
COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 24-28 Vasilev Iv, Nenkov N

24
Information and Computer Technologies

Dialogue expert system at command line interface – DES – CLI
Ryahovetz

Iv Vasilev1, N Nenkov2*
1University of Veliko Turnovo “St.Ciryl and St.Methodius”, Veliko Turnovo, Bulgaria

2 Konstantin Preslavsky University of Shumen, Shumen, Bulgaria

*Corresponding author’s e-mail: naydenv@gmail.com

Received 1 May 2015, www.cmnt.lv

Abstract

The article describes the construction of a dialog expert system that supports the work of the system administrator. In its operation it uses
the command line, which greatly improves its functionality and flexibility.

Keywords: Expert system, Command Line Interface - CLI, Data Hoard - DH, Logical Unit - LU, Dialogue Interface - DI

1 Introduction

We are witnessing continuous development of new inform-
ation and communication technologies, continuous impro-
vement of computers and the emergence of a variety of
"smart" devices that facilitate everyday life.

Many commercial companies and existing open source
communities compete in attracting more customers with a
variety of innovative hardware and software developments.
The race is to achieve simpler and easier to use devices and
programs that guarantees them a larger share of the market.
But despite the strong development of these technologies,
we can not ignore the fact that all these decorated, aesthe-
tically appealing and easy to use interfaces obscure the
existing functionality of the products.

When additional flexibility and support are needed they
do not always do well, and even violate the operating
system on which they are installed.

2 Exposition

This is the place to mention the well known from the past
command prompt, shortly called CLI, which reliably
serves professionals in this area. For the inexperienced user
it is difficult, but there are strong advantages for profes-
sionals compared to the graphic environments. Generally
this environment is used actively and will be used actively
at server level, especially in UNIX and UNIX like plat-
forms and even in the Windows server platforms in all
business environments, banks and others. It is not outdated,
practically the command environment is the foundation
and the GUI is the add-on, consuming additional resources,
which the business at server level does not want, cuts and
pays well to specialists to work exclusively on CLI. We
must also mention, that, in many server platforms, it is
even impossible to launch GUI because the architecture
does not allow it: namely "RISK Reduced instruction set
computing" which relies on productivity and security and
they have not even written a graphical interface or if they
have, it will strongly tend to the command view with the
purpose of stability. Each layer adds extra risks to the

security and potential crashes.
The table shows a part of the advantages and disadvan-

tages of this type of environments.

TABLE 1 Advantages and disadvantages of CLI

Advantages Disadvantages

Extremely stable and fast

interface for

communication with the

operating system.

Extremely scary interface leading to

total denial for working with such an

environment

Extremely low

consumption of system

resources

Thorough knowledge of the particular

operation system.

Full control over hardware

resources and the operation

system, having the rights

needed.

Full control over the

running processes, having

the rights needed.

Thorough knowledge of the

commands and the ways to work with

them.

Ability to perform

complex tasks.

Often made mistakes by typing the

different commands, arguments and

compilation of strings of commands

Extremely fast

communication,

connection, transfer,

configuration and control

from one environment to

another

High level of risk if there are

unlimited rights, to delete significantly

damage individual programs or even

the operation system itself.

Easy possibility of

scripting and automation

of routine tasks.

The presence of large amounts of

string information on the screen leads

to confusion and missing valuable

information. Especially if the

operating person does not know how

to retrieve it again.

Full control over standard

streams stdin, stdout,

stderr; opportunity for easy

routing and localization in

logs formatting for

subsequent filtering and

monitoring.

The need to work primarily with the

keyboard and in very few and limited

cases – with the mouse.

Certainly the topic on the advantages and disadvan-
tages of one and the other environment is not limited to
that described in Table 1.

The purpose of the described system is in three main
directions:

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 24-28 Vasilev Iv, Nenkov N

25
Information and Computer Technologies

1. To offer advices and expert solutions.
2. To assist the work with command interpreter

with key information.
3. To teach itself and learn from the experience of

the users.

3 Architecture Of The System

The system will consist on the principle of three-layer
model with clearly identifiable modules. Namely DH –
Data Hoard, LU – Logical Unit and DI – Dialogue
Interface.

FIGURE 1 Module for storage and control of data

1) DH - Data Hoard. Module organizing storage of
input - output data and control of information. This
module can be divided into the following sub
modules:

- Physical database structure. A set of DDL
statements creating the necessary set of
relative tables providing space for storage of
information.

- DB-LPO Database Logical Programming
Objects. Logic programming objects within
the database. Each database offers its own
language for writing and implementation of
logic within the database for the purpose of
fast operation, control and manipulation of
input - output data. For example, Oracle
PL/SQL, MySQL Stored Procedures,
PostgreSQL PL/pgSQL and etc.

- MSS – Manipulative Set of Statements.

Manipulative set of statements serving input –
output data. A set of predefined and optimized
DML queries and their routine call.

- EHC – Exceptions Handling Collector. A
segment for collecting and processing errors.

- COS Control Optimization Section. A set of
indexes, keys, triggers and others.

2) LU – Logical Unit. This module has the specific
task to perform only and exclusively logical
operations

- LUIODH (LU – I/O – DH) – Logical Unit
Input Output Data Hoard. Segment for
interconnection with the DH module. The
connection with the DH module must be
made through a main duplex controller
LUIODH for controlling the input – output
data, divided into two simplex sub-controllers
– one controlling and manipulating the input
data Logic Input Data LID and one control-
ling and manipulating the output data Logic
Gets Data LGD.

a) LID – Logic Input Data. It can only
receive data from its own main controller
and communicate with the data hoard
module DH. (LUIODH  LID  DH).

b) LGD – Logic Get Data. It can only
receive data from its own main controller
and transmit them to the other main
controller within the logical unit LU.
(LUIODH  LGD  LUIODI)

- LUIODI (LU – I/O – DI) – Logical Unit
Input Output Dialogue Interface. Segment
for interconnection with the DI module.
Connection to and from the DI module is
made similar to the segment before through
one main duplex controller (LU – I/O – DI)
LUIODI and two simplex sub-controllers
Logic Get Request LGR and Logic
Response to Dialogue LRD. Again there is a
distribution, on which controller the data
transfer to be performed.

a) LGR – Logic Get Request. It can only
receive data from its own main controller
and transmit them to the other main
controller within the logical unit LU.
(LUIODI  LGR  LUIODH).
b) LRD – Logic Response to Dialogue.
This unit can only receive data from its own
main controller and communicate with the
dialog interface. (LUIODI  LRD  DI).

- SB – Scheduler Batches: Segment for
scheduled execution of routine tasks with the
purpose of periodic processing of data with
the purpose of updating, adding and modi-
fying, reminding, triggering events and other.

- LEU – Logical Expert Unit: Segment per-
forming only complex logical operations.
Connection to it is possible only through the
two main controllers LUIODI and LUIODH.

3) DI – Dialogue Interface. Dialog interface for inter-
connection between end users and the system. This
module has the main task to accept requests from

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 24-28 Vasilev Iv, Nenkov N

26
Information and Computer Technologies

the end user and return the necessary information.
- I-face - Input Interface. Input interface

receiving requests from users. The main task is
to lightly check for the validity of the requests,
arguments and parameters.

FIGURE 2 Logical unit

- SU - Security Unit. Security unit, which has the
task to accept data from the I-face segment and
make a thorough check in order to prevent
blocking of the system due to improper or
unauthorized use, attacks and others.

FIGURE 3 Dialog interface

- HU - Help Unit. In case of incorrect input data
detected by I-face or SU, this unit is triggered to
suggest or indicate the basic rules for using the
system.

- CSID - Controlling System of the Input Data.
Based on a single main controller that accepts
requests passed by the SU unit and transmits them
with almost no change to the logical unit LU.

- DU - Display Unit. Unit for presenting inform-
ation to the end user by simply printing text on the
screen or loading a set of templates for more
complex queries.

4 Functioning Of The System

The operation of each system is based on the occurrence of
certain events. In this system the events mainly occur from
the dialog interface DI or SB segment for scheduled tasks.

We assume that an event has occurred from the dialog
interface, ie a user has given a command to the system and
expects a response. We assume that the command is
correct and everything is fine at security level, it passes to
the main controller of the dialog interface "CSID". As
described above, it turns with the information submitted,
almost unchanged, to the logical unit "LU" to its main
controller "LUIODI". The controller is duplex, because it
works both ways, it can receive and transmit, the task of
the controller is to determine where the request came from
and what is its purpose. In this case, for example, we have
an incoming request from "DI LU" and thus the data is
passed on the simplex sub-controller LGR (logical unit
receive data)

Received here, data are reviewed and according to the
type of operation and type of data, logical operations can
be triggered to transform data and interpret them in a form
convenient for the next lowest module "DH". After
formatting the data if needed by more complex logic
operations, then the main controller "LUIODI" turns to
"LEU" for their implementation.

Data passed on this conveyor are ready to be put on the
next main controller "LUIODH", serving to connect to
the module storing data. The task of this main module is to
determine what operation is expected – retrieve informa-
tion or input information. If the event is data entry, it
passes on the sub-controller LID for input data. Its task is
to check the input data for consistency, to ensure that data
is not duplicated, whether the form consists with the one of
the base and other routine operations. When you enter a
large amount of data and if its nature allows, it can be
formatted in several stacks and submitted asynchronously
for faster performance, otherwise it is passed synchro-
nously. In cases of data dependency, the asynchronous
method fails and the synchronous transaction method is
used. So prepared data is submitted for entry to the module
"DH" and a record, change or deletion is performed.

Generally the implementation of the modification may
be performed directly or may be passed through "DB-
LPO" in need of further logical processing. The need of
this logic at the lowest level is for achieving fast
performance when processing large volumes of informa-
tion and when it is necessary to perform multiple manipu-
lations on the data in the database. This avoids unnecessary
iterations with the "LU" logical segment.

In the optimization of the product, the most popular
requests are implemented in the section "MSS" and are
routinely invoked when matching events. The purpose of
this segment is to avoid unnecessary accumulation of
similar statements even if they are well optimized. The
idea is one statement to be re-used as many times as
possible and in need of change, either modification or

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 24-28 Vasilev Iv, Nenkov N

27
Information and Computer Technologies

optimization, to affect the entire system. For additional
control or its reduction, is used "COS" control optimi-
zation section of the module "DH", which creates,
prohibits, permits or deletes a set of constants, triggers,
indexes and other control-optimizing techniques within the
selected database.

To explain the reverse action, we assume that an event
to extract data from the system is invoked by the dialog
interface. The request itself runs along the channel for
input data until reaching the main controller DH. From
there the necessary data are returned to the main controller
"LUIODH", which distributes things to happen on the
channel for retrieving data LGD.

The logic controller takes the raw data and makes
primary processing of data and then transmits the data to
the controller LUIODI, which in turn distributes them to
pass on the sub-controller LRD. This sub-controller
accepts the semi-processed data and applies formatting
methods and tools in order for data to be presented to the
user in an appropriate and understandable format. In
complex dialog templates, data is sliced into stacks and
returned asynchronously to the dialog interface and loaded
at the locations indicated on the template. In simple
consoles the data is returned synchronously.

In the description until this point, we have not mentio-
ned the element performing scheduled execution of routine
tasks SB - Scheduler Batches. For the proper operation of
the system, certain processes must be run in the
background. Such tasks can be required to calculate data in
a certain period of time or in case of reaching deadlines to
apply some logic; to routinely extract data from third-party
systems and update the system and to output data from the
system and others.

This element’s task is to create an event to one of the
two main modules LUIODI or LUIODH. After the event
is invoked, the control shall be taken by the respective
controller and "SB" only marks that at the appointed time
a process is started and the controller took the implemen-
tation. From here on, the corresponding controller takes
care of the task until its implementation and thus registers
the results in the base and logs information on occurred
errors or successful implementation.

5 Interaction With Third-Party Programs

Every good software should offer an application program-
ming interface for connection to third-party programs to
itself, as well as support such interfaces for connection from
itself to third-party programs. These are the so-called API
Application Programing Interface. The need for such
interfaces is required by many factors such as the following:

- Encapsulation and stability;
- Establish a strict protocol for communication;
- Simplified method for access to complex systems;
- Overcoming platform and other differences;

- Fast performance;
- Control over input – output data;

Application Programming Interface is the fourth inde-
pendent module that can be turned off and on as needed
and does not affect the operability of the system if it is not
active. It can be regarded as an auxiliary or extension
module for expanding the scope and functionality of the
described here expert system. Its more detailed description
is not under review here.

6 Conclusion

The described system solves everyday tasks of admini-
stration and management of different platforms. The
quality of the resulting advices depends on the knowledge
entered into the system base. Further development would
be in the direction of adding new modules and increasing
the relevancy of its recommendations.

7 Abbreviations

DML – Data Manipulation Language
DDL – Data Definition Language
CLI – Command Line Interface
GUI – Graphic User Interface
DH - Data Hoard
DB-LPO - Database Logical Programming Objects
MSS – Manipulative Set of Statements
EHC – Exceptions Handling Collector
COS - Control Optimization Section
LU – Logical Unit
LUIODH (LU – I/O – DH) – Logical Unit Input Output
Data Hoard
LID – Logic Input Data
LGD – Logic Get Data
LUIODI (LU – I/O – DI) – Logical Unit Input Output
Dialogue Interface
LGR – Logic Get Request
LRD – Logic Response to Dialogue
SB – Scheduler Batches
LEU – Logical Expert Unit
DI – Dialogue Interface
I-face - Input Interface
SU - Security Unit
HU - Help Unit
CSID - Controlling System of the Input Data
DU - Display Unit
API - Application Programing Interface

Acknowledgments

This development was funded by Project RD-08-
306/12.03.2015 to Shumen University “Konstantin
Preslavsky”, Shumen, Bulgaria.

References

[1] Кочан Ст 1993 Запознаване с операционната система UNIX

перевод СТОЯНОВА Р Издателство "Парафлоу" ООД

[2] Kroto H W, Fisher J E, Cox D E 1993 The Fullerenes Pergamon

Press Oxford

[3] Randal K M 2003 Mastering Unix Shell Scripting

[4] Randal K M 2008 Mastering Unix Shell Scripting: Bash Bourne and

Korn Shell Scripting for Programmers System Administrators and

UNIX Gurus

[5] Tallman D E, Wallace G G 1997 Synth. Met. 90 13

[6] Kochan S G, Wood P Unix Shell Programming

COMPUTER MODELLING & NEW TECHNOLOGIES 2015 19(4B) 24-28 Vasilev Iv, Nenkov N

28
Information and Computer Technologies

Authors

Ivelin Vasilev, 1975, Gorna Oryahovitsa, Bulgaria

Current position, grades: Head of deparment "Installation & Deliveries" at Codix Bulgaria
University studies: IT in the legal and executive power, St. Cyril and St. Methodius, University of Veliko Turnovo, Bulgaria
Scientific interest: Unix Environments
Publications: 2
Experience: 17 years

Nayden Nenkov, 1957, Novi Pazar, Bulgaria

Current position, grades: Vice Dean, Faculty of Mathematics and Computer Science, Shumen University
University studies: Masters of Computer Science, PhD
Scientific interest: Artificial Intelligence
Publications: 35
Experience:29 years

