

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

529
Information and Computer Technologies

A self-aware strategy for virtual machines placement on clouds

Fen Guo1*, Huaqing Min1, Ming Yin2
1School of Software Engineering, South China University of Technology, Guangzhou Higher Education mega center, 510006, Guangzhou, China

2School of Automation, Guangdong University of technology, Guangzhou Higher Education mega center, 510006, Guangzhou, China

Received 1 August 2014, www.cmnt.lv

Abstract

Cloud computing is a new computing service mode, and virtualization is a key technology of it. A self-aware strategy (SAST) for

Virtual machines (VMs) management on clouds is proposed which is multi-attributed weighted on the resources. It manages the virtual

resource basing on the requests of users and the real-time state of the system dynamically. It consists of three phases: (1) monitoring

the cloud performance including VMs and Physical Machines (PMs), with the data standardized; (2) measuring the cloud load balance

value with the attribute weighted measurement model; (3) using the placement algorithm to choose the best appropriate PM to place

the VM requested. The main contribution of the paper is that a cloud load balance measurement model is introduced and a VM

scheduling strategy is proposed which includes the VMs placement optimization algorithm and the VMs dynamic migration algorithm.

The SAST is tested on the simulation platform comparing with other traditional ones. As a result, we concluded that it guaranteed the

SLA and achieved better load balance of cloud. And at the same time, it minimized the number of the started PMs on clouds to reduce
energy consumption.

Keywords: cloud computing, virtualization, placement, scheduling

1 Introduction

Cloud computing [1] is considered a new computing

service model and has got a lot of attentions. Cloud

computing provides the infinite shared resources to the

customers via the Internet. The customers would get them

with not understanding the fundamental technology and

the application running environment. The more quickly the

demand of cloud computing grow, the larger data centre is

needed. As most of all know, the user requirement for

cloud platform is often heterogeneous and irrelevant, so

the unreasonable resource distribution will lead to the

waste of resources inevitably. In order to improve the

utilization rate of resources, cloud computing platform

also needs the dynamically balanced load of various kinds

of services. On the other hand, large-scale computing

infrastructure consumes a lot of power resources, and the

power consumption increased year by year. FORREST W

[2] has predicted that the data centre power consumption

would reach 2% of the world's total energy consumption

in 2020. So, how to dynamically and effectively manage

the cloud computing platform resource becomes a key

problem.

Virtualization technology [3, 4] provides an effective

method to manage the resources of the cloud computing

platform dynamically, and it has broken the tight coupling

between the computing and the hardware. Customers use

Virtual Machines (VMs), based on SLA; cloud providers

take advantages of VM’s flexible management on PMs to

optimize resources allocation so as to meet customers’

requests. Server virtualization technology enables multiple

VMs running on a physical node at the same time. It has

*Corresponding author e-mail: csguofen@scut.edu.cn

greatly improved the utilization of computing resources

and implemented the on-demand deployment [5, 6]. In

addition, the VM migration technology makes that cloud

computing platform can be dynamically adjusted to deploy

the VM to the less physical machines according to the

changes of the service load, and as a result, it will achieve

energy saving.

Since different resource utilization is caused by

different mapping between VMs and PMs, for cloud

providers, the key issue is how to effectively manage and

schedule VMs to meet the customer’s requests, and at the

same time reduce the energy consumptions to minimize

the cost. Nowadays, the algorithm for building the

mapping from the customer’s requesting VMs sets to the

servers in the resource pool is becoming a hot issue. The

algorithm will choose the most appropriate PM as the host

for the requested VM and establish the specific mapping.

The number of the VMs requested on cloud is

increasing with the development of cloud computing, and

then the deployment of VMs becomes more important. A

VM will be bound a PM for a lifelong under simple

managing strategy, which will lead to a load imbalance. In

the same way, the managing and scheduling strategy based

on single attribute will also cause uneven load, such as a

VM with demand for network could be deployed in a PM

with sufficient CPU residue but poor network resource,

resulting the VMs on the same PM competing for

bandwidth. At the same time, the quantity and load of VMs

and PMs will vary over time with the demand of the

customer and application, static management of VMs will

cause waste or shortage of resources, and the artificial

scheduling is an obvious lag one.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

530
Information and Computer Technologies

For VM management, one major direction is to

minimize the number of the PMs for reducing energy

consumption. Such problems are usually to be interpreted

as packing problem [7-9]. These studies are usually only

consider how to reduce the number of physical, but does

not take into account the needs of customers (for example,

now more and more customers have specified

requirements about the network).What’s more, it will lead

SLA violation. Some studies [10-22] considered the needs

of customers and applications. However, the optimization

of load balancing is less concerned, and some studies do

not consider the dynamic performance of the cloud. In

view of this, the VMs management strategy should not

only consider the utilization rate of resources but also the

overall load balancing combining with the dynamic

demand of customers.

Therefore, our paper presents a dynamic managing

strategy for VMs on cloud. It is concerned chiefly with

meeting the customer requirement, keeping the system

load balancing and saving power. With meeting the

constraints of PM resources(CPU, network, etc.), the

strategy managed the VMs on PMs to achieve cloud’s load

balancing for reducing SLA violation, which allows the

idle PMs in a sleeping state so as to reduce energy

consumption on cloud finally.

Based on the above, we proposed a self-aware strategy

(SAST) for VMs management on clouds which is called as

SAST. The strategy is based on the user requests of virtual

resources and the real-time system status. And it is

composed of three phases: Firstly, to monitor the cloud

load performance including VMs and physical machines,

with the data standardized; secondly, to measure the cloud

load balancing value with the proposed measurement

model. Thirdly, to use the managing and deploying

algorithm to choose the best appropriate PM to deploy the

VM requested. In addition, the batch requests are treated

in accordance with the single application process in order

in SAST.

Our paper is divided into six major sections as follows.

Section 1 introduces the related work. Section 2 opens with

the description of the SAST. Section 3 shows the load

balance measurement method. Section 4 introduces the

main scheduling algorithm, while section 5 provides

experimental result and analysis, and section 6 draws a

conclusion.

2 Related work

There are two focuses on VM managing strategy for

reducing energy consumptions. One is to consider how to

place VM to the PMs in cloud. Eucalyptus [10, 11] has

proposed round robin and greed algorithm to deploy the

VMs. While OpenStack [12] takes a random scheduling

strategy as the default one. However, the match-making

scheduler [13] of OpenNebula achieved the ranking

algorithm. Varma et al. [14] dynamically readjust server’s

location and consider the cost of migration and energy,

with a simple algorithm; it shows that dynamic migration

technology realizes low energy cost. Norman Bobroff et

al. in [15] put forward a VM deployment algorithm using

the forecasting techniques and heuristic algorithm, and

ensured the SLA with minimizing the physical machine

number. Singh et al. formed the question into a multi-

dimensional knapsack problem, and treated the constraints

of the deployment as a separate dimension [16].

Tsakalozos [17] used a two-phase mechanism for mapping

problem of VM for large heterogeneous infrastructure:

First, to synthesize the physical machine set which can be

used at this stage; second, to determine the approximate

optimal VM-to-PM mapping with satisfying constraints.

Breitgrand et al. formalized the problem to be a multi-unit

combinatorial auction model in [18]. Zhang Wei et al. of

[19] proposed a kind of strategy for deploying and

scheduling VMs based on multiple attributes analysis for

the uneven loads between physical machines in the cloud

computing.

The strategies or algorithm above consider the energy

consumption, and they neglect the user requests and the

load balancing of the cloud. The other type [20-22] is to

consider the dynamic factor of the cloud. Nik Bessis [20]

explored two configurations, the static case in which VMs

are generated according to the cloud orchestration, and the

dynamic case in which VMs are reactively adapted

according to the job submissions, using migration, for

optimizing performance time metrics. Yang Xing [21]

proposed the Performance Matching-Load Balancing

(PM-LB) algorithm of VM deployment. In [22] Zhao

Hongwei put forward a kind of efficient resource

management strategy based on the domain. Studies above

covered various aspects, and they emphasized with the

merchant’s profits or only one single aspects of the

optimization. But the study didn’t consider how to achieve

best load balancing. So they are also different from our

objective.

3 Description of the SAST

3.1. SYSTEM ARCHITECTURE

The framework of the SAST is shown in Figure 1. It

includes: central controller; VMs scheduling strategy

generator, cloud monitor, VMs placement module.

The central controller is responsible for the overall

system, including receiving the requests from the client

layer, sending alarm information from the monitor and

sending command to the VMs scheduling generator, etc.

The scheduling generator would build the load balance

model of the cloud, and judge whether the node is

overloaded or low load by analyzing the real-time data

from the monitor. And then, it will calculate the best VMs

placement scheme using the proposed algorithm in SAST

combining with the requests of the alarm queue and the

user’s optimizing request queue.

The monitor will receive the load performance of each

VM and PM periodically, the requests of the migration, the

usage of the storage and the network of the cloud. If it

found a PM load had exceeded the specified threshold, it

would alarm. And at the same time, it would add this PM

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

531
Information and Computer Technologies

into the alarm queue, and informed the central controller

triggering the VMs scheduling generator to deal with it.

FIGURE 1 The system architecture

3.2 THE OBJECTIVE

The details of our objective are as follows:

Meet the existing customer’s request, and maximize

the load balancing degree on each physical server

scheduling domain.

Minimize the number of PMs to start on IaaS on the

basis of 2 to save energy.

Control the load rate of each PM in the scheduling

domain not higher than the threshold

3.3 MONITORING STRATEGY

The traditional distributed systems often use the passive

monitoring strategy. The node does not only need to

exchange information between each other, but also report

the status to the information centre regularly.

Consequently, it will affect the overall performance of the

platform.

1. The monitoring contents are shown in Table 1.

TABLE 1 The monitoring contents

CPU Memory Hard disk Network

1-usage 1-usage 1-usage 1-usage

2. The sampling method.

The average sampling method is used to collect the

monitoring data. The monitor collects every node’s

(including PMs and VMs) load data from the system for

every T seconds, and defines the average value of the last

N data as the load value of the node, which is denoted as

 X = ∑ 𝑋𝑖 𝑁⁄
𝑁
𝑖=1 . The value of T and N can be dynamically

set by the monitor according to the individual request, the

default value of T is 10 seconds, and the N is 5.

3. The monitor saves the latest load data vector Sx as

the real-time load information of each X as follows(X can

be a VM or a PM).

𝑺𝑥 = (𝐶𝑋, 𝑀𝑋, 𝐻𝑋, 𝑁𝑋). (1)

Cx, Mx, Hx, Nx, respectively represents the monitoring

data of CPU usage, memory usage, hard disk usage and

bandwidth usage of the X.

3.4 SCHEDULING STRATEGY

The scheduling strategy is the core of the SAST, and it will

be detailed in the below. This scheduling strategy

combined with users’ requirements to overcome the

shortcomings of existing technology:

1) A cloud platform load balance measurement model

is introduced with setting the weigh vector and matrix

referring to the customer requirements and the monitoring

data.

2) A VM scheduling algorithm is proposed, which

includes the VM deployment optimization strategy and the

VM dynamic migration strategy.

4 Load balance value measurement method

4.1 DEFINITION AND LEMMA

Suppose the number of the PMs in the scheduling domain

is m, and the one of the VM types is t.

Definition 1. Let P stands for the PMs Set. P is defined

as follows.

 P G |i 0, G ,i in and P

 1 2

1

G , ,..., |j Num G and m
n

i i i ij i i

i

p p p Num G

 ,

 , , ,i i i i ip SC SM SH SN .

Gi stands for the ith group on cloud, and pi stands for the

configure vector of the PM i. SCi, SMi, SHi, SNi

respectively stands for the CPU size, the memory size, the

disk size and the bandwidth size of Pi.

Definition 2. Let VT stands for the VM type’s set. VT

is defined as follows.

VT = {𝑣𝑡1, 𝑣𝑡2, 𝑣𝑡3, …… , 𝑣𝑡𝑡}),

𝑣𝑡𝑖 = {𝑠𝑐𝑖 , 𝑠𝑚𝑖 , 𝑠ℎ𝑖 , 𝑠𝑛𝑖).

𝑣𝑡𝑖 stands for the configure vector of the VM of type i,

and 𝑠𝑐𝑖 , 𝑠𝑚𝑖 , 𝑠ℎ𝑖 , 𝑠𝑛𝑖 respectively stands for the CPU

size, the memory size, the disk size and the bandwidth size

of 𝑣𝑡𝑖.
Definition 3. 𝑣𝑖 = {𝑠𝑐𝑖 , 𝑠𝑚𝑖 , 𝑠ℎ𝑖 , 𝑠𝑛𝑖) can be deployed

on 𝑝𝑖 = {𝑆𝐶𝑖 , 𝑆𝑀𝑖 , 𝑆𝐻𝑖 , 𝑆𝑁𝑖} only when

𝑠𝑐𝑖 ≤ 𝑆𝐶𝑖 ; 𝑠𝑚𝑖 ≤ 𝑆𝑀𝑖; 𝑠ℎ𝑖 ≤ 𝑆𝐻𝑖 ; 𝑠𝑛𝑖 ≤ 𝑆𝑁𝑖.

Definition 4. 𝑝𝑗 ≤ 𝑝𝑖 (𝑖, 𝑗 ∈ (0,𝑚])

s.t. 𝑆𝐶𝑗 ≤ 𝑆𝐶𝑖 ; 𝑆𝑀𝑗 ≤ 𝑆𝑀𝑖; 𝑆𝐻𝑗 ≤ 𝑆𝐻𝑖 ; 𝑆𝑁𝑗 ≤ 𝑆𝑁𝑖

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

532
Information and Computer Technologies

Definition 5. Let V be the set of the VMs vectors

which are deployed in cloud.

V = {
𝑉1, 𝑉2, …… , 𝑉𝑚|𝑉𝑗={𝑣𝑗1, 𝑣𝑗2, …… , 𝑣𝑗𝑘},

𝑘 ∈ 𝑁 𝑎𝑛𝑑 𝑗 ∈ [1，𝑚]
}

Definition 6. Vj represents the set of the VMs on the

PM pj, the vji represents the ith VM on the PM pj.
Let Wv be the pre-supposed weighted matrix of the

VMs, Wp be the pre-supposed weighted matrix of the PMs.

The Wv and Wp are stored in the VM scheduler as follows.

𝑾𝑣 = [

𝑤𝑣11 𝑤𝑣12
𝑤𝑣21 𝑤𝑣22

… 𝑤𝑣14
… 𝑤𝑣24… …

𝑤𝑣𝑡1 𝑤𝑣𝑡2

… …
… 𝑤𝑣𝑡4

]

𝑾𝑝 = [

𝑤𝑝11 𝑤𝑝12
𝑤𝑝21 𝑤𝑝22

… 𝑤𝑝14
… 𝑤𝑝24… …

𝑤𝑝𝑚1 𝑤𝑝𝑚2

… …
… 𝑤𝑝𝑚4

]

Wvs = (wvs1, wvs2, wvs3, wvs4)

Wpj = (wpj1 , wpj2, wpj3, wpj4)

wvs1 + wvs2 + wvs3 + wvs4 = 1

 wpj1 + wpj2 + wpj3+wpj4 = 1

𝑾𝑣𝑠 stands for the weighted vector of vs, while the 𝑾𝑝𝑗

stands for the weighted vector of pj. And

 𝑤𝑣𝑠1, 𝑤𝑣𝑠2, 𝑤𝑣𝑠3, 𝑤𝑣𝑠4 respectively represents the pre-

supposed weight of CPU, memory, hard disk, network for

the 𝑣𝑠 , while 𝑤𝑝𝑗1, 𝑤𝑝𝑗2, 𝑤𝑝𝑗3 , 𝑤𝑝𝑗4 has the similar

meaning. So we can use Wx (X can be a VM or a PM) to

represent the performance weight vector of X.

4.2 LOAD VALUE MEASUREMENT MODEL

Let bl(j)(j∈ [1,m]) be the load value of the PM pj, O as the

load balance value of the scheduling domain. Function fn(j)

returns the number of the VMs deployed on the PM pj,

while Hp(pj) represents the load value of PM pj, and Hv(j,i)

stands for the load value of the VM vji. The performance

weighted strategy calculates the load value according to

the following Equations. σ is a systematic parameter which

can be set by the system administrator.

 x xH x W S , (2)

1

1 , /
nf j

p j v n

i

bl j H p H j i f j

 . (3)

2

1

1

/ ,

0,1 ,

/

m

j

m

i

O bl j bl m

bl bl i m

. (4)

Lemma 1. Based on the definitions above, we can

deduce that the smaller the O is, the higher the cloud load

balance degree is.
Lemma 2. Based on the configure set of PMs and

VMs, we can get the VM number matrix R, while the rij

represents the max number that the 𝑣𝑡𝑖 can be deployed on

the pj. The detail is as follows:

𝑹 = [

𝑟11 𝑟12
𝑟21 𝑟22

… 𝑟1𝑚
… 𝑟2𝑚… …

𝑟𝑡1 𝑟𝑡2

… …
… 𝑟𝑡𝑚

].

𝑟𝑖𝑗 = 𝑚𝑖𝑛{𝑙1，𝑙2，𝑙3，𝑙4} (𝑖 ∈ [1，𝑡], 𝑗 ∈ [1，𝑚]).

𝑙1 = 𝑆𝐶𝑝𝑗 𝑠𝑐𝑣𝑖⁄ , 𝑙2 = 𝑆𝑀𝑝𝑗 𝑠𝑚𝑣𝑖⁄ .

𝑙3 = 𝑆𝐻𝑝𝑗 𝑠ℎ𝑣𝑖⁄ , 𝑙4 = 𝑆𝑁𝑝𝑗 𝑠𝑛𝑣𝑖⁄ .

Lemma 3. When a new VM qx is requested whose type

number is be k, we can find the corresponding weighted

vector in Wv. Suppose H’v(vx) returns the presupposed load

value for qx , while 𝐻′𝑝(𝑝𝑗) returns the pre-supposed load

value of the PM pj if the vx is deployed on it, and 𝑺′𝑝𝑗

returns the pre-supposed load data vector of the PM pj.

Then we can deduce the following Equation.

𝑺′𝑝𝑗 ≈ 𝑺𝑝𝑗 + 1 𝑟𝑘𝑗⁄ ,

𝐻′𝑝(𝑝𝑗) = 𝑾𝑝𝑗 × 𝑺′𝑝𝑗 ≈ 𝐻𝑝(𝑝𝑗) +𝑾𝑝𝑗 × 100 𝑟𝑗𝑘⁄ , (5)

𝐻′𝑣(𝑣𝑥) = ∑ 𝐻𝑣(𝑗, 𝑖)
𝑓𝑛(𝑗)
𝑖=1 𝑓𝑛(𝑗)⁄ . (6)

Lemma 4. Given 𝑏𝑙′(𝑗) returns the pre-supposed load

value of the PM pj. Then we can deduce it as follows

basing on Equation (5) and (6).

'

1

'

1 , / 1
n

p j

f j

v v x n

i

bl j H p

H j i H v f j

. (7)

Lemma 5. Suppose ∆𝑏𝑙(𝑗)as the changes in the load

values of pj if the vx is deployed on itself, then we can

deduce as follows.

'

1

100 /

1 , / 1

j

n

p j p jk

f j

v v x n

i

bl j bl j bl j

H p W r

H j i H v f j

. (8)

When fn(j) is very great, we can deduced the below

Equation.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

533
Information and Computer Technologies

 / 1 /
jp jk v x nbl j W r H v f j . (9)

Lemma 6. Suppose ∆𝑂(𝑗) as the changing value in

the load balance value of the cloud scheduling domain if

the vx is deployed on itself, then we can deduce as follows.

 '

1

/
m

i and i j

O bl i bl j m

 , (10)

22 '

1

/
m

i and i j

O j

bl i O bl j O m O

. (11)

5 Scheduling algorithm

5.1 ALGORITHM SUMMARY

Suppose there are n VMs which the user layer has

requested, while the request set is called Q:

𝑄 = {𝑞1，𝑞2，𝑞3，……，𝑞𝑛}|𝑞𝑖 ∈ 𝑉𝑇.

Then the main work of the deploying and scheduling

for VMs is to find the mapping f:

𝑓: 𝑄
𝑞𝑖
𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑
→ 𝑝𝑗

→ 𝑃 (qi is deployed on pj).

The details are as follows.

Adding all the alarm tasks into the alarm queue QR, and

invoking the alert processing module to process each PM

in queue sequentially.

Adding the user-specified optimization tasks into the

optimization queue QO, and calling the optimization

module to optimize each PM in queue.

Adding new requested task into the new task queue QN,

and calling the VM deployment scheduling module to treat

each request in order.

5.2 PREREQUISITES AND RESTRICTIONS

Never deny the user’s request (𝑣 = {𝑠𝑐, 𝑠𝑚, 𝑠ℎ, 𝑠𝑛))

except when:

𝑐 ≤ ∑ 𝑆𝐶𝑖
𝑚
𝑖=1 or 𝑠𝑚 ≤ ∑ 𝑆𝑀𝑖

𝑚
𝑖=1

or 𝑠ℎ ≤∑ 𝑆𝐻𝑖
𝑚

𝑖=1
 or 𝑠𝑛 ≤∑ 𝑆𝑁𝑖 .

𝑚

𝑖=1

Only allow the user to request one of the VM types

among the given VT.

Each PM and VM can be monitored, and when there

was a PM or VM load had exceeded the specified

threshold, the monitor would alarm.

The first group G1 is the default initial scheduling

domain on the cloud.

5.3 THE DETAILS OF THE ALGORITHM

5.3.1The main process

Input:

 1 2 m

{G | i 0, G

, , , |m N

i iP n and P

P p p p

1) V, Wv, R, Wp;

2) 𝑆 = {𝑺x|𝑥 ∈ 𝑃 𝑜𝑟 𝑥 ∈ 𝑉};
3) The queues QR , QO , QN .

Output: 𝑓:𝑄𝑁
𝑞𝑖
deployed
→ 𝑝𝑗

→ 𝑃; finish status.

Steps

1) while(QR!=NULL)

{

q=QR->head;

if (dynamicsheduler (q->id, q->threshold, (P-QR))= = SUCCESS)//
process PM q

{QR->head=q->head; delete (q);}

else
go to 4);

}

2) while(QO !=NULL)
{ q=Qo->head;

if (dynamicsheduler (q->id, S, (P-Qo))= =SUCCESS) // process

PM q
{Qo->head=q->head;

delete(q);

}
else

go to 4);

}
3) while(QN !=NULL)

{q= QN->head;

if (staticsheduler (q->id, P)= =0)
 // process PM q

go to 4);

else {QN->head=q->head;
new p;

p->id= staticsheduler(q−> id, P);
insert(𝑞

𝑑𝑒𝑝𝑜𝑙𝑦𝑒𝑑
→ 𝑝) to f;

Update(V, 𝑞
𝑑𝑒𝑝𝑜𝑙𝑦𝑒𝑑
→ 𝑝);

deploy(q,p);//deploy q on p

delete(q);

}
}

4) if (Num(the current Gi)= =m)

//if all the PMs in the current scheduler domain
return FAIL;

else {
start Gi+1;merge(Gi, Gi+1);

}

5.3.2 The VM placement module

staticscheduler

Input: the requested new VM q; ()

Output: the id of the target PM (0 stands for failure)

Steps:

1) for(i=1;i<=num(G);i++)

{p=G(i);
 if(S(p) ≈0) return i;

}

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

534
Information and Computer Technologies

2) for(i=1;i<=num(G);i++)

if (G(i)>q) insert (G(i),QL);
{if(QL!=NULL)

{Scan QL orderly;

if (m> system threshold number)
//if m is very large

return the first j in {𝑗|𝑗 ∈ 𝑚𝑖𝑛
𝑗∈[1,𝑛𝑢𝑚(𝑄𝐿)]

∆𝑏𝑙(𝑗)};

else

return the first j in {𝑗|𝑗 ∈ 𝑚𝑖𝑛
𝑗∈[1,𝑛𝑢𝑚(𝑄𝐿)]

∆𝑂(𝑗)};

}

else

return dynamicsheduler (q->id, the specific threshold, G);
}

5.3.3 The dynamic migration scheduling module

dynamicsheduler

Input: ID (PM id or new VM type number);

The default threshold of PM load; the current

schedule domain G;

Output: FAIL or SUCCESS

Steps:

1) Make P to P’(P’ is in descending order according to the available

size of resources);
2) if the module is invoked by QO or QR

{delete p whose id = =ID from P’;

v=Max (Vid); //v is the max VM on p;
}

else v=vtid; //v is the requested VM;

3) for(x=1;x<num(P’),x++)
{

if (there is V’ on Vx which meet the following condition:

a); (Vx- V’)>v

b) for each 𝑣’ ∈ 𝑉’
 staticsheduler (v’->id, P’)! =0

)

{

for each 𝑣’ ∈ 𝑉’ deploy (v’, P’);
return SUCCESS;
}

else return FAIL;

}

6 Experimental result and analysis

This section shows that the SAST is feasible and exact.

This experiment is simulated with Java programming

language, using a set of simulated experiment set to

compare the performance of the round robin algorithm, the

best fit heuristic packing algorithm and the SAST.

6.1 CONFIGURATION

1. The configuration of the PMs and VMs is described in

Table 2. The PMs consists of 10 nodes and 2 kinds of

configuration. There are 6 PMs about node1, and 4 PMs

about node 2; The VMs has two types, one is the high

computing (HC), another is the high storage (HS). Each

type is divided into big, medium and small class, so there

are six different VM configurations. Clusters are divided

into 10 groups, each group of only one PM. Each CPU has

a core (Intel(R) Xeon (R) E5606). There are 10 PMs with

two types of configuration.

TABLE 2 Experiment configuration

Type CPU (G) Memory (G) Storage (GB) Network (MB)

node1 16 96 20*1024 1000

node2 16 96 10*1024 1000
VMA 8 8 200 100

VMB 8 4 100 100

VMC 8 2 50 100
VMD 4 8 200 100

VME 4 4 100 100

VMF 4 2 50 100

2. All strategies using the same set of monitoring data.

3. In each strategy the VMs are requested at random for

15 times.

4. When talking about round robin strategy, let’s

suppose that Wp=(0.25,0.25,0.25,0.25), and for SAST,

σ=0.6,and the setting of Wv is shown as Table 3.

TABLE 3 W for six VMs

w VMA VMB VMC VMD VME VMF

w1 0.3 0.2 0.4 0.2 0.5 0.2
w2 0.25 0.25 0.2 0.2 0.15 0.15

w3 0.2 0.3 0.2 0.4 0.2 0.5

w4 0.25 0.25 0.2 0.2 0.15 0.15

6.2 RESULTS AND ANALYSIS

The number of PMs started of the SAST is the same with

the best fit heuristic packing algorithm at each application

as shown in Figure 2, and the early number were less than

the largest PM number. But when the system entered into

a stable state, the load balance degree of cloud of the SAST

is relatively high, particularly as shown in Figure 3. The

abscissa represents the number of VMs, and the ordinate

represents the value of load balance value of the cloud.

FIGURE 2 The PMs started

FIGURE 3 The load balance value

0

5

10

15

1 2 3 4 6 8 101214162021343640

polling SAST

0

0,01

0,02

0,03

1 3 6 10 14 20 34 40

best fit heuristic packing SAST

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(11) 529-535 Guo Fen, Min Huaqing, Yin Ming

535
Information and Computer Technologies

We let two strategies applied 20 VMs at random for 4

times, the total number of migration at the steady state of

the cloud platform was compared and shown in Table 4.

TABLE 4 The total number of migration

Strategy Random Equilibrium SAST

the number of test 1 4 2

the number of test 2 4 3

the number of test 3 3 0
the number of test 4 5 2

7 Conclusions

Considering the user requests of virtual resources and

setting the weight of performance parameters to calculate

the load balance value of the cloud, we present a self-aware

strategy for VMs placement on clouds. It achieved better

load balance of cloud, and at the same time, it minimized

the number of the started PMs on clouds to reduce energy

consumption. However, the time complexity of the SAST

is relatively high when it is compared with the round robin

algorithm and other traditional algorithms. We will

emphasize with the security on cloud in the future work.

Acknowledgments

This work is supported by the national science of nature

fund project: The Computing Plat tern based on Formal

Area (x2jsb55101680) and the Guangdong province

science of nature fund research group project: Grid Theory

Model and Analysis (x2jsb6110010).

References

[1] The NIST Definition of Cloud Computing National Institute of
Standards and Technology 2011

[2] FORREST W 2008 How to cut data centre carbon emissions

http://www.computerweekly.com/feature/How-to-cut-data-centre-
carbon-emissions

[3] Goldberg R P 1974 IEEE Computer 7(6) 34-45

[4] Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A,
Neugebauer R, Pratt I, Warfield A 2003 Xen and the art of

virtualization ACM SIGOPS Operating Systems Review 37 164-77

[5] Tian W, Zhao Y 2011 Cloud Computing Resource Scheduling
Management National defense science and technology university

press

[6] Hai J 2009 Computing System Virtualization - the Principle and
Application Tsinghua university press (in Chinese)

[7] Verma A, Ahuja P, Neogi A 2008 Mapper: power and migration cost

aware application placement in virtualized systems Proceedings of
the 9th ACM/IFIP/USENIX International Conference on

Middleware 243-64

[8] Bobroff N, Kochut A, Beaty K 2007 Dynamic placement of virtual
machines for managing sla violations Integrated Network

Management IM'07 &10th IFIP/IEEE International Symposium 119-
28

[9] Cardosa M, Korupolu M R, Singh A 2009 Shares and utilities based

power consolidation in virtualized server environments Integrated
Network Management IM'09 & IFIP/IEEE International Symposium

Papers 31 327-34

[10] Tan T X, Cameron K 2009 An Assessment of Eucalyptus Version
1.4 2009-929-07 Calgary Department of Computer Science

University of Calgary

[11] Wikipedia. Eucalyptus. http://en.wikipedia.org/wiki/Eucalyptus
[12] Corradi A, Fanelli M, Foschini L VM consolidation: A real case

based on OpenStack Cloud Dipartimento di Elettronica, Informatica

e Sistemistica (DEIS) University of Bologna Italy

[13] Opennebula 2012 Opennebula Scheduling Policies 2.0 http://
www.opennebula.org

[14] Aiash M, Mapp G, Gemikonakli O 2014 Secure live virtual machines

migration: issues and solutions Advanced Information Networking
and Applications Workshops (WAINA) 28th International

Conference 160-5

[15] Bobroff N, Kochut A, Beaty K 2007 Dynamic Placement of VMs for
Managing SLA Violations Proceedings of 10th IFIP/IEEE

International Symposium on Integrated Network Management

papers 118 119-28
[16] Singh A, Korupolu M, Mohapatra D 2008 Server-Storage

Virtualization: Integration and LoadBalancing in Data Centers

Proceeding of the 2008 ACM/IEEE conference on Supercomputing
(SC’08) papers 49 1-12

[17] Tsakalozos K, Roussopoulos M, Delis A 2011 VM: placement in

non-Homogeneous Iaas-clouds Proceedings of the 9th international
conference on Service-Oriented Computing 172-87

[18] Breitgand D, Epstein A 2011 SLA-aware placement of multi-VM

elastic services in compute clouds Proceeding of IFIP/IEEE
International Symposium on Integrated Network Management 161-8

[19] Zhuang Wei, Gui Xiaolin, Lin Jiancai1, Wang Gang, Dai Min 2013
Deployment and scheduling of vms in cloud computing: an "AHP"

approach Journal Of Xi’An Jiaotong University 47(2) y1-y7

[20] Bessis N, Sotiriadis S, Xhafa F, Asimakopoulou E 2013 Cloud
scheduling optimization: a reactive model to enable dynamic

deployment of virtual machines instantiations Journal of High Speed

Network 24(3) 357-80
[21] Yang X, Ma Z, Sun L 2012 Performance vector-based algorithm for

VM deployment in infrastructure clouds Journal of Computer

Applications 32(1) 16-9
[22] Zhao H, Song B, Shao Y 2012 High-effect resource management

strategy in cloud computing environment Computer Science 39(2)

212-5

Authors

Fen Guo, China

Present position, grades: teacher in South China University of Technology, China.
University study: Doctoral students in School of Computer Science & Engineering, South China University of Technology, Guangzhou, China, 2009-
present.
Research activities: cloud computing, database, pattern recognition, artificial intelligence.

Huaqing Min, China

Present position, grades: professor in South China University of Technology, China.
University study: PhD in School of Computer Science & Engineering, Huazhong University of Science and Technology, Wuhan, China, in 1998.
Research activities: artificial intelligence, cloud computing, database, pattern recognition.

Ming Yin, China

Present position, grades assistant professor with the School of automation in Guangdong University of Technology, China.
University study: PhD in information & communication engineering from Huazhong University of Science and Technology (HUST), Wuhan, China, in
2006.
Research activities: image/videocoding, image deblurring, sparse representation, unsupervised/semi-supervised data cluster/classification.

http://en.wikipedia.org/wiki/Eucalyptus
http://www.opennebula.org/
http://www.lu.lv/
http://www.lu.lv/
http://www.lu.lv/

