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Abstract 

This paper investigates algorithms for simulation of the trajectories of a Brownian motion (Wiener process) with given accuracy and 

reliability. Spectral representation of Wiener process as random series examines as a model. Estimates of the accuracy and reliability 

investigated in various function spaces - spaces of measurable integrated functions, Orlicz spaces and spaces of continuous functions. 

Given the accuracy of the numbers and simulation algorithms error of Gaussian random variables in the model are used strictly sub-

Gaussian random variables. Examples of simulation are represented below. 
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1 Introduction 

 
Statistical models of Wiener processes used to solve many 

practical problems, particularly, in the calculation of 

integrals over Wiener processes or in the numerical 

solution of stochastic differential equations [1, 2]. 

As a model, we consider the spectral decomposition 

processes as a random series or integrals.  

Moment of difference of model and process is an 

estimation of model accuracy in the problems of statistical 

simulation [1, 2]. In papers [3, 4] investigated accuracy 

and reliability estimation of the simulation of random 

processes in various functional spaces. 

In this paper, we investigate the accuracy and 

reliability of the Wiener process simulation in various 

functional spaces - 2 , , ,pL L C  Orlicz spaces. 

 

2 Basic definitions 

 

Let  , ,T   - be some measurable space and   1T  . 

Definition 1. Generalized Wiener process with 

parameter  , 0,1    will be called a Gaussian random 

process with zero mean and correlation function 

 2 2 21
( , ) ( ) ( ) .

2
R t s EW t W s t s t s

  

        

When 
1

2
   we have a classical Wiener process. This 

paper considers the classical Wiener process. As a model 

of the Wiener process we consider random series 

1

( ) ( )
M

M i i

i

S t f t 


 , 

where  i  - Gaussian random variables from (0,1)N  

(in the general case is optionally dependent). 
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Let all ( )MS t  and ( )W t  belong to some function 

space ( )A T . 

Definition 2. Model ( )MS t  approximates the process 

( )W t  with specified accuracy 0   and reliability 

0 1   in the norm of a function space ( )A T , in case 

 ( ) ( ) 1M A
P W t S t      . 

When simulating a sequence of Gaussian random variables 

due to the accuracy of computational tools, simulation 

algorithms obtain sub-Gaussian random variables. 

Definition 3. Random variable   called sub-Gaussian, 

if for a   takes place 

 
2 2

exp exp
2

a
E




 
  

 
. 

Space of sub-Gaussian random variables is a Banach 

space with norm

 
2 2

1( ) inf 0 : exp exp ,
2

a
a E R


   

   
      

   
. 

When 2 2E a   we have a strictly sub-Gaussian random 

variables. 

Definition 4. C is a continuous, steam, convex function 

 U x , such as  0 0U  ,   0U x   when 0x  . 

Definition 5. Orlicz space generated by the C- function 

 U x  is a family of functions  ( ),f t t T  such as, for 

every ( )f t  exists a constant r such as 

( )
( )

T

f t
U d t

r


 
  

 
 . 

Orlicz space is a Banach space under the norm 



 

 

 
COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(10) 516-521 Pashko Anatolii 

517 
NATURE PHENOMENA AND INNOVATIVE ENGINEERING 

 

( )
inf 0 : ( ) 1

UL

T

f t
f r U d t

r


   
    

   
 . 

Will consider C-function  U x  for which function 

  
2

( 1)( ) exp ( 1)UG t U t   is convex and when 1t  , 

where  ( 1)U x  is inverse function of  U x . 

This condition is fulfilled for C-function 

   exp 1, 1 2,
a

U x x a     

then  
2

( ) exp ln a
UG t t

 
  

 
. 

Theorem [5]. For any real 0T   and any real 
0t  each 

of random functions 
t

TW
T

 
 
 

,    0 0W t t W t   and 

1
t W

t

 
 
 

 is similar to random function  W t . 

Thus, without loss of generality, we can consider the 

Wiener process on the interval  0,1T   and consider 

different views of the Wiener process in the form of series. 

Decomposition of the Wiener process in the Eigen 

functions of the correlation operator of the Brownian 

bridge  0,1t  has the form [6] 

 
1 0

1

sin
( ) 2 ,i

i

i t
t t

i


  







    

where  0 1 2, , ,...    - independent standard Gaussian 

random variables. 

i i  - the eigenvalues of the correlation operator. 

Fourier series expansion on  0,1t  [5] 

2 0 1 2

1

sin(2 ) 1 cos(2 )
( ) 2 ,

2 2
i i

i

it it
t t

i i

 
   

 





 
   

 
  

where  1 2,i i   - independent standard Gaussian random 

variables. 

 

3 Estimation of Karhunen – Loeve model 

 

As a model for the expansion of the Wiener process in the 

eigenfunctions of the correlation operator consider 

 
1 0

1

sin
( , ) 2 .

M

i

i

i t
S t M t

i


 



    

Based on the results [3, 4] it is easy to obtain the following 

assertion. 

Assertion 1. Model 
1( , )S t M  approximates the process 

1( )t  with accuracy 0   and reliability 1 , 0 1:     

a) in   2 0,1L  if inequalities hold 2

11MJ   

2

11

1
exp exp

2 2 11 MM
JJ

 




  
    

   
 

or 2

11MJ  . 

1
2 22

1 1

1 1

1 1
1 exp ,

2 2 2

M M

M M

J J

J J

 
 

 

    
    

   
 

where 

2

1

1

1M i

i M

J 






 

   and 

1

2
4

1

1

2M i

i M

J 






 

 
  
 
 . 

b) in   0,1 , 1, 2pL p p   or inequalities hold 

2

2

1 1

1
exp exp

2 2M M

 


  

  
    

   
, 

where 
 

 

 

2

2

1 2
0,1 1

sin
supM
t i M

i t

i









  

 
 
 
 
  

and inequalities 2 2

1M    when 1 2p   

or  2 2

11 Mp     when 2p  . 

c) in   0,1UL  if inequalities hold 

    
2

2 ( 1)( 1)

2

1 1

111
exp exp

2 2M M

UU 


 



 

 
  
    

    

, 

   
2

2 ( 1) 2

12 1 MU 




  . 

d) in   0,1C  if for
1

0,
2


 

 
 

 inequalities hold. 
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4 1 4 1 2
2

22 1 2 1 1 2

1 1 1 1 1

1
2exp 1 2 exp 2

2 2 8M M M M M

F F q
G G G G G

  

  

  

      


 

  

    

    
                                                  

    

 

and 
12 MG  , where 

1

2
2

1

1

,M i

i M

G 






 

 
  
 
  

 

1

1 2
2 2 2 2 2

1( 1)

2(1 )
1

1 1 2
ln ,

M

R

i M i

G i
F w

i G
 

 









 

  
   

   
  

  

  

1
1 2

2

0

( ) sup ( , ) ( , ) ,R
u v h

w h R u x R v x dx
 

 
  

 
  

1 6

2(2 1)

1

1 1
1, , ,

6 2

1
, 0, .

6M

q

G















  
  
 

 
   

   
  

 

 

Since 
 

 
0,1

sup sin 1
t

i t


 , then 
2 2

1

1

M i

i M

 






 

  . 

For implementations simulation and given   and   

let’s find M . The Table 1 shows the estimates for M  in 

the various functional spaces. Calculations for   0,1UL  

is not represented. Depending on the function ( )U x  results 

are between   2 0,1L  and   0,1C . 

Figure 1 shows the implementation of a Wiener 

process to represent 
1( ) .t  

TABLE 1 Values of M for different functional spaces 

δ ε a)   2 0,1L  b)   2 0,1L    0,1C  

0.1 0.05 110 36 10000 

0.05 0.05 750 120 100000 

0.01 0.05 18700 2250 >1000000 

0.1 0.01 260 45  

0.05 0.01 1050 130  

0.01 0.01 26000 2350  

 

 
FIGURE 1 Implementation of the Weiner process 

4 Estimation of Fourier model 
 

As a model for the expansion of the Wiener process in the 

Fourier series consider 

2 0 1 2

1

sin(2 ) 1 cos(2 )
( , ) 2

2 2

M

i i

i

it it
S t M t

i i

 
  

 

 
   

 
 . 

Based on the results [3, 4] it is easy to obtain the 

following assertion. 

Assertion 2. Model 
2 ( , )S t M  approximates process 

2 ( )t  with accuracy 0   and reliability 1 , 0 1:     

a) in   2 0,1L  if inequalities hold 2

11MJ   
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2

11

1
exp exp

2 2 11 MM
JJ

 




  
    

   
 

or 2

11MJ   

1
2 22

1 1

1 1

1 1
1 exp

2 2 2

M M

M M

J J

J J

 
 

 

    
    

   
 

where 

 
2

1

1

1 2M

i M

J i






 

   and  

1

24

1

1

2 2M

i M

J i






 

 
  

 
 . 

b) in   0,1 , 1, 2pL p p   if inequalities hold 

2

2

1 1

1
exp exp

2 2M M

 


  

  
    

   
 

where 

 

2 2

2

1
0,1 1

sin(2 ) 1 cos(2 )
2 sup

2 2
M

t i M

it it

i i

 


 




  

     
             
  

and inequalities 2 2

1M    when 1 2p   

or  2 2

11 Mp     when 2p  . 

c) in   0,1UL  if inequalities hold 

    
2

2 ( 1)( 1)

2

1 1

111
exp exp

2 2M M

UU 


 



 

 
  
    

    

, 

   
2

2 ( 1) 2

12 1 MU 




  . 

d) in   0,1C  in case of
1

0,
2


 

 
 

 inequalities hold

 
4 1 4 1 2

2
22 1 2 1 1 2

1 1 1 1 1

1
2exp 1 2 exp 2

2 2 2 2 2 2 8 2M M M M M

F F q
G G G G G

  

  

  

      


 

  

    

    
                                                  

    

 

and 14  MG , where  

1

22
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1

2M
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G i






 

 
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 
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1

1 2
2 2 2 2
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1 1 8
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


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


 

  
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1 6

2(2 1)
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1
, 0, .
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q
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













  
  
 

 
   

   
  

 

 

The Table 2 shows the estimates for the M  in various 

functional spaces for presentation 
2 ( )t . Figure 2 shows 

the implementation of the Wiener process for submission 

2 ( )t . 

 

TABLE 2 Values of M for different functional spaces 

δ ε a)   2 0,1L  b)   2 0,1L    0,1C  

0.1 0.05 380 60 300000 

0.05 0.05 1500 220 1000000 

0.01 0.05 38000 4400 >1000000 

0.1 0.01 400 70  

0.05 0.01 2100 240  

0.01 0.01 58000 4500  
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FIGURE 2 Implementation of Wiener process 

 

When constructing a model we use strictly sub-

Gaussian random variables obtained by the Equation 
12

1

6i j

j

 


  , where  j  - uniformly distributed on 

 0,1  random numbers. When building multiple 

implementations - the algorithm has a natural 

parallelization. Figure 3 shows the implementation of 

1( )t  and 
2 ( )t  retrieved from one sequence of strictly 

sub-Gaussian random variables. Figure 4 shown the 

implementation of presentation 
1( )t  at various M  (

110M   and 36M  ). 

 
FIGURE 3 Implementation of the Wiener process for the views 

1( )t and
2 ( )t  

 
FIGURE 4 An example: Implementation of the Wiener process for the view 

1( )t  when M=110 and M=36 

5 Conclusions 
 

We obtain estimates for the construction of strictly sub-

Gaussian model of Wiener process. The model is 

constructed with the specified accuracy and reliability for 

various functional spaces. We found the implementation 

of the Wiener process for different views. Has interest for 

obtaining similar estimates for the generalized Wiener 

process. 
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