reasons for performance losses required to

improve runtime middleware environments and,

ultimately, the workflow executions in dynamic Grid

infrastructures. Such a tool for high-level performance

analysis of scientific Grid work-flows is currently missing.

FIGURE 1 a) The position of an SWFMS within a software stack; b) zoom-in view of the reference architecture for SWFMSs

In this paper, we propose a systematic approach to

building a tool for performance analysis and steering of

scientific workflow applications in heterogeneous and

distributed Grid environments. We introduce a theoretical

reference parameter, called ideal execution time, that

provides a realistic bound for the lowest (that is, “fastest”)

execution time achievable by a workflow in a certain Grid

infrastructure. To address this issue, we propose the first

reference architecture for SWFMSs based on a

comprehensive survey of the literature and identification

of key requirements. According to the proposed reference

architecture, we further propose a service-oriented

architecture for the VIEW system. Leveraging SOA,

VIEW consists of six loosely coupled service components,

each of which corresponds to a functional component that

is identified in the reference architecture, whose

functionality is exposed as a Web service. We

implemented the VIEW system to validate the feasibility

of the proposed architectures. We present a VIEW based

scientific workflow application system (SWFAS), to

demonstrate the capabilities of VIEW in support of user

interaction intensive, visualization intensive, and compute

intensive scientific workflows in a heterogeneous and

distributed computing environment.

The rest of the paper is organized as follows. Section 2

identifies the related work of the proposed method. Section

3 proposes our reference architecture for SWFMSs.

Section 4 we evaluate five representative SWFMSs using

the proposed reference architecture. Finally, Section 5

concludes the paper and comments on future work.

2 Related works

Although the term “scientific workflows” were first coined

by Vouk and Singh in 1996 [1] for workflow applications

in scientific PSEs, only recently, there is an increasing

momentum for the research and development of SWFMSs

and their applications, due to the increasingly demanding

requirements of many compute-intensive and data

intensive scientific applications, enabled by the underlying

advances of computing technologies, notably Services

computing [2], Grid computing [3], and Cloud computing

[4]. Scientific workflows leverage existing techniques

developed for business workflows but deviate from them

as a result of a different set of requirements raised from a

wide range of science and engineering problems [5]. While

business workflows are control flow oriented with the

mission of carrying out business logic to achieve a

business goal, scientific workflows tend to be dataflow

oriented and aimed at enabling, facilitating, and speeding

up the derivation of scientific results from raw data sets.

There has been a large body of work in lineage and

provenance over the past two decades. Surveys are

presented in, e.g., [6-8], and formal models for provenance

are presented in, e.g., [9-12]. Provenance in the context of

schema mappings is studied in [13-15]. None of these

papers exploits provenance for selective refresh in a

general workflow environment. There also has been a large

body of work in incremental view maintenance: the

efficient propagation of base data modifications, usually in

a relational setting [16, 17]. Our work considers general

workflows, rather than relational views. Also, in contrast

to the view maintenance problem, selective refresh

considers efficiently computing the up-to-date value of

individual output elements, rather than keeping the entire

view up to date by propagating changes made to the base

data. Reference [18] provides a framework to explain

“missing” answers in queries. There is some high-level

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

403
Information and Computer Technologies

similarity between how explanations provided by their

framework are created and how we support efficient

refresh using data provenance. However, the details are

quite different, and their framework supports SQL queries

rather than general workflows. Reference [19] considers

the problem of “update exchange” be-tween data peers

linked by mappings. A problem they address is

determining when a derived data element is no longer valid,

but they do not provide a means to selectively refresh out-

of-date values. Also, transformations in [19] are restricted

to those that can be expressed in data log.

3 Incorporating semantic to data oriented workflow

Although the reference architecture proposed by WfMC,

has been widely used for BWFMSs, this reference

architecture does not satisfy key requirements R1-R5 for

SWFMSs identified in the previous section. In this section

we propose a reference architecture for SWFMSs. As

shown in Figure 1b, the reference architecture consists of

four logical layers, seven major functional subsystems,

and six inter-faces. Figure 1a shows a typical software

stack of a scientific workflow application: on top of an

operating system, a data management system and a service

management are used by an SWFMS for data management

and service management, respectively. An SWFAS is

developed over an SWFMS by the introduction of

additional domain specific application data and

functionalities.

3.1 DIFFERENT LAYERS OF THE PROPOSED

METHOD

The first layer is the Operational Layer, which consists of

a wide range of heterogeneous and distributed data sources,

software tools, services, and their operational

environments, including high-end computing

environments. The separation of the Operational Layer

from other layers isolates data sources, software tools,

services, and their associated high-end computing

environments from the scope of an SWFMS, thus

satisfying requirement R5.

The second layer is called the Task Management Layer.

Tasks are the building blocks of scientific workflows.

Tasks consume input data products and produce output

data products. At the same time, provenance is captured

automatically to record the derivation history of a data

product, including original data sources, intermediate data

products, and the steps that are applied to produce the data

product. This layer abstracts underlying heterogeneous

data into data products, services, and software tools into

tasks, and provides efficient management for data products,

tasks, and provenance metadata. Therefore, the Task

Management Layer satisfies requirements R2, R3, and R4.

Moreover, the separation of the Task Management Layer

from the Operational Layer promotes the extensibility of

the Operational Layer with new services and new high-end

computing facilities, and localizes system evolution due to

hardware or software advances to the interface between the

Operational Layer and the Task Management Layer. The

task-level interoperability requirement (R7: level 1) should

be addressed in this layer.

The third layer is the Workflow Management Layer,

which is responsible for the execution and monitoring of

scientific workflows. At this layer, the building blocks of

a scientific workflow are the tasks provided by the

underlying Task Management Layer. In this layer, an

execution of a scientific workflow is called a workflow run,

which consists of a coordinated execution of tasks, each of

which is called a task run. Therefore, the Workflow

Management Layer addresses requirements R6 and R7.

The separation of the Workflow Management Layer from

the Task Management Layer concerns two aspects as

follows:

1) it isolates the choice of a workflow model from the

choice of a task model, so changes to the workflow

structure do not need to affect the structures of tasks and

2) it separates workflow scheduling from task

execution, thus improves the performance and scalability

of the whole system. The interoperability of workflows

(requirement R7: level 2) has to be addressed by

standardizing workflow models, workflow run models,

and workflow languages.

The fourth layer is the Presentation Layer, which

provides the functionality of workflow design and various

user interfaces and visualizations for all assets of the whole

system. The Presentation Layer has interfaces to each

lower layer (not shown in the figure for simplicity). The

separation of the Presentation Layer from other layers

provides the flexibility of customizing the user interfaces

of the system and promotes the reusability of the rest of

system components for different scientific domains. Thus,

this separation supports requirement R1. The

interoperability of workflows (requirement R7: level 2)

should be addressed by standardizing the workflow layout

(e.g., look-and-feel) at this layer.

3.2 MIDDLEWARE OVERHEAD

The middleware overhead is due to the work performed by

the middleware services to support the proper execution

and completion of the workflow, which we further divide

into several components based on the service functionality.

Resource brokerage. This represents the time required

by the Resource Broker to query the information service

and provide to the Scheduler the processors and activity

deployments needed to execute the application. Addition-

ally, this overhead has an important latency component

(few seconds), mostly due to the mutual host

authentication. This service latency is a common overhead

component present in all our middleware services.

Performance prediction. This represents the time to

provide forecast information about the execution time of

individual activities on the Grid sites indicated by the

Scheduler, for example, using a polynomial fitting

heuristic based on historical or training data.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

404
Information and Computer Technologies

Scheduling. This represents the time to appropriately

map the workflow activities onto the Grid resources, which

includes the following two sub overheads:

1) a scheduling algorithm, which represents the time

required to compute a schedule (often using time-

consuming optimization heuristics if the scheduling

problem is NP-complete), and

2) rescheduling, which represents the time needed to

make a new scheduling decision, for example, because of

a performance contract violation or if the workflow

changes its runtime structure.

3.3 SUBSYSTEMS

The seven major functional subsystems correspond to the

key functionalities required for an SWFMS. Although the

reference architecture allows the introduction of additional

subsystems and their features in each layer, this paper only

focuses on the major subsystems and their essential

functionalities.

The Workflow Design subsystem is responsible for the

design and modification of scientific workflows.

Workflow Design produces workflow specifications

represented in a workflow specification language that

supports a particular workflow model. One can design and

modify a scientific workflow using a standalone or Web-

based workflow designer, which supports both graphical-

and scripting-based design interfaces. The interoperability

of workflows (requirement R7: level 2) should be

addressed in this subsystem by the standardization of

workflow languages.

The Presentation and Visualization subsystem is very

important especially for data-intensive and visualization-

intensive scientific workflows, in which the presentation

of workflows and visualization of various data products

and provenance metadata in multi-dimension is the key to

gain insights and knowledge from large amount of data and

metadata. These two subsystems are located at the

Presentation Layer to meet requirement R1. In this

subsystem, the interoperability of workflows (requirement

R7: level 2) should be addressed by the standardization of

scientific workflow layout.

The Workflow Engine subsystem is at the heart of the

whole system and is the subsystem that provides

management and execution environments for workflow

runs. The Workflow Engine creates and executes

workflow runs according to a workflow run model, which

defines the state transitions of each scientific workflow

and its constituent task runs. The interoperability of

workflows (requirement R7: level 2) should be addressed

by the standardization of interfaces, workflow models, and

workflow run models, so that a scientific workflow or its

constituent subworkflows can be scheduled and executed

in multiple Workflow.

Engines that are provided by various vendors. In

SWFMSs, multiple Workflow Engine subsystems can be

distributed, and each Workflow Engine can execute

several workflows in parallel.

The Workflow Monitoring subsystem meets

requirement R6 and is in charge of monitoring the status

of workflow execution during workflow runtime and if

failures occur, provides tools for failure handling [18].

The Task Management subsystem addresses

heterogeneity and distribution issues (requirement R3) and

provides management and execution environment for tasks,

according to a task model and task run model, respectively.

The interoperability of tasks between various workflow

environments (requirement R7: level 1) can be addressed

in this subsystem.

The Provenance Management subsystem meets

requirement R2 and is mainly responsible for the

management of scientific workflow provenance metadata,

including their representation, storage, archival, searching,

and visualization. The Data Product Management

subsystem meets requirement R4 and is mainly

responsible for the management of heterogeneous data

products. One key challenge for data product management

is the heterogeneous and potentially distributed nature of

data products, making efficient access and movement of

data products an important research problem. The

interoperability of data products between various

workflow environments (requirement R7: level 1) can be

addressed in this subsystem.

3.4 SYSTEM PROTOTYPE

We have built a prototype system that implements all

features and algorithms presented in this paper. This

system, built initially to support refresh, has been evolving

into a more ambitious sys-tem we call Panda (for

Provenance and Data), supporting several other aspects of

provenance and data in addition to refresh [17].

In this paper we focus our system description on

features relevant to refresh. For the time being, all data sets

handled by Panda are encoded in relational tables, but as

we have seen, our formal under-pinnings and algorithms

do not rely on the relational model. The high-level

architecture of the Panda system. The main backend is a

SQLite server, storing all data sets, relational (SQL)

transformations, provenance, and workflow information.

The Panda system supports “opaque” transformations

programmed in Python; they are stored separately in files.

Users interact with Panda through a simple command-

line inter-face; we intend to build a GUI in the near future.

There are three types of user commands:

1) Creating or modifying input data sets;

2) Creating transformations that generate newly-

defined data sets from existing ones, to build up workflows;

3) Refresh commands.

The Panda Layer processes all user commands: it

stores workflow graphs and their transformations, creates

and maintains auxiliary provenance tables, generates

provenance predicates and forward filters for output

elements, and runs the refresh algorithms.

The Panda system also supports transformations

specified as SQL queries, including

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

405
Information and Computer Technologies

queries/transformations involving multiple input tables.

Provenance predicates are created automatically for SQL

transformations, following known definitions and

techniques [5, 7, 10]: Single table Select statements are

one-one, so their output provenance predicates can select

on declared keys from the input data set. Multi-table Select

statements generate provenance predicates for each input

table separately, again relying on declared keys. Finally,

Group-by queries generate provenance predicates based on

the grouping attribute(s). The command to create a new

SQL transformation is similar to the command shown in

Section 8.1, except followed by a SQL query, whose from

clause must refer to already-defined tables. The steps

performed by the Panda Layer are also similar to those

outlined in Section 8.1; forward filters are never needed

since SQL queries cannot produce many-many

transformations.

When workflows are created and run, Panda stores

everything needed to support selective refresh: provenance

predicates and intermediate data sets for backward tracing;

transformations and forward filters for forward

propagation. The Panda system assumes that all

transformations, provenance, and workflows satisfy the

requirements specified in this paper. Automatically

detecting when the requirements are satisfied—

particularly the most interesting requirement of workflow

safety is an important area of future work. Under the

assumption of all requirements being satisfied, Panda

supports selective refresh using the exact algorithms given

in this paper.

4 Experimental results

We implemented our approach as a distributed online

performance analysis tool within the ASKALON

programming and computing environment for the Grid.

We implemented P-C and P-SC correlators in Python as

WSRF-compliant Web services exposing all unprocessed

events as reference properties. We translate our formal rule

correlation algebra to a lower level open source correlation

engine called the Simple Event Correlator.

We employ the PyGnuplot module that is a Python

wrapper to the Gnuplot program to display two different

kinds of execution graphs in real time, as presented in this

section. We describe experiments of applying our tool for

online analysis of the main overheads, using the WIEN2k

workflow. We chose a problem case that we solved using

193 parallel k-points and a problem size of 8.5, which

represents the number of plane waves that is equal to the

size of the eigenvalue problem (that is, the size of the

matrix to be diagonalized).

We created three groups of peers, one for each city

location. The group in Innsbruck consists of four P-Cs and

one P-SC, whereas in Linz and Salzburg, we only started

one P-SC as we only had one Grid site available. We

elected the Innsbruck P-SC as the coordinator.

The first histogram in Figure 2 illustrates a generic

technique that we use to represent the major online phases

that occur during the workflow execution. We defined for

all overheads a performance contract membership function

with a low step threshold that generates a contract variable

with a critical value at every polling instance (we disabled

the rescheduling action). The horizontal line indicates the

overhead that holds at any execution instance, whereas the

vertical lines are drawn for readability purposes only. The

histogram shows that at the beginning of the execution, we

experienced some delay due to the operations performed

by the middleware services, more precisely the Resource

Broker to retrieve the list of available Grid sites and the

Scheduler to compute the mapping of the workflow onto

the Grid sites. One characteristic of this workflow is that

the number of activities in the parallel regions is unknown

until the first activity completes its execution. Since this

cardinality port is statically unknown, the Scheduler

assumed one activity in each case and serialized all

workflow activities onto one Grid site. After another

preparatory step to create remote directory structures

required to run the legacy applications that implement the

workflow activities, the Enactment Engine submitted the

first activity and therefore added some queuing overhead.

After this first activity completed, the output files were

broadcasted to all sites, which added a small data transfer

overhead.

FIGURE 2 Online overhead histogram

After the cardinality port was instantiated, a

rescheduling event was triggered upon contract violation,

and the Scheduler mapped the new workflow onto the Grid

using the Heterogeneous Earliest Finish Time heuristic

which added a corresponding overhead. Thereafter, all

193activities were submitted in parallel, since the number

of processors available on the Grid test bed was large

enough to accommodate them. Since our Grid contains

heterogeneous processors, some of the activities

completed before the others, which produced a slight load

imbalance. As lapw1_k is the most time-consuming

activity type of the workflow, we did not experience any

significant overhead during this phase, which means that

the workflow was performing a useful computation. After

this positive execution phase, a large number of files had

to be gathered onto one single site where a small activity

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

406
Information and Computer Technologies

called lapp1_fermi processed them, which caused a rapid

increase in the severity of the data transfer.

Figure 3 depicts another online-generated histogram

that represents the aggregated severity of each analysed

over-head at every time instance during execution. The last

four sites in our Grid test bed are workstation networks that

are automatically restarted in Linux Grid mode during

night, weekend, and public holidays and are manually

rebooted by students and lecturers during the weekdays in

Windows mode for their laboratory classes when they are

no longer available for our Grid experiments. After this

first positive phase in the workflow execution, we decided

to exploit the dynamic characteristic of our Grid test bed

and removed the availability of the last four Grid sites by

manually turning off the workstations that run the GRAM

gatekeepers. This eliminated 51 per cent from the total

number of available processors, and as a consequence, the

Resource Broker created an appropriate event signalling

that at time instance, an important number of

computational resources had been lost. The arrival of the

(simplified) event and, therefore, the serialization

overhead, which indicated that some of the lapw2_k

parallel activities had to wait in the queue and were

executed sequentially due to the lack of available Grid sites.

FIGURE 3 Online overhead severity histogram

Our tool is able to automatically generate real-time

graphs that represent the chain of events that led to this

serialization overhead using the Pydot wrapper to the

GraphViz program, as illustrated in Figure 4. At the same

time, our tool can automatically produce an online over-

head correlation tree for any workflow region at any

execution instance. Figure 5 shows this tree for the

workflow region indicating that 76.6 per cent of its time is

due to the total identified overhead, which is further split

into five overheads: queuing, load imbalance, job

preparation, data transfer, and serialization, each of them

with its own severity value.

FIGURE 4 Overhead severities for various optimizations.

FIGURE 5 Runtime comparison for various optimizations

6 Conclusions

In this paper, we presented a systematic analysis model

consisting of a theoretical ideal execution time and a

detailed hierarchy of overheads that help the application

developers understand the sources of bottlenecks that

affect the distributed execution of scientific workflows in

heterogeneous Grid infrastructures. We carefully defined

the overheads to be as little overlapping as possible, which

gives us an important indication of whether any

performance loss remained unidentified. We adjusted

well-known normalized metrics from parallel processing

to the Grid computing scope, including overhead severity,

speed-up, and efficiency, which are invaluable parameters

to be considered before scheduling when the efficient use

of resources is an important issue.

We implemented our approach as a distributed online

performance analysis tool within the Grid programming

and computing environment. We proposed a distributed

super architecture for performance analysis, in which

individual peers local to Grid sites correlate large numbers

of events to find small sets of meaningful overheads at a

higher level of abstraction. To the best of our knowledge,

this is the first attempt of applying the event correlation

technology, highly successful in the networking field, to

the performance analysis of workflow applications in Grid

environments. Additionally, we extended the current best

effort practice in executing scientific Grid workflows by

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 401-407 Bu Hui, Liu Ran

407
Information and Computer Technologies

defining performance contracts as QoS parameters to be

enforced during execution through event-correlation-

based fuzzy logic rules. We illustrated experiments for the

postmortem and online analysis of two real-world

workflow applications with a dynamic structure (that is,

statically unknown before the execution) in a real and

dynamic Grid environment. The postmortem analysis

presents the advantage of detail and rigor through

repetitive executions and measurements, whereas the

online analysis is invaluable for runtime adaptation, QoS

enforcement, and steering. We learned that the

serialization of independent activities, load imbalance, job

preparation and management, and transfer of large

numbers of data dependencies are the most severe

overheads for our case-study applications that have to be

carefully tuned for achieving good speedup and the

efficient use of Grid resources. In this context, we

introduced several generic optimization and tuning

techniques including workflow partitioning, data archiving,

data collection streaming, and runtime steering

References

[1] Berman et al. 2005 New Grid Scheduling and Rescheduling Methods

in the GrADS Project Parallel Programming 33(2-3) 209-29

[2] Deelman E et al 2003 Mapping Abstract Complex Workflows onto
Grid Environments Grid Computing 1(1) 25-39

[3] Mayer A, McGough S, Furmento N, Lee W, Newhouse S, Darlington

J 2003 ICENI Dataflow and Workflow: Composition and Scheduling
in Space and Time Proc. UK e-Science All Hands Meeting 627-34

[4] Taylor I, Shields M, Wang I, Rana R 2003 Triana Applications

within Grid Computing and Peer to Peer Environments Grid
Computing 1(2) 199-217

[5] Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M,

Carver T, Glover K, Pocock M, Wipat A, Li P 2004 Taverna: A Tool
for the Composition and Enactment of Bioinformatics Workflows

Bioinformatics 20(17) 3045-54

[6] Erwin D W 2002 UNICORE - a Grid Computing Environment
Concurrency and Computation: Practice and Experience 14(13-15)

1395-410

[7] Fahringer T, et al 2007 Askalon: A Development and Grid Comput-
ing Environment for Scientific Workflows Workflows for e-Science:

Scientific Workflows for Grids, I J Taylor, E Deelman, D B Gannon,

M Shields eds Springer http://www.askalon.org
[8] Alves A, et al. 2006 Web Services Business Process Execution

Language, Specification 2, Organization for the Advancement of

Structured Information Standards
ftp://www6.software.ibm.com/software/developer/library/ws-

bpel11.pdf

[9] Wolski R, Spring N T, Hayes J 1999 The Network Weather Service:
A Distributed Resource Performance Forecasting Service for

Metacomputing Future Generation Computer Systems 15(5-6) 757-

68

[10] Czajkowski K, et al 2001 Grid Information Services for Distributed
Resource Sharing Proc 10th IEEE Int’l Symp High Performance

Distributed Computing (HPDC)

[11] D Nurmi, Mandal A, Brevik J, Koelbel C, Wolski R, Kennedy K
2006 Evaluation of a Workflow Scheduler Using Integrated

Performance Modelling and Batch Queue Wait Time Prediction Proc

ACM/IEEE Supercomputing Conf (SC)
[12] DAGMan: Directed Acyclic Graph Manager 2007 Univ

ofWisconsin,Madison http://www.cs.wisc.edu/condor/dagman/

Condor Project
[13] Vaarandi R 2002 SEC—A Lightweight Event Correlation Tool Proc.

Workshop IP Operations and Management (IPOM)

[14] Liu G, Mok A K, Yang E J 1999 Composite Events for Network
Event Correlation Proc Sixth IFIP/IEEE Int’l Symp Integrated

Network Management (IM)

[15] The Austrian Grid Consortium 2007 http://www.austriangrid.at
[16] PBS: The Portable Batch System 2007 http://www.openpbs.org

[17] Sun Microsystems Sun Grid Engine 2007

http://gridengine.sunsource.net/
[18] Czajkowski K 1998 A Resource Management Architecture for

Metacomputing Systems Proc Fourth Workshop Job Scheduling

Strategies for Parallel Processing 62-82
[19] Foster I, Kesselman C 1997 Globus: A Metacomputing Infra-

structure Toolkit Supercomputer Applications and High

Performance Computing 11(2) 115-28

Authors

Hui Bu, born in August, 1979, Zhengzhou, Henan Province, China

Current position, grades: master, a lecturer in School of Software, North China University of Water Resources and Electric Power, China.
University studies: computer science and technology.
Scientific interest: computer software, database and software test automation.
Publications: 12 papers.

Ran Liu, born in December, 1979, Zhengzhou, Henan Province, China

Current position, grades: master, a lecturer in School of Software, North China University of Water Resources and Electric Power, China.
University studies: Computer science and technology.
Scientific interest: computer software, database and computer network.
Publications: 12 papers.

