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Abstract 

Fast analysis of electromagnetic scattering problems over a wide incident angle is always a difficult problem in computational 

electromagnetics. Up to the present, almost all of the traditional numerical methods need to solve one discrete angle after another to 

finish calculating this kind of problem. In this paper, we propose a new method, which can fix it effectively by applying compressed 

sensing into method of moments for magnetic field integral equation. The theory and calculation process of the solution are described 

in detail in the paper, and by numerical experiments of different three dimensional objects, the accuracy and the efficiency of the 
algorithm are also discussed. 
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1 Introduction 

 

As an important research field of computational 

electromagnetics (CEM), up to the present, 

electromagnetic (EM) scattering problems can already be 

computed by a lot of solutions [1-3]. However, fast 

analysis of wide angle EM scattering problems is still a 

difficult task for all traditional numerical methods, almost 

all of them need to solve one discrete angle after another 

to finish calculating this kind of problem [4-6]. It means 

iterative operations are adopted as incident angle changes, 

which must result in low efficiency. Aiming at this 

difficulty, we propose a new method, which can solve it 

effectively by applying compressed sensing (CS) into 

method of moments (MoM) for magnetic field integral 

equation (MFIE). 

CS is called as ‘a big idea’ in the field of signal 

processing [7]. One of the most interesting advantages in 

CS is that it breaks the restriction of Nyquist-Shannon 

sampling theorem [8] - it can capture and represent 

compressible signals at a rate significantly below the 

Nyquist rate. MoM is a classical numerical method of 

electromagnetic field integral equation, which is applied 

extensively in solving EM scattering problems [9]. MFIE, 

as is well known to all, is considered to have some 

advantages by its smaller condition number and faster 

iterative convergence speed [10], so we choose it as the 

basic integral equation. In this paper, the theory and 

implementation of the new solution are elaborated, and 

numerical simulation for different three dimensional 

objects is presented and discussed - it is shown that the new 

method can obtain accurate results by only several 

measurements and the efficiency can be improved greatly.  

 

2 Traditional MoM for MFIE 

                                                           
* Corresponding author e-mail: xycaoBL@163.com 

 

For a closure perfect electric conductor (PEC) whose 

surface is S radiated by electromagnetic waves, MFIE 

could be represented as: 

ˆ ˆ( ) 2 ( ) 2 . . ( ) [ ( , )]d ,
S'
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where J represents induced current density on S, n̂  

represents unit normal vector of the surface of object, H(r) 

represents incident magnetic field, ( , )G r r =e-jkR/4πR, 

. .PV   means principal value integral. 

Calculation process of traditional MoM for MFIE is as 

follows: 
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to expand J(r). 

Step 2: Make inner product operation by Galerkin's 

method: 
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where: 
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Step 3: Solve the matrix equation with gauss integration, 

mean value theorem and treatment of singularities. 

Step 4: Numerical result of J(r) will be finally calculated 

as: 

( ) ( ) .
S

n n

n

IJ r f r  (7) 

While the angle of incident wave is not certain but in a 

wide range, traditional MoM for MFIE has to compute the 

matrix equations at each small discrete angle repetitively, 

so the efficiency is low. 

 

3 Basic CS theory 

 

CS is based on sparse representation of signals, its 

mathematical model [11-13] can be formulated as follows: 
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where X stands for original signal, α is the sparse 

projection of X, Ψ stands for sparse basis, Φ stands for 

measurement matrix and it is incoherent with Ψ. From the 

M-dimensional measurement s, the approximation of α can 

be calculated from a L-minimization problem as: 

ˆ = min . . ,
L

s t α α ΦΨα s  (9) 

finally, the original signal can be approximated as: 

ˆ ˆ .X Ψα  (10) 

 

4 Solution of CS introduced to MFIE 

 

We introduce CS into traditional MoM for MFIE to fasten 

calculating wide angle EM scattering problems, the 

procedure is as follows: 

Step 1: Assume the discrete angles of incident waves are 

θ1,θ2...θn, accordingly, the excitations could be denoted as 

V(θ1), V(θ2), ..., V(θn), construct a new group of 

excitations as: 

CS
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where 1, 2,...i m  and m n . 

Step 2: Substitute these new excitations into the matrix 

equation of MFIE, that is, 

CS CS
,

i i
ZI V  (12) 

solve these matrix equations as the way of traditional 

MoM, then 
CS CS CS

1 2
, ...,,

m
I I I  can be obtained. 

Step 3: Since the impedance matrix Z does not vary with 

the angle of incidence, 
CS

i
I  can be expanded as 
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thus 
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Step 4: According to the theory of CS, from these 

measured values, current coefficient vectors over the wide 

angle can be reconstructed accurately by the recovery 

algorithm and sparse basis, so we get the relation: 
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where 
m n

Φ  represents measurement matrix, 
n n

Ψ  

represents sparse basis, [s1 s2 ... sn]T is sparse projection of 

[I(θ1) I(θ2) ... I(θn)]T. 

Step 5: Calculate the optimization problem: 
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Step 6: Finally, current coefficient vectors over the wide 

angle can be reconstructed as: 
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and the induced current density J will be solved by 

Equation (7). 

Above all, based on m(m n) times of calculation of 

MoM, 
1 2

( ), ( )... ( )
n

  I I I  are solved. Compared with n 

times of calculation of matrix equations needed by 

traditional MoM, the amount of computation is reduced. 

 

 

5 Numerical results 
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Take different three dimensional objects as numerical 

examples. Experimental electromagnetic parameters are 

set as follows: the frequency of incident wave 

f=1.35×109Hz, permittivity ε=1/(4π×9×109)F/m, 

permeability μ=4π×10-7H/m. Consider 360 angles of 

incidence (from 1° to 360°, the angle of the wave which is 

propagating along y axis and E-polarized in the x direction 

is defined as 0°). Choose Gauss random matrix [14] as the 

measurement matrix, Hermite basis [15] as the sparse basis 

and orthogonal matching pursuit (OMP) [16,17] as the 

recovery algorithm, take 35 times of measurement as 

example. Compare the calculation results of our method 

with the ones of traditional MoM. 

 

5.1 NUMERICAL EXAMPLE 1 

 

Consider a PEC cuboid with size of 0.2×0.1×0.05m, as 

shown in Figure 1. 

 

FIGURE 1 The PEC cuboid model 

Calculate the current coefficients over 1°, 2°, ..., 360° 

by both traditional MoM and our solution, and compare the 

results of two methods. Figure 2 shows the comparison of 

the current coefficients over the wide angle on an arbitrary 

RWG basis (take basis number 327 which is centered at 

(0.025,-0.056,0) as example). 

 
FIGURE 2 Comparison of the calculation results of the current 

coefficients over the wide angle on basis 327 of the cuboid 

From Figure 2, we can see that the results of our 

method are completely consistent with the ones of 

traditional MoM. 

 

 

 

 

5.2 NUMERICAL EXAMPLE 2 

 

Consider a multi-objective model which consists of a PEC 

sphere, a PEC cube and a PEC rectangular pyramid, as 

shown in Figure 3 (assume the radius of the sphere is 

0.05m, the edge-length of the cube is 0.1m and the size of 

the rectangular pyramid is 0.1×0.1×0.1m.). 

 
FIGURE 3 The multi-objective model 

Figures 4-6 show the comparison between the current 

coefficients of all RWG basis on the sphere, the cube and 

the rectangular pyramid over an arbitrary incident angle 

(take 100°, 200°, 300° as examples) of the wide range 

calculated by our method and the results of traditional 

MoM respectively. 

 

a) 

 

b) 

FIGURE 4 Comparison of the calculation results of the current 

coefficients on the sphere (incident angle=100°): a) Real part, b) 

Imaginary part 
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a) 

 

b) 

FIGURE 5 Comparison of the calculation results of the current 

coefficients on the cube (incident angle=200°): a) Real part, b) 
Imaginary part 

 

a) 

 

b) 

FIGURE 6 Comparison of the calculation results of the current 

coefficients on the rectangular pyramid (incident angle=300°): a) Real 

part, b) Imaginary part 

From Figures 4-6, one can see that the results of our 

method are also accurate for the multi-objective model. 

 

5.3 NUMERICAL EXAMPLE 3 

 

Consider a simple missile-like model, as shown in Figure 7. 

 
FIGURE 7 The simple missile-like model 

Calculate the values of RCS (take E surface as 

example) of this simple missile-like model over some 

discrete angles among the wide range (take 39°, 111°, 227° 

as examples) based on both our method and traditional 

MoM, comparisons of the results of the two solutions are 

shown in Figure 8. 

 

a) 

 
b) 

FIGURE 8 Comparison of the RCS results of the simple missile-like 

model by a) traditional MoM and b) our method 

From Figure 8, one can see that the numerical results 

calculated by our method are still accurate. 

 

5.4 ERROR STATISTICS 

 

Define the calculation error as: 

2

2
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I I

I
 (17) 

where Iθ stands for the current coefficient matrix over the 

wide angle calculated by traditional MoM, ˆ


I stands for 

the one calculated by our method. The calculation error 

statistics for the cuboid, the multi-objective model and the 

simple missile-like model are shown in Table 1. 
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TABLE 1 The calculation error statistics 

Object Example 1 Example 2 Example 3 

Calculation Error 2.7374×10-5 6.1254×10-5 1.8901×10-6 

 

5.5 COMPARISON OF OPERATION TIME 

 

Table 2 shows the comparison between the computational 

time of our method and the one of traditional MoM. (The 

operation environment of the programs is Mathworks 

Matlab7.0, Pentium(R) Dual-Core CPU at 2.10GHz and an 

internal memory with capacity of 2GB.) 

TABLE 2 Comparison of the computational time (s) 

Object Example 1 Example 2 Example 3 

Traditional MoM 402.5571 431.6213 510.1818 

Solution of CS 93.6437 99.1613 111.7152 

From the tables above, we can see that the calculation 

results of our method relative to the ones of traditional 

MoM are still accurate highly but the operation time is 

reduced a lot. 

6 Conclusion 

 

Overall, aiming at fast analyzing wide angle EM scattering 

problems, this paper proposes a new solution by applying 

CS into MoM for MFIE, and the feasibility of the method 

is verified by numerical experiments -- the expected effect 

of fastening calculating EM scattering problems over a 

wide angle is achieved. 
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