
COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 7-11 Butin R

7
Information and Computer Technologies

Design and evaluation of control system for ambient assisted
living system based on voice and gestures recognition

R Butin*

International Information Technologies University, Kazakhstan

*Corresponding author’s e-mail: butin.ruslan@gmail.com

Received 1 May 2015, www.cmnt.lv

Abstract

This paper focuses on design and evaluation of control system for ambient assisted living system based on voice and gestures
recognition by using Microsoft Kinect. Many modern and innovative applications use voice and gestures as input. These programs
span a wide variety of genres, platforms and input technologies, from the touch screen of a smart phone to the full-motion, natural
input of devices like the Kinect for Windows Sensor. There are some project’s objectives: analyzing of existing voice and gestures
recognition algorithms; development of a Kinect-based voice and gestures recognition system for better human-computer interaction;
integration of the command system with other parts of AAL environment.

Keywords: smart-home, multi-agent systems, Kinect, voice recognition, gesture recognition, human-computer interaction, natural user interface

1 Introduction

Smart homes became available to ordinary users with the
development of information technologies. Users can control
the lighting in the house, heating, light switching and other
functions via the PC and other devices [1]. With the esca-
lating role of computers in ambient-assisted living systems,
human computer interaction is becoming gradually more
important part of it. The general believe is that with the
progress in computing speed, communication technologies,
and display techniques the existing HCI techniques may be-
come a constraint in the effectual utilization of the existing
information flow. The development of user interfaces influ-
ences the changes in the Human-Computer Interaction [2].

2 Definition of system requirements

Nowadays, the main aspect of the interaction between
humans and computers shifts towards maximum simpli-
fication. Complex and cumbersome interaction devices are
replaced by obvious and expressive means of interaction,
which easily comes to the users with least cognitive burden
like, hand gestures or voice commands. Potential buyers of

such systems may be people with disabilities, for whom
control with gestures and voice commands remain the only
way to interact with AAL-system.

3 Potential problem solutions

For Kinect applications, it is essential to successfully and
effectively communicate a person’s intent in a natural way.
Each home inhabitant “transforms” to natural “controller”.
This transformation is a core part of gesture\voice dete-
ction and recognition. Firstly, we will consider a gesture
recognition. Wikipedia gives the following definition of
“gesture” word: “A gesture is a form of non-verbal com-
munication or non-vocal communication in which visible
bodily actions communicate particular messages, either in
place of, or in conjunction with, speech. Gestures include
movement of the hands, face, or other parts of the body”
[3]. There are two effective approaches to detect and reco-
gnize a meaning of gesture: heuristic and machine learning.
What is the difference in these techniques? It has been
described below (Table 1).

TABLE 1 Difference between heuristic and machine learning approach

Heuristic approach Machine learning (ML) approach

Gesture is a coding problem Gesture is a data problem

Quick to do simple gestures and poses Signals which way not be easily human understandable

Code quickly becomes complex when trying to handle different

environmental factors
Large recording and tagging efforts for production

 Machine learning can categorize behaviors that it has not seen before

We will use a machine learning approach and Kinect
Visual Gesture Builder tool to detect and recognize user’s
gesture. Visual Gesture Builder allows us to detect appro-
priate gestures through data-driven model of machine learn-
ing. This means that gesture detection is turned into a task of
content creation (data-problem). The process of creating a
gesture detector consists of following steps:

1) Recording of raw\processed Kinect-clips with people
while they perform the interested gestures. Raw clip-

recordings can be created in Kinect Studio (Figure 1);

2) Converting of raw clips to processed clips.

3) Tagging all of the frames in the recordings that define

a gesture.

4) Building of specific gesture-detector after tagging is

complete, you can build the gesture detector.

5) Live preview of created gesture by using VgbView

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 7-11 Butin R

8
Information and Computer Technologies

FIGURE 1 Microsoft Kinect Studio tool

Visual Gesture Builder has a couple of machine learning technologies for gesture recognition (Table 2).

TABLE 2 Difference between discrete and continuous gestures

Discrete gestures Continuous gestures

Based on AdaBoost algorithm Based on RFR algorithm

Boolean type of gesture. The gesture is either happening or not Float type of gesture. There is always a signal

Complex gestures should be divided into several discrete

gestures

Can be mapped to a single gesture or be used to combine multiple discrete

gestures.

False positives can be decreased by using confidence value
Should be tied with a discrete gesture to determine context and decrease false

positives

They can be grouped into two categories: discrete indi-

cators and continuous indicators. A discrete indicator is a

binary detector that determines if a person is performing a

gesture and the confidence of the system in that gesture. A

continuous indicator shows the progress of the person while

performing a gesture. Let’s create a gesture (for example,

“Heart-attack gesture”). Firstly, we should to record all

needed clips. There are two different types of clips that we

can record: raw and processed clips. Raw files is preferable.

Raw files take up more disk space. If Kinect happens to

change some of underlying algorithms in generating depth

or skeleton, our skeleton data might become invalid and we

need to be able to regenerate that with the newest version of

depth (by using KSConvert tool). We will use three types of

streams to record necessary raw-clips. They are: Nui Raw IR

11 bit, Nui Sensor Telemetry and Nui System Info. Nui Raw

IR 11 bit stream generates both depth, generates IR and

body skeleton (Figure 2).

FIGURE 2 Recording process

The next step is to convert raw to processed clip (Figure 3).

We will open the command line and convert our recorded clip

by using KSConvert. Type the following command:<Path to

Kinect SDK folder>\Tools\KinectStudio\KSConvert.exe –

source_filename.xrf – target_filename.xef.

FIGURE 3 Converting process of raw clip

Now it is time to tag our frames. We are going to start

VGB tool. Let’s create a new solution that we will call

“Heart_Attack”. In next step, we have to start VGB

Gesture Wizard. Follow the on-screen steps (Figure 4).

FIGURE 4 VGB Gesture Wizard

We have two projects within our solution now. So one

that is called .a is actually our analysis\testing project. Any

clips that we put here will be used to test gesture-detector

with. All the clips that we put to another project (without a)

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 7-11 Butin R

9
Information and Computer Technologies

will be used for the actual detection of the gesture. It is

usually good practice to split clips about 2\3 into training

and leave 1\3 of them into testing. We can mark the time

when gesture is happening as positive training example and

other ones as negative by using “Gesture Tag” (Figure 5).

Top blue lines show us positive tag-moments. Bottom lines

show negative tagging.

FIGURE 5 Gesture Tag bar with tagging information

There are some keyboard shortcuts that can facilitate

the process of tagging (Table 3).

TABLE 3 VGB keyboard shortcuts

Shortcut Appropriate action

Shift + Left Arrow /

Shift + Right Arrow
Selects a range of frames to tag.

Enter Sets the default maximum value

Delete Deletes the selected range or a single frame

Ctrl + Left Arrow /

Ctrl + Right Arrow

Moves the cursor to the previous or next

frame.

Page Up / Page

Down

Selects the previous/next attribute in the

Tags grid as the active attribute.

Next step is to build and test our gesture. Figure 6
shows us a confident graph when user performs a gesture.

FIGURE 6 Gesture confidence graph

Secondly, we will consider a voice recognition. Speech

recognition isn’t new. But Kinect for Windows gives us

additional benefits in speech recognition. One of the other

features on the Kinect is the multi-array microphone with

speech recognition. We have to install the following libr-

aries to start work with speech recognition:

 Kinect for Windows Runtime Language Pack

 Microsoft Speech Platform SDK

 Microsoft Speech Platform Server Runtime

We have to create an enumeration. It will contain all

voice commands that we will support in our program:

public enum VoiceCommand
{
 [Description("Unknown")]
 Unknown = 0,
 [Description("Measure the heart rate")]
 HeartRate = 1,
 [Description("Measure the breathing rate")]
 BreathingRate = 2,
 [Description("Measure the blood pressure")]

 BloodPressure = 3
}

Next step is to create a grammar file. We need some

information about the Kinect and it’s speech recognizer

represented as a RecognizerInfo-object to do that. Usually

computer has several RecognizerInfo-objects installed for each

recording device. If we want to get the recognizer we need to

loop that collection and get the first result where the additional

info contains a Key/Value “Kinect” with a value “True”. Next

to that we want to specify our language pack ‘en-US’ for

commands in English. Let’s create a method that returns the

RecognizerInfo and call it GetKinectRecognizer:
private static RecognizerInfo GetKinectRecognizer()
{
foreach (RecognizerInfo recognizer in SpeechReco-

gnitionEngine.InstalledRecognizers())
{
string value;
recognizer.AdditionalInfo.TryGetValue("Kinect", out

value);
if ("True".Equals(value, StringComparison.Ordina-

lIgnoreCase) && "en-US".Equals(recognizer.Culture.-
Name, StringComparison.OrdinalIgnoreCase))

{
return recognizer;
}
}
return null;
}
To set up our grammar we will use the following

properties:
1) SpeechRecognitionEngine will be used to build our

grammar and start recognizing speech commands and
listen to the corresponding events;

2) KinectAudioSource represents the audio from the
Kinect microphone array;

3) A dictionary with voice commands and appropriate
enumeration value.

private SpeechRecognitionEngine _recognizer;
private KinectAudioSource _audioSource;
private readonly Dictionary<string, object>

_speechActions = new Dictionary<string, object>()
{
{"Measure the heart rate", VoiceCommand.HeartRate },
{"Measure the breathing rate", VoiceCommand.-

BreathingRate },
{"Measure the blood pressure", VoiceCommand.-

BloodPressure }
};
It is time to initialize a speech recognition. Let us create

a new method called InitializeSpeech.

We will start with checking if a vocabulary is specified

and if our sensor is still connected before we call our new

method GetKinectRecognizer. Once we have a

RecognizerInfo we will create a new SpeechRecognizer-

Engine based on the ID of our RecognizerInfo. Up next is

creating a Choices object that will contain all the

commands (keys) from our dictionary that will represent

command options. Now we will pass our builder into a

new Grammar object that we will load into our recognizer

so he knows what he should be listening to. After we

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 7-11 Butin R

10
Information and Computer Technologies

hooked into the recognized & rejected events we can get

the audio stream from our KinectSensor-object and link it

to the recognizer. Last thing we need to do is tell the

recognizer to start recognizing asynchronously and tell it to

keep listening after a match by passing in Recognize-

Mode.Multiple.

private void InitializeSpeech()

{

if (_speechActions == null || _speechActions.Count == 0)

throw new ArgumentException("A vocabulary is

required.");

if (_currentSensor.Status != KinectStatus.Connected)

throw new Exception("Unable to initialize speech if

sensor isn't connected.");

RecognizerInfo info = GetKinectRecognizer();

if (info == null)

throw new Exception("There was a problem initializing

Speech Recognition. May be Microsoft Speech SDK is not

installed.");

try

{

_recognizer = new SpeechRecognitionEngine(info.Id);

if (_recognizer == null) throw new Exception();

}

catch (Exception ex)

{

throw new Exception("There was a problem initializing

Speech Recognition. May be Microsoft Speech SDK is not

installed.");

}

Choices cmds = new Choices();

foreach (string key in _speechActions.Keys)

cmds.Add(key);

GrammarBuilder cmdBuilder = new GrammarBuilder

{ Culture = info.Culture };

cmdBuilder.Append("Drone");

cmdBuilder.Append(cmds);

Grammar cmdGrammar = new Grammar(cmdBuilder);

if (_currentSensor == null || _recognizer == null)

 return;

_recognizer.LoadGrammar(cmdGrammar);

_recognizer.SpeechRecognized += OnCommandReco-

gnizedHandler;

_recognizer.SpeechRecognitionRejected += OnCom-

mandRejectedHandler;

_audioSource = _currentSensor.AudioSource;

_audioSource.BeamAngleMode =

BeamAngleMode.Adaptive;

Stream kinectStream = _audioSource.Start();

_recognizer.SetInputToAudioStream(kinectStream,

new SpeechAudioFormatInfo(EncodingFormat.Pcm,

16000, 16, 1, 32000, 2, null));

_recognizer.RecognizeAsync(RecognizeMode.Multiple);
}

When command has been recognized, it will be

checked when the last command was recognized since it

might occur that he recognizes some command multiple

times or in a brief moment that will result into unwanted

actions. Also we could check the correctness of recognized

command by it’s confidence-value.

4 System architecture

Microsoft Speech Platform and Microsoft Kinect v2 Visual
Gesture Builder are the core parts of the system. The
Microsoft Speech Platform SDK provides a comprehensive
set of development tools for managing the Speech Platform
Runtime in voice-enabled applications. Add the ability to
recognize spoken words (speech recognition) and to gene-
rate synthesized speech [4]. The Kinect for Windows SDK
includes a custom acoustical model that is optimized for the
Kinect sensor’s microphone array. The Kinect for Windows
SDK provides the necessary infrastructure for managed
applications to use the Kinect microphone with the
Microsoft Speech APIs, which support the latest acoustical
algorithms [5]. Microsoft Kinect VGB is a data-driven
machine-learning solution for gesture detection, can be used
efficiently to detect even complex gestures with very high
accuracy. These technologies can make developers more
productive and raise the quality of Kinect applications in
terms of better voice\gesture detection and reduced latency.

5 Results

Voice recognition:

1) Single words are recognized and commands are pre-

defined;

2) Only a developer can add new commands;

3) Users must learn the instructions and commands

before start to use AAL's voice control system;

4) The ambient assisted living system will only be

controlled by registered commands.

Gestures:

1) Gestures can be quickly prototyped and evaluated in

semi-automatic mode;

2) High accuracy for detecting gestures can be

achieved—even in cases where skeletal data is very noisy,

such as sideways poses;

3) By tagging data appropriately, perceived latency can

be made very low;

4) The run-time costs to CPU and memory are low;

5) The database size is independent of the amount of

training data.

6 Conclusions

Nowadays a lot of attention is paid to multi-agent systems

in smart-home environment that facilitate people's lives.

Using traditional methods to create gesture and voice

detectors for Kinect is not a trivial task to do robustly.

Microsoft Speech Platform and Kinect VGB simplify this

task, which can make developers more productive and

raise the quality of Kinect applications in terms of better

voice and gesture detection and reduced latency.

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 7-11 Butin R

11
Information and Computer Technologies

References

[1] Butin R 2014 Implementation of multi-agent system for monitoring the

health status of people with disabilities The 12th International

Conference Information Technologies and Management

[2] Rautaray S Agrawal S 2012 A Design of gesture recognition system for

dynamic user interface Technology Enhanced Education (ICTEE) IEEE

International Conference

[3] Wikipedia Retrieved from: http://en.wikipedia.org/wiki/Gesture

[4] MSDN Microsoft Speech Platform Retrieved from http://msdn.-

microsoft.com/en-us/library/office/hh361572(v=office.14).aspx

[5] MSDN Speech Platforms Retrieved from http://msdn.microsoft.com/en-

us/library/office/hh361571(v=office.14).aspx

Author

Ruslan Butin, 1991, Taldykorgan, Kazakhstan

Current position, grades: IITU master-student, Almaty
University studies: bachelor degree in information systems Zhetysu State University, Taldykorgan in 2013
Scientific interest: computer vision, artificial intelligence, DRM systems
Publications: 3

