
COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

40

A hybrid minimum spanning tree method
for traveling salesman problem

Hehua Li1*, Wei Xiong1, Yong Wang2
1Institute of Information Security Technology, Chongqing College of Electronic Engineering, Chongqing 401331, China

2North China Electric Power University, Beijing 102206, China

Received 9 July 2014, www.cmnt.lv

Abstract

Traveling salesman problem (TSP) has a wide range of applications in communication, transportation, manufacturing etc. However,
it is proven to be NP-complete in mathematics. An approximate method based on the Minimum Spanning Tree (MST) with an
optimal four-vertex path is presented for the triangle TSP. We first compute the MST with a complete weighted graph. Then an

Eulerian graph is generated by doubling the edges of the MST from an initial vertex. The optimal four-vertex path is used to simplify
the Eulerian graph into a Hamiltonian cycle. Different from the common MST heuristics for TSP, all the generated four-vertex paths
in the Hamiltonian cycle are the optimal four-vertex paths. Therefore, the approximation computed with the hybrid MST method is
generally shorter than that produced with the common MST heuristics. The experiments for the Euclidean TSP examples also give
the same conclusion.

Keywords: traveling salesman problem, minimum spanning tree, optimal four-vertex path, approximation

*
Corresponding author’s e-mail: lihehuacqcet@yeah.net

1 Introduction

Traveling salesman problem (TSP) is one well-known
combinatorial optimization problem. Due to its NP-com-
pleteness, it is believed that there is no exact algorithms
unless P=NP [1]. In practice, it has a wide range of
applications in the complex systems of communication,
transportation, manufacturing etc. TSP is extensively stu-
died in the fields of computer science, operation research
and discrete mathematics in order to find an efficient algo-
rithm for it [2].

In general, TSP is represented as a weighted graph with
n cities, where n is the scale of the problem. The cities and
routes are mapped into the vertices and edges, respectively.
The aim of TSP is to find a Hamiltonian cycle with the
minimum weight, i.e., the optimal Hamiltonian cycle
(OHC). The problem is easy to describe but hard to re-
solve. For a symmetrical TSP with n cities, the number of
Hamiltonian cycles is (n-1)!/2. It is impossible to find the
best solution through evaluating all of the Hamiltonian
cycles on computers. Last century, the dynamic program-
ming method is adopted by Held and Karp [3] and Bellman
[4] to tackle TSP. They proposed the algorithm which can
resolve TSP within a O(n22n) computation time. Since
then, TSP is considered as a hard problem with the expo-
nential computation time [5]. It mentions that the Concorde
package based on the improved cutting plane method
contributed by Applegate, Bixby, Chvatal and Cook is able
to resolve the TSP with less than 1000 cities in seconds or
minutes [6]. It is reported that a VLSI with 85,900 cities
has been resolved with the Concorde package on a networ-
ked computer system with 128 machines in 14 months. But

for larger TSP, the necessary computation time and me-
mory space cannot be evaluated.

Owing to the difficulty to design an exact algorithm,
many scholars turn to pursuit the approximate algorithms.
These approximate algorithms generally find an approxi-
mation near to the OHC in a polynomial computation time.
Given an approximate algorithm A, it configures out the
worst approximation whose weight is denoted as cA. Let cO
denote the weight of the optimal solution. The performance
of the approximate algorithm A is evaluated with the ratio
which is computed as cA/cO. For minimized TSP, the ratio
is bigger than or equal to 1. The approximate algorithms
can be classified into two groups. The first group is the
tour improvement methods, such as the 2-opt [7] and 3-opt
[8] methods. They are efficient to generate an approxi-
mation. The representation of the tour improvement
methods is the Lin-Kernighan heuristics (LKH) [9] which
is derived from 2-opt and 3-opt methods. It has been tested
with TSP with millions of cities and produces a
satisfactory approximation quickly [9]. The tour
construction methods also can generate the approximations
in a short time. For example, the time complexity of the
nearest neighbor algorithms [10], nearest insertion
algorithm, double minimum spanning tree (DMST) [11] is
only O(n2) and that of the Christofides heuristics [12] is
O(n3). But the approximations usually deviate from the
OHC. Hence, the improvement of these methods is always
concerned by many researchers.

Besides the above exact and approximate algorithms

for TSP, the meta-heuristic algorithms are extensively stu-

died to resolve all kinds of TSP [13]. Different from the

approximate algorithms, the meta-heuristic algorithms find

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

41

the OHC or approximate solutions using the defined evolu-

tionary rules. These evolutionary rules are believed to

explore the complex landscapes more efficiently. They are

derived from the evolution of natural life or physical

process and they are simple to execute on computers. The

representative algorithms include the heuristic Neural

Network algorithm [14], Genetic Algorithm [15], Simu-

lated Annealing algorithm [16], Ant Colony Optimization

algorithm [17,18] and Particle Swarm Optimization [19]

etc. Some local heuristics are combined with these meta-

heuristic optimization algorithms to improve their perfor-

mance [20,21]. The computation time and solution accu-

racy of the meta-heuristic algorithms are acceptable for

some TSP instances. However, they are apt to find the

local minima. Therefore, these algorithms are always being

improved.

With the approximate methods of tour construction, the

constraints of weights play an important role to compute a

good approximation. However, the number of constraints

also increases exponentially in proportion to the number of

vertices. If the weights satisfy the triangle inequality, i.e.,

wik≤wij+wjk holds for arbitrary three vertices i, j and k, we

call this kind of TSP as the triangle TSP, such as the Eucli-

dean TSP. Where, wij is the weight between two vertices i

and j. The approximations of 2 and 3/2 times of the OHC

are proven with the common MST heuristics and Chris-

tofides’ heuristics, respectively. The triangle TSP has a

broad background of applications and many rational appro-

ximate algorithms are designed considering the triangle

inequality [22]. On the other hand, the four-vertex-and-

three-line inequality [23, 24] is seldom considered for

triangle TSP. For two paths with the same four vertices and

two end vertices P1=(h, i, j, k) and P2=(h, j, i, k), one must

be shorter than the other. If P1 is shorter than P2, we call

P1 as the optimal four-vertex path. The optimal four-vertex

path is computed with the four-vertex-and-three-line ine-

quality and they are able to construct the better approxima-

tions.

Among the approximate algorithms of tour construc-

tion, we are interested in the MST heuristics. It has a small

computation complexity O(n2). Most importantly, the app-

roximations less than 2 times of the OHC are guaranteed

for the triangle TSP. It is often taken as the base by many

researchers to design more complex algorithms. In this

research, we improve the MST heuristics with an optimal

four-vertex path. At first, a MST is computed with a comp-

lete weighted graph. Secondly, an Eulerian graph is gene-

rated by doubling the edges of the MST from an initial

vertex. In the third step, the optimal four-vertex path is

adopted to simplify the Eulerian graph into a Hamiltonian

cycle composed of the optimal four-vertex paths. The

optimal four-vertex path is computed with the four-vertex-

and-three-line inequality which does not increase the com-

putation complexity of the common MST heuristics. An

optimal four-vertex path is shorter than a non-optimal four-

vertex path with the same vertices and two end vertices.

The Hamiltonian cycle with the optimal four-vertex paths

is generally shorter than that without them. Therefore, the

hybrid MST heuristics will generally compute a better

approximation than the common MST heuristics does.

The rest of the paper is organized as follows. TSP ba-

sed on weighted graph (WG) is briefly introduced in

section 2. The function of the optimal four-vertex paths is

given in section 3. The process of the hybrid MST heu-

ristics is introduced in section 4. In section 5, the hybrid

MST method is verified with tens of Euclidean TSP exam-

ples and the results are analyzed. In the last section, the

merits and shortcomings of the method are summarized

and the possibilities of the future research are given.

2 Description of TSP based on WG

In general, TSP is represented as a WG. For an ordinary

graph including n vertices, it can be represented as

)E,V(G  , where),,,(V n21 vvv  are the vertices

sets and),,,(E n)1(n1312  eee  are the edges sets.

)1(i niv  is the vertex and)1,1(ij njnie  is the

edge linking the two vertices iv and jv in the graph G.

For a graph G with n vertices, the edges can be repre-
sented as an adjacent matrix and the values of ije is given
as:



 


otherwise 0,

E(G)),if(,1 ji

ij

vv
e . (1)

The two vertices
iv and

jv are called two adjacent

vertices if 1ij e . Otherwise, they are non-adjacent.

Given the weights),,,(W n)1(n1312  www 

are assigned to the corresponding edges

),,,(E n)1(n1312  eee  .

The graph G becomes one WG. The weight is often

taken as distance, cost, etc in the TSP.

A Hamiltonian cycle (HC) is a circuit that visits each

vertex once and exactly once. For TSP, the objective is to
find the HC with the minimal weight, i.e. OHC. Given wij
is the weight between two adjacent vertices vi and vj in the
HC, the primary mathematical model of TSP is given as:

  

 









 


HCE and t.s.

HCwmin

jiji

n

1j,i

ij

evv

w

, (2)

where w(HC) is the weights of the HC and eij(1≤i, j≤n) is
the edge linking the two adjacent vertices vi and vj in the
HC. For the symmetrical TSP with n vertices, the number
of the HCs is (n-1)!/2. To decrease the complexity, more
constraints [22] are added to Equation (1) to reduce the
search space of the OHC.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

42

3 The function of the optimal four-vertex path

3.1 THE OPTIMAL K-VERTEX PATH

Given a symmetrical TSP with n vertices, a Hamiltonian

cycle is represented as HC=(v1, v2, v3,…, vi,…, vn, v1) and
its two end vertices are identical, where vi represents the

i-th vertex. It includes n k-vertex paths and the ith path is

noted as Pi=(vi, vi+1, vi+2,…, vi+k-1), where i+k-1 is less

than n. The number of k-vertex paths is computed as

formula (3), where the superscript k represents the

number of vertices in the path Pk.

k
nC

k
N

2

!
kP
 . (3)

The OHC is the Hamiltonian cycle with the minimum
weight. The OHC also includes n k-vertex paths which are
different from the other paths. The relative positions of the
vertices in the OHC are determined. Given an arbitrary k-
vertex path in the OHC, its two end vertices are concluded
and it is shorter than the other paths with the same vertices
and two end vertices. We name this kind of k-vertex paths
as the optimal k-vertex paths. Based on the description of
optimal k-vertex paths, the number of optimal k-vertex
paths is computed as Equation (4) [23]. It is obviously that
the number of optimal k-vertex paths is much smaller than
that of the whole k-vertex paths.

  k
nC

kk
N

2

1
kOP


 . (4)

The k-vertex paths are divided into two kinds which are
the optimal k-vertex paths and the non-optimal k-vertex
paths. The number of the non-optimal k-vertex paths is the
error between Equations (3) and (4). When k is bigger than
4, the number of non-optimal k-vertex paths becomes
bigger than that of the optimal k-vertex paths. It notes that
none of the non-optimal k-vertex paths belong to the OHC.
When we search the OHC with the k-vertex paths, the non-
optimal k-vertex paths can be neglected to reduce the
computation time and memory space.

In the following, we give a simple example with 10
vertices to show the reduction of the search space of the
OHC with optimal k-vertex paths.

The 10 vertices and their coordinates of the example
are illustrated in Table 1. It is considered as one symmet-
rical plain TSP.

TABLE 1 The 10 vertices and their coordinates

Vertices No. 0 1 2 3 4
Coordinates (82;7) (91;38) (83;46) (71;44) (64;60)
Vertices No. 5 6 7 8 9
Coordinates (68;58) (83;69) (87;76) (74;78) (71;71)

Due to the simplicity of the example, we compute all

of the Pis and OPis (4≤i≤10). The number of the Pis and
OPis (4≤i≤10) are computed and the results are shown in
Table 2.

TABLE 2 Comparison of number of OPis and Pis

Number of vertices i 3 4 5 6

Number of OP
i
s 360 1260 2520 3150

Number of P
i
s 360 2520 15120 75600

Number of vertices i 7 8 9 10

Number of OP
i
s 2520 1260 360 45

Number of P
i
s 302400 907200 1814400 181440

Through the results of the simple example, we know

the number of Ps is much bigger than that of the OPs
according to the number of vertices.

3.2 THE COMPUTATION OF OPTIMAL FOUR-

VERTEX PATH

Although the OHC is composed of n optimal k-vertex
paths, it is hard to compute the optimal k-vertex paths if k
is big. On the other hand, the optimal k-vertex paths will
be generated in a polynomial computation time when k is
small. In an extreme case, the optimal four-vertex paths
can be computed with the four-vertex-and-three-line ine-
quality [24]. For the other optimal k-vertex paths with
more vertices, more number of inequalities of weights will
be necessary.

Given arbitrary four vertices h, i, j and k, they will form
4!/2 four-vertex paths for symmetrical TSP. The 12 paths
P4 are shown in Figure 1 and each path is noted with an
integer in front of it. For example, P4=(h, i, k, j) represents
the 3th path. The 12 P4s are arranged in two columns. For
the two P4s in the same line, such as the 7th and 8th P4s,
their two end vertices are the same whereas their two
middle vertices are exchanged. One P4 will be shorter than
the other P4. For example, if the 7th is shorter than the 8th
path, the inequality (5) holds. This is the four-vertex-and-
three-line inequality. It is used to compute the optimal
four-vertex paths and these optimal paths are used to
construct the approximations. In Figure 1, there are total 6
such shorter paths comparing with the other 6 paths in their
same lines.

hjkhikkjhkih cccccc  . (5)

When the approximations are composed of the

optimal four-vertex paths, the OHC of a WG with n

vertices can be taken as the union of n pairs of optimal

four-vertex paths. The optimization model of the TSP can

be changed into Equation (6) with respect to the Equation

(2).

 

   





















 



4
i

'
i

4
ii

4
i

1

POP s.t.

Omin
3

1
)HC(min

ww

PwL
n

i

i
, (6)

where wi represents the i-th
4
iOP in the approximation,

which is smaller than that of the
4
iP with the same

vertices and two end vertices as
4
iOP .

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

43

FIGURE 1 12 paths formed with 4 vertices

3.3 THE REDUCTION OF THE SEARCH SPACE
WITH OPTIMAL FOUR-VERTEX PATH

It notes that the number of Hamiltonian cycles composed
of the optimal four-vertex paths will be smaller than that of
Hamiltonian cycles combined with the total four-vertex
paths. The reason is that the number of optimal four-vertex
paths is smaller than that of the total four-vertex paths. The
combinations of the vertices under the four-vertex-and-
three-line inequality will be less than those without con-
sidering it. For example, we want to compute the 5-vertex
paths with the optimal four-vertex paths for a TSP with n
vertices. Given the initial vertex is i0, the number of the 5-
vertex paths composed of the optimal four-vertex paths is
approximately evaluated as Equation (7), where m5 repre-
sents the average number of the optimal four-vertex paths
which can combine with the former (n-1)×(n-2)×(n-3)/2
optimal four-vertex paths. It is clearly that m5 is smaller
than n-4.

     
55

2

321
m

nnn
N 


 . (7)

In the previous research [25], the authors compute all
of the Hamiltonian paths composed with the optimal four-
vertex paths for the example in Table 1. The total number
of this kind of Hamiltonian paths is no more than 30000
whereas the total number of HCs is 1814400. Hence, the
search space of the OHC with the optimal four-vertex
paths will be reduced a lot with the optimal four-vertex
paths.

We use the optimal four-vertex paths to simplify the
Eulerian graph into an approximation. The optimal four-
vertex paths are shorter than the non-optimal four-vertex
paths with the same vertices and two end vertices. A better
approximation will be generated than that computed with
the common MST heuristics. In addition, the search space
of the OHC will be reduced if only the optimal four-vertex
paths are used to constitute the OHC rather than the four-
vertex paths.

4 The process of the hybrid MST heuristics

In the 3rd section, we have given the foundation of the
optimal four-vertex paths for TSP. In this section, we use it

to improve the performace of the common MST heuristics.
The hybrid MST heuristics is the combination of the
common MST heuristics and the optimal four-vertex paths.
The process of the hybrid MST heuristics is given in Table
3. It includes four main steps.

TABLE 3 The hybrid MST heuristics

Step The pseudo codes of the hybrid MST heuristics
1 Compute the MST using Prime algorithm for a complete

weighted graph with n vertices.
2 Given an initial vertex v0, generate an Eulerian graph by

doubling the edges of the MST.
3 Convert the Eulerian graph into a Hamiltonian cycle using the

optimal four-vertex paths.
4 Check the four-vertex paths in the approximation. If one path

is not optimal, change it into an optimal four-vertex path.

In the first step, the Prime algorithm is used to compute

the MST of a weighted graph. The computation comple-
xity is O(n2). For example, the MST of a TSP with 8
vertices is shown in Figure 2. The alphabets in Figure 2
represent the vertices of the graph. The next step is to
compute an Eulerian graph by doubling the edges of the
MST. We appoint vertex a as the root vertex of the Eule-
rian graph. Then the depth-first algorithm is used to com-
pute the Eulerian graph as E=(a, b, d, b, e, b, a, f, g, h, g, i,
g, f, a). Obviously, the length of E is 2 times of the MST,
which is smaller than 2 times of the length of the OHC. For
triangle TSP, we can delete the repeated vertices in E and
the rest route will not become longer. In the end, we will
obtain a Hamiltonian cycle of no more than 2 times of the
OHC. This is the common MST heuristics. The approxi-
mation computed with the common MST heuristics is ge-
nerally unsatisfactory because most of the paths in the
approximation are not optimal. In the third step after the
second step, we use the optimal four-vertex paths to con-
vert the Eulerian graph into a Hamiltonian cycle, which is
distinctive from the common MST heuristics. We first
select a segmental route with four different vertices from
the Eulerian graph and change it into a path. For example,
(a, b, d, b, e) in E is selected as the first segmental route. A
repeated vertex b will be deleted to generate a path. We
can delete the vertex b ahead of vertex d or behind vertex d
and we obtain two paths P1=(a, d, b, e) and P2=(a, b, d, e).
The two paths will be evaluated and the optimal four-
vertex path is maintained. With the Eulerian graph, the
process to generate the optimal four-vertex paths is
executed iteratively until a Hamiltonian cycle is obtained.

FIGURE 2 MST of a complete weighted graph with 8 vertices

The four-vertex paths in the approximation may not be
optimal because some reasons. The first reason is that the
appointed initial vertex may not be suitable. The second
reason is that the following optimal four-vertex path may
ruin the previous optimal four vertex path. To generate an
approximation composed of the optimal four-vertex path,

h j k i
1

h k j i
2

h i k j
3

h k i j
4

h i j k
5

h j i k
6

i h k j
7

i k h j
8

i h j k
9

i j h k
10

j h i k
11

j i h k
12

a

b

d e

f

g

h i

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

44

we adjust the non-optimal four-vertex paths in the appro-
ximation into the optimal four-vertex paths.

It mentions that we compute two approximations from
two sides of the Eulerian graph. For example, the first
Hamiltonian cycle is computed from left to right with the
Eulerian graph E whereas the second Hamiltonian cycle is
generated from right to left. If the optimal four-vertex path
is not used, the approximation is the same. However, the
two approximations will be different when the optimal
four-vertex paths are considered. In the following experi-
ments, the shorter approximation is maintained. With the
common MST heuristics, some of the generated four-ver-
tex paths will not be the optimal four-vertex paths. With
the hybrid MST heuristics, all the four-vertex paths are
altered into the optimal four-vertex paths and a better
approximation will be generated.

5 Experiments and discussions

Euclidean TSP is a special kind of triangle TSP. The Eucli-
dean TSP examples are used to test the hybrid method.
These Euclidean TSP instances are downloaded from
TSPLIB [9]. The hybrid MST heuristics is coded with C++
language and implemented on a personal computer. The
common MST heuristics is also programmed for compari-
sons. The time complexity of the two algorithms is O(n2).
The computation time of the hybrid MST heuristics may be
a little longer but it does not increase much computation
time. Therefore, the computation time is neglected in the
experiments. The OHC is computed with the Concorde
package online, which guarantees to find the optimal solu-
tion. The error between the approximations and the OHC is
computed as

err=(wA-wO)/wO×100%,

where wA and wO are the weights of the approximation and
the OHC, respectively. In the experiments of these exam-
ples, the first vertex v0 is assigned as the initial vertex to
compute the Euerian graph and Hamiltonian cycle. The
computational results are shown in Table 4.

TABLE 4 The results of the experiments

Instances wcMST whMST wOHC errcMST/% errhMST/%

Eil51 609.05 529.92 428.87 42.01 23.56

Berlin52 10376.30 9864.88 7544.36 37.54 30.76

Eil76 708.97 682.54 544.36 30.24 25.38

Pr76 138775.75 138230.67 108159.42 28.31 27.80

Rat99 1767.71 1598.81 1219.24 44.98 31.13

KroA100 28520.93 28249.88 21285.44 33.99 32.72

kroC100 27089.10 26604.00 20750.76 30.55 28.21

kroD100 26603.45 26320.97 21294.28 24.93 23.61

Rd100 10722.93 10459.11 7910.39 35.56 32.22

Eil101 930.45 861.49 640.21 45.34 34.56

Lin105 20878.58 20221.85 14382.99 45.16 40.60

Pr107 59435.99 52274.70 44301.67 34.16 18.00

Pr124 78922.73 76763.76 59030.72 33.70 30.04

Bier127 154983.26 150847.03 118293.44 31.02 27.52

Ch130 8091.69 7733.53 6110.71 32.42 26.56

Pr136 127267.69 127024.27 96780.45 31.50 31.25

Pr144 79284.44 79205.88 58535.21 35.45 35.31

Ch150 9115.37 8819.64 6530.90 39.57 35.04

kroA150 36159.74 34747.96 26524.85 36.32 31.00

kroB150 35607.00 34345.47 26127.34 36.28 31.45

Pr152 92753.64 92733.67 73683.62 25.88 25.85

U159 58689.95 56991.68 42075.65 39.49 35.45

Rat195 3308.15 3258.94 2333.87 41.75 39.64

D198 18932.66 18783.89 15808.65 19.76 18.82

kroA200 39379.79 37956.82 29369.40 34.08 29.24

Ts225 181702.06 164429.02 126645.93 43.47 29.83

Tsp225 5434.96 5276.97 3859.00 40.84 36.74

Pr226 115179.55 113959.75 80370.25 43.31 41.79

Pr264 64208.26 63746.83 49135.00 30.68 29.74

Pr299 64129.90 62086.54 48194.92 33.06 28.82

Lin318 60675.04 58940.90 42042.53 44.32 40.19

Rd400 20940.96 20449.47 15275.98 37.08 33.87

Fl417 16512.90 16333.49 11914.83 38.59 37.09

Pr439 141332.81 139816.73 107215.33 31.82 30.41

Pcb442 65044.95 63557.90 50783.55 28.08 25.15

D493 45799.66 45097.26 35023.07 30.77 28.76

U574 50232.21 49164.83 36934.79 36.00 33.11

Rat575 9430.82 9237.28 6798.25 38.72 35.88

P654 48630.75 48126.13 34646.83 40.36 38.90

D657 65577.11 64103.04 48915.65 34.06 31.05

U724 58221.13 56222.04 41908.10 38.93 34.16

Rat783 12292.80 11978.47 8846.15 38.96 35.41

With the 42 Euclidean TSP examples, we find the

hybrid MST heuristics always generates the better appro-
ximations than the common MST heuristics does for each
of the TSP instance under the same environment. It says
the MST heuristics is improved when it is combined with
the optimal four-vertex paths. The distributions of the
approximations according to their errors are listed in
Table 5. With the common MST heuristics, the number of
the approximations which are more than 1.4 times of the
OHC reaches 10 whereas only 3 such approximations are
generated with the hybrid MST heuristics. With the hybrid
MST heuristics, most of the approximations are less than
1.4 times of the OHC and all of them are bigger than 1.15
times of the OHC.

TABLE 5 Distributions of the approximations according to their errors

Error (%) (15,20] (20,25] (25,30] (30,35] (35,40] (40,50]
number of
examples

with hMST
2 2 12 14 9 3

number of
examples

with cMST
1 1 3 15 12 10

The change of the errors of the approximations with the
two algorithms according to the scale of the examples is
shown in Figure 3.

FIGURE 3 The change of the errors of the two algorithms according

to the scale of the Euclidean TSP

It clearly shows that the error of the approximation
generated with the hybrid MST heuristics is smaller than
that of the approximation generated with the common
MST heuristics. For small scale of TSP with less than 200
vertices, most of the errors with the hybrid MST heuristics

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 40-45 Li Hehua, Xiong Wei, Wang Yong

45

are much less than those of the common MST heuristics,
such as the such as Eil51, Rat99, Eil101 and Pr107, the
approximations searched with the hybrid MST heuristics
are much better than those generated with the common
MST heuristics. On the other hand, for the medium and
large size of TSP, the errors of the approximations gene-
rated with the two algorithms have a small distinction, such
as the Pr264, Fl417, Pr439, D493, U574, Rat575, P654,
D657, the approximations are not enhanced too much with
the hybrid MST heuristics. There are two reasons. The first
is that the initial vertex may not appropriate. If we change
the initial vertex to generate the Eulerian graph, a better
approximation will be acquired. Of course, the compu-
tation time will be added.

6 Conclusions

The common MST heuristics is improved with the optimal
four-vertex path for triangle TSP. The optimal four-vertex
paths are shorter than the non-optimal four-vertex paths
with the same four vertices and two end vertices. The app-
roximation composed of the optimal four-vertex paths may
be better than those without them. The time complexity of
the hybrid MST heuristics is O(n2) and it is easy to
implement on computers. Through the 42 Euclidean TSP
examples, the hybrid MST heuristics generally compute
the approximations which are less than 1.4 times of the
OHC when the first vertex is appointed.

References

[1] Karp R 1975 On the computational complexity of combinatorial

problems Networks (USA) 5(1) 45-68
[2] Johnson D S, McGeoch L A 2004 The Traveling Salesman Problem

and Its Variations Combinatorial Optimization London Springer
Press

[3] Held M, Karp R 1962 A Dynamic Programming Approach to
Sequencing Problems Journal of the Society for Industrial and
Applied Mathematics 10 196-210

[4] Bellman R 1962 Dynamic programming treatment of the travelling
salesman problem Journal of ACM 9(1) 61-3

[5] Matai R, Prakash S, Mittal M 2010 Traveling salesman problem,
theory and applications Croatia InTech

[6] Applegate D L, Bixby R E, Chvatal V, Cook W J 2006 The Traveling
Salesman Problem, A Computational Study Princeton: Princeton
University Press

[7] Verhoeven M G A, Aarts E H L, Swinkels P C J 1995 A parallel 2-
opt algorithm for the Traveling Salesman Problem Future Generation
Computer Systems 11(2) 175-82

[8] Luc M, Patrick B, Dirk C, Dirk V O 2005 Exploring variants of 2-Opt
and 3-Opt for the general routing problem Operations Research 53(6)
982-95

[9] Helsgaun K 2012 An effective implementation of the Lin-Kernighan
traveling salesman heuristic. Available:
 http://www.akira.ruc.dk/~keld/research/LKH/LKH-
2.0/DOC/LKH_REPORT.pdf.

[10] Adrian D, Joseph S B M 2003 Approximation algorithms for TSP
with neighborhoods in the plane Journal of Algorithms 48(1) 135-59

[11] Thomas H C, Charles E L, Ronald L R, Clifford S 2006 Introduction
to Algorithm second edition Beijing: China Machine Press

[12] Christofides N 1976 Worst-case analysis of a new heuristic for the
travelling salesman problem Algorithms and Complexity: New
Directions and Recent Results Academic Press

[13] Binder P M 2008 Frustration in Complexity Science 320(5874) 322-3

[14] Ghaziri H, Osman I H 2003 A neural network algorithm for the
traveling salesman problem with backhauls Computers & Industrial
Engineering 44 267-81

[15] Liu Y H 2010 Different initial solution generators in genetic
algorithms for solving the probabilistic traveling salesman problem
Applied Mathematics and Computation 216 125-37

[16] Liu Y, Xiong SW, Liu H B 2009 Hybrid Simulated Annealing
Algorithm Based on Adaptive Cooling Schedule for TSP GEC’09
Shanghai China 895-8

[17] Dorigo M, Gambardella L M 1997 IEEE Transactions on
Evolutionary Computation 1(1) 53-66

[18] Zhou Y R 2009 IEEE Transactions Evolutionary Computation 13(5)
1083-92

[19] Chen W N, Zhang J, Chung H S H, Zhong W L, Wi W G, Shi Y H
2010 IEEE Transactions on Evolutionary Computation 14(2) 278-300

[20] Bontoux B, Artigues C, Feillet D 2010 A memetic algorithm with a
large neighborhood crossover operator for the Generalized Traveling
Salesman Problem Computers & Operations Research 37(11) 1844-
52

[21] Iordache S 2010 Consultant-guided search-a new metaheuristic for
combinatorial optimization problems GECCO’10 Oregon 225-32

[22] Bläser M. 2008 A New Approximation Algorithm for the
Asymmetric TSP with Triangle Inequality ACM Transactions on
Algorithms 4(4) 1-15

[23] Yong W 2013 A Representation Model for TSP The 15th IEEE
International Conference on HPCC IEEE computer society

[24] Yong W 2012 The Frequency Graph for the Traveling Salesman
Problem World Academy of Science, Engineering and
Technology/ICECECE2012 Bali

[25] Wang Y, He W, Tian D 2012 A hybrid method to search the optimal
Hamiltonian circuit The 2nd International Conference on Materials
and Products Manufacturing Technology 605-607 2149-54

Authors

Hehua Li, July 1976, Henan Province, P.R. China.

Current position, grades: associate professor at Chongqing College of Electronic Engineering and China's Western Light visiting scholar.
University studies: master's degree in computer software and theory at Chongqing University in China.
Scientific interests: network systems integration, information security.

Wei Xiong, February 1980, Chongqing City, P.R. China.

Current position, grades: lecturer at the School of Chongqing College of Electronic Engineering, P. R. China
University studies: Master's degree in Computer Science and Technology at Chongqing University, Chongqing, China in 2008.
Scientific interests: wireless networks, computer programming, mobile computing.

Yong Wang, February 1978, Henan Province, P.R. China.

Current position, grades: associate professor of North China Electric Power University, Beijing, P. R. China.
University studies: master’s degree in the field of CAD & CAM at Bei Hang University in China.
Scientific interests: graph theory, meta-heuristic algorithms and their applications.

