

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 415-418 Liao Lijuan

415
Information and Computer Technologies

Design of real-time clock based on ARM embedded system

Lijuan Liao*

College of Computer Science and Technology, Taiyuan University of Technology, 030024, China

Received 1 March 2014, www.cmnt.lv

Abstract

Real-time clock of ARM processor has disadvantages such as dependence on the processor, low interrupt level and unadjustable

accuracy. Linux embedded system based on ARM processor is provided with independent real-time clock using X1227 real-time clock

chip. In addition, the work presents transplant of uCLinux system in S3C2440A, procedure of system boot loader and frame of Linux
character device driver, thus achieving design of RTC driver based on I2C protocol of uCLinux system.

Keywords: S3C2440A, RTC, X1227

1 Introduction

Real-time system (RTS) is that correct calculation depends

on logical validity of procedure and resulting time. If time

constraint of system is not satisfied, the system will go

wrong. Then real-time clock is applied to RTS. Software

counting can be used to realize function of real-time clock

by the timer in ARM processor. However, it is not

universal because of the disadvantages including data loss

after power down, low interrupt level, unadjustable

accuracy, etc. Real-time clock, with independent crystal

oscillator and power supply system, can constantly run,

thus providing reliable time for RTS and avoiding trouble.

By using I2C bus, X1227 real-time clock chip has wide

supply voltage range, high interrupt level and adjustable

accuracy, thus promoting achievement and correct

operation of RTS.

2 S3C2440A microprocessor

S3C2440A microprocessor of Samsung Corporation is

applied to embedded system using a new bus structure—
Advanced Micro controller Bus Architecture (AMBA).

The CPU is a 16/32-bit ARM920T RISC processor

designed by Advanced RISC Machines (ARM).

ARM920T has a cache architecture consisting of MMU,

AMBA BUS and Harvard. The architecture has

independent 16KB instruction and 16KB data caches

comprising eight-byte lines. S3C2440A is provided with a

complete set of common system peripherals to reduce cost

of the whole system and additional components [1].

* Corresponding author e-mail: lijuantaiyuan@126.com

The real-time clock integrated in S3C2440A is

controlled by INT_RTC and INT_ADC, which have the

lowest priority in all the 26 interrupt sources. Besides, this

real-time clock is not universal, and cannot run with

support of 3.3V voltage and microprocessor. Therefore,

external RTC chip X1227 is applied.

3 RTC chip X1227

3.1 INTERNAL STRUCTURE OF X1227

X1227 is a real-time clock with functions of

clock/calendar, CPU monitoring circuit and two-way

query and alarm. Dual port clock and alarm register can

ensure the accuracy of clock work, even during read and

write operation. Clock/calendar can be provided with

functions of controlling and reading by registers. Clock

can precisely display the time by the unit of second,

minute, hour, day, week, month and year using a 32.768

kHz crystal with low cost. There is a watchdog timer in

X1227. If the watchdog timer overtimes, the reset pin

RESET will be activated. X1227 has an input pin VBACK,

using a non-rechargeable battery as the back-up power. A

4K-bit EEPROM array in X1227, used as configuration

data memory, will be safe and not affected when the main

and standby power supplies lose efficiency. Figure 1

shows block diagram of X1227 consisting of control

registers, SRAM, EEPROM, I2C serial interface decoder,

status registers, standard crystal, watchdog timer, etc [2].

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 415-418 Liao Lijuan

416
Information and Computer Technologies

FIGURE 1 Block diagram of X1227

3.2 MAIN FUNCTIONS OF X1227

RTC of X1227 uses a external quartz crystal with a

frequency of 32.768 kHz to keep accuracy of year, month,

day, week, hour, minute and second. RTC, with century

byte, can adjust leap years, the months less than 31 days,

and the form of time by one bit. After format conversion,

data of CCR in form of BCD code should be read and

written by I2C interface in X1227. There are two alarm

registers in X1227. If the time set by alarm register is the

same with RTC, the corresponding position of SR register

in CCR will be set to 1, thus realizing timing alarm. There

are four KEEPROMs in X1227. They will be used to store

key data of self-check program and system when system is

power off. WatchDog can be set to control the shortest

time of feeding the dog by writing WD1, WD0 of BL

register in CCR. When the procedure comes into endless

loop because of external disturbance, and timing register

reaches maximum, WatchDog will emit a signal to reset

SCM, thus the procedure is in control again.

X1227 is connected with S3C2440A using I2C

interface (See Figure 2). Serial data pin (SDA), as a bi-pin

connected with external 330Ω pull-up resister, is used to

input and output data to the device. Input of serial clock

pin (SCL) is used to time the whole data of input and

output devices, thus providing serial clock signals of data

transmission. VCC and VBACK inputs are received by the

power control circuit of X1227. If VCC< VBACK-0.2V,

then the power will be switched to VBACK by the power

control circuit; if VCC＞VBACK, then it will return to

VCC.

FIGURE 2 X1227 connected with S3C2440A

4 Transplant of uclinux system to S3C2440A

4.1 UCLINUX SYSTEM

Uclinux (micro-control linux), as a Linux system in micro-

control field, is a major product of Lineo Corporation and

a model for embedded Linux of open source. Aiming at the

target processor of embedded system without MMU

(Memory Management Unit), uclinux is designed and

successfully transplanted to platforms. The users of

uclinux operation system can apply the whole Linux API

functions based on GNU general license. After clipping

and optimization, uclinux forms an embedded Linux with

high optimization and compact codes. Uclinux has

advantages such as small size, stability, good transplant,

excellent network function, perfect support to all the file

systems and abundant API functions. Therefore, uclinux

has good compatibility with Linux. API functions of

uclinux, except fork(), are the same as those of standard

Linux [3].

4.2 ESTABLISHMENT OF CROSS-COMPILING

ENVIRONMENT

Cross-compiling environment used for target machine is

established in PC because of limited storage of common

embedded system. The executable files, got from

compilation, connection and location of procedure in PC,

are loaded to the target machine through serial port. Cross-

compiling environment is required to establish kernel

header files, binutils, bootstrap gcc, glibc, etc. The work

applies the method as follows. Firstly, GCC is installed in

PC aiming at compiler of ARM (arm-elf-gcc). Secondly,

the configured cross tool chain "arm-elf-tools-

20040427.sh" provided in "www.uclinux.org" is

convenient to use. In the root directory, after adding the

executed authority by running command "#chmod 755

arm-elf-tool-20040427.sh", the script can be operated to

install cross tool chain in correct position. At last, the

address "/user/local/bin" is checked to identify whether the

compiling environment file started with "arm-elf-" is

existed or not. If so, then cross-compiling environment

3.3V

VBack
1

VCC
2

X1
3

X2
4

RESET
5

VSS
6

SDA
7

SCL
8

GPE14

GPE15

RESET

S3C2440A

VCC

VCC

R1

330

32.768k

X1227

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 415-418 Liao Lijuan

417
Information and Computer Technologies

will be successfully installed. The program above is

actually procedure of establishing uclinux library file.

5 Driving X1227 in unlinux system

5.1 SYSTEM BOOTSTRAP ROUTINE

BOOT, as the first running line of code in the chip after

power on, is applied to initialize running environment of

hardware and software in system for application program

operation. System bootstrap routine boots up operation

system and hands the control power over to operation

system core. This operation depends on the type of CPU

core and the resource applied to develop embedded system

software in CPU chip. Figure 3 shows the flow of system

boot loader based on this chip and application program.

Reset

Setup entrance pointer of a program

Set the interrupt vector table

Initial various Peripherals In the chip

Initial object board

Initial different patterns of stack and

registers in CPU

Call the main program

FIGURE 3 Flow of the system boot loader

5.2 DRIVER FRAMEWORK OF LINUX CHARACTER

DEVICE

X1227 as well as alarm clock is set and read by compiling

software. As a hardware device of system running in

Linux, X1227 is operated by drivers in Linux operation

system. The devices in Linux include character and block.

X1227 is a character device. Programs of user mode can

run character devices like common files. Therefore, the

driver of character device type should at least realize

system call functions including open(), release(), read()

and write(). In Linux kernel, X1227 character driver is

designed based on the framework as follows [4].

struct file_operations {

ssize_t(*read)(struct file *, char *, size_t, loff_t *);

sszie_t(* write)(struct file *, const char *,size_t, loff_t *);

int(* ioct1)(struct inode *, struct file *, unsigned int,Unsigned

long);

int(* open)(struct inode *, struct file *);

int(* release)(struct inode *, struct file*);

...};

The driver should realize the following functions:

1) open()

Initialize the devices supported by the driver.

2) release()

Close the devices supported by the driver after use.

3) read()

Read data from character devices by application

program or Linux.

4) write()

Write multiple byte data to character devices.

5) ioctl()

Provide application program with some special

operation which cannot be easily realized by read() and

write() methods.

The above methods derive the functions as follows:

initialization, load and release of hardware devices;

management of equipment including setting real-time

parameter and providing unified operation interface for

devices; reading data of device files obtained from (or

responding to) application program; detecting or

processing device errors.

5.3 DESIGN OF X1227 DRIVER

X1227 can communicate with ARM by I2C bus. Using

signal wires SCL and SDA, I2C bus can achieve data

interaction between devices, thus simplifying occupation

of hardware resources and PCB wiring space. I2C bus

realizes data transmission and command control by timing

signals including start, stop and ACK. If SCL is at the high

level and SDA switches from high to low level, I2C bus

will start sending signals; if SCL is at the high level and

SDA switches from low to high level, it will stop sending

signals; if the device receives 8-bit data, it will send ACK

to the sender. Then the sender will set SDA at the high

level, and the receiver will set SDA at the low level during

responsive clock pulse, thus achieving signal response.

Figure 4 shows start condition, stop condition and ACK of

I2C bus [5].

FIGURE 4 I2C bus

X1227 has slave device addresses including 1010

(access to 4KB EEPROM) and 1101 (access to CCR) used

to control RTC and WatchDog. Figure 5 shows operation

of a byte access including a slave address byte, an address

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 415-418 Liao Lijuan

418
Information and Computer Technologies

word (16 bits) to be accessed and an 8-bit operand. The last

bit of the slave address byte determines this operation. If

the last bit is 1, the reading will be conducted; if 0, writing

will be operated. The communication process of I2C bus

is simulated using I/O interface. Firstly, slave address of

I2C bus is defined to read and write devices by program.

1
1
0

0
1
1

1
0

1 1 1
1
0 0 0 0 0 0 0 0

EEPROM

CCR

START STOP

ACK

Word Address 1 Word Address 0 Data
Write

Read ACK ACK ACK

FIGURE5 Access format of X1227

define RTC_I2C_READ 0xaf //Read the address by I2C bus

define RTC_I2C_WRITE 0xae // Write the address by I2C

bus

RTC driver module applies character devices achieved by

“struct file_operation” framework structure:

static struct file_operations x1227_fops = {

.owner = THIS_MODULE,

.ioctl = x1227_ioctl,

.open = x1227_open,

.release = x1227_release,

};

In this structure, the whole functions are accomplished

by upper call function ioct1 [6]:

int x1227_ioctl(struct inode *inode, struct file *filp,

unsigned int cmd, unsigned long arg)

In the function, reading and writing transmission

commands of cmd are “RTC_RD_TIME” and

“RTC_SET_TIME”; arg is the structure pointer directing

to “struct rtc_time” for time storage. At first, the function

reads transmission command cmd to determine whether

the operation is writing or reading. If the result is reading,

then Function rtc_read() will be called to read data from

the register and keep them in arg; else if writing, then

Function rtc_write() will write data to the register.

Function rtc_read() can be used to read the time and

date in RTC register, achieved by the following function:

rtc_r ead (struct file * filep, cha r * buffer, size_t length)

{ …

Init_Iic() ; / / Initialize I2C bus

RdBy _Iic(0xde, 0x30, & (rdata)) ; / / Read second register

dbu f[0] = rdata ;

RdBy_Iic(0xd e,0x31 , &(rdata)) ; / / Read minute register

dbuf[1] = rdata;

…

RdBy_Iic(0xd e,0x35,&(rdata)) ; / / Read year register

dbuf[5] = rdata;

copy_to_user (buffer,dbu, f6) ; / / Change data from kernel to

user mode

…}

Function rtc_write() is mainly used to set time and date.

The compiled program can be re-compiled using cross-

compiling tool of uclinux for operation in S3C2440A. In

Windows, uclinux kernel, root file system and executed

file are read and written through serial port of

hyperterminal. Basic settings are as follows: baud rate is

115200; data bit number 8; no parity checking; stop bit 1;

no data flow control.

6 Conclusions

RTC is one of the typical applications of I2C in embeded

products. Even if there is no special I2C interface to

control processor chip, I2C bus time sequence will be

simulated by software to achieve communication between

chips with two I/O interface pins. Therefore, RTC is

suitable for embedded devices. The work aims at designing

driver of X1227 clock chip to achieve real-time clock

combined with RTC device driver model in uclinux. The

design realizes real time of system by replacing the

integrated clock in CPU. The designed clock has a good

performance in running and function, thus proving

practicability and stability of this driver design.

References

[1] Samsung Electronics Co Ltd 2004 S3C2440A 32-BIT RISC

Microprocessor User’s Manual Korea Revision 0.12 Samsung

Electronics Co Ltd

[2] Intersil Corporation 2005 2-Wire RTC Real Time
Clock/Calendar/CPU Supervisor with EEPROM X1227 Datasheet

[EB/OL] http://www.intersil.com/

[3] Corbet J, Kroah-Hartman G, Rubini A 2005 Linux Device Drivers
3rd Edition O’Reilly 49-53

[4] Bovet D P 2002 Understanding the Linux Kernel 2nd Edition
O’Reilly

[5] Philips Semiconductors 2003 AN10216-01 I2C Manual 13-7

[6] Nilsson J, Rytterlund D 2000 “Modular Scheduling in Real-Time
Linux” MSc Thesis Department of Computer Engineering Idt

Malardalen University

Author

Lijuan Liao, born in September, 1963, Hengyang, Hunan Province, China

Current position, grades: associate professor in College of Computer Science and Technology, Taiyuan University of Technology, China.
Scientific interests: computer control and embedded technology.
Publications: 20 papers.

