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Abstract 

Traveling salesman problem (TSP) has a wide range of applications in communication, transportation, manufacturing etc. However, 
it is proven to be NP-complete in mathematics. An approximate method based on the Minimum Spanning Tree (MST) with an 
optimal four-vertex path is presented for the triangle TSP. We first compute the MST with a complete weighted graph. Then an 

Eulerian graph is generated by doubling the edges of the MST from an initial vertex. The optimal four-vertex path is used to simplify 
the Eulerian graph into a Hamiltonian cycle. Different from the common MST heuristics for TSP, all the generated four-vertex paths 
in the Hamiltonian cycle are the optimal four-vertex paths. Therefore, the approximation computed with the hybrid MST method is 
generally shorter than that produced with the common MST heuristics. The experiments for the Euclidean TSP examples also give 
the same conclusion. 
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1 Introduction 

 
Traveling salesman problem (TSP) is one well-known 
combinatorial optimization problem. Due to its NP-com-
pleteness, it is believed that there is no exact algorithms 
unless P=NP [1]. In practice, it has a wide range of 
applications in the complex systems of communication, 
transportation, manufacturing etc. TSP is extensively stu-
died in the fields of computer science, operation research 
and discrete mathematics in order to find an efficient algo-
rithm for it [2]. 

In general, TSP is represented as a weighted graph with 
n cities, where n is the scale of the problem. The cities and 
routes are mapped into the vertices and edges, respectively. 
The aim of TSP is to find a Hamiltonian cycle with the 
minimum weight, i.e., the optimal Hamiltonian cycle 
(OHC). The problem is easy to describe but hard to re-
solve. For a symmetrical TSP with n cities, the number of 
Hamiltonian cycles is (n-1)!/2. It is impossible to find the 
best solution through evaluating all of the Hamiltonian 
cycles on computers. Last century, the dynamic program-
ming method is adopted by Held and Karp [3] and Bellman 
[4] to tackle TSP. They proposed the algorithm which can 
resolve TSP within a O(n22n) computation time. Since 
then, TSP is considered as a hard problem with the expo-
nential computation time [5]. It mentions that the Concorde 
package based on the improved cutting plane method 
contributed by Applegate, Bixby, Chvatal and Cook is able 
to resolve the TSP with less than 1000 cities in seconds or 
minutes [6]. It is reported that a VLSI with 85,900 cities 
has been resolved with the Concorde package on a networ-
ked computer system with 128 machines in 14 months. But 

for larger TSP, the necessary computation time and me-
mory space cannot be evaluated. 

Owing to the difficulty to design an exact algorithm, 
many scholars turn to pursuit the approximate algorithms. 
These approximate algorithms generally find an approxi-
mation near to the OHC in a polynomial computation time. 
Given an approximate algorithm A, it configures out the 
worst approximation whose weight is denoted as cA. Let cO 
denote the weight of the optimal solution. The performance 
of the approximate algorithm A is evaluated with the ratio 
which is computed as cA/cO. For minimized TSP, the ratio 
is bigger than or equal to 1. The approximate algorithms 
can be classified into two groups. The first group is the 
tour improvement methods, such as the 2-opt [7] and 3-opt 
[8] methods. They are efficient to generate an approxi-
mation. The representation of the tour improvement 
methods is the Lin-Kernighan heuristics (LKH) [9] which 
is derived from 2-opt and 3-opt methods. It has been tested 
with TSP with millions of cities and produces a 
satisfactory approximation quickly [9]. The tour 
construction methods also can generate the approximations 
in a short time. For example, the time complexity of the 
nearest neighbor algorithms [10], nearest insertion 
algorithm, double minimum spanning tree (DMST) [11] is 
only O(n2) and that of the Christofides heuristics [12] is 
O(n3). But the approximations usually deviate from the 
OHC. Hence, the improvement of these methods is always 
concerned by many researchers.  

Besides the above exact and approximate algorithms 

for TSP, the meta-heuristic algorithms are extensively stu-

died to resolve all kinds of TSP [13]. Different from the 

approximate algorithms, the meta-heuristic algorithms find 
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the OHC or approximate solutions using the defined evolu-

tionary rules. These evolutionary rules are believed to 

explore the complex landscapes more efficiently. They are 

derived from the evolution of natural life or physical 

process and they are simple to execute on computers. The 

representative algorithms include the heuristic Neural 

Network algorithm [14], Genetic Algorithm [15], Simu-

lated Annealing algorithm [16], Ant Colony Optimization 

algorithm [17,18] and Particle Swarm Optimization [19] 

etc. Some local heuristics are combined with these meta-

heuristic optimization algorithms to improve their perfor-

mance [20,21]. The computation time and solution accu-

racy of the meta-heuristic algorithms are acceptable for 

some TSP instances. However, they are apt to find the 

local minima. Therefore, these algorithms are always being 

improved.  

With the approximate methods of tour construction, the 

constraints of weights play an important role to compute a 

good approximation. However, the number of constraints 

also increases exponentially in proportion to the number of 

vertices. If the weights satisfy the triangle inequality, i.e., 

wik≤wij+wjk holds for arbitrary three vertices i, j and k, we 

call this kind of TSP as the triangle TSP, such as the Eucli-

dean TSP. Where, wij is the weight between two vertices i 

and j. The approximations of 2 and 3/2 times of the OHC 

are proven with the common MST heuristics and Chris-

tofides’ heuristics, respectively. The triangle TSP has a 

broad background of applications and many rational appro-

ximate algorithms are designed considering the triangle 

inequality [22]. On the other hand, the four-vertex-and-

three-line inequality [23, 24] is seldom considered for 

triangle TSP. For two paths with the same four vertices and 

two end vertices P1=(h, i, j, k) and P2=(h, j, i, k), one must 

be shorter than the other. If P1 is shorter than P2, we call 

P1 as the optimal four-vertex path. The optimal four-vertex 

path is computed with the four-vertex-and-three-line ine-

quality and they are able to construct the better approxima-

tions.  

Among the approximate algorithms of tour construc-

tion, we are interested in the MST heuristics. It has a small 

computation complexity O(n2). Most importantly, the app-

roximations less than 2 times of the OHC are guaranteed 

for the triangle TSP. It is often taken as the base by many 

researchers to design more complex algorithms. In this 

research, we improve the MST heuristics with an optimal 

four-vertex path. At first, a MST is computed with a comp-

lete weighted graph. Secondly, an Eulerian graph is gene-

rated by doubling the edges of the MST from an initial 

vertex. In the third step, the optimal four-vertex path is 

adopted to simplify the Eulerian graph into a Hamiltonian 

cycle composed of the optimal four-vertex paths. The 

optimal four-vertex path is computed with the four-vertex-

and-three-line inequality which does not increase the com-

putation complexity of the common MST heuristics. An 

optimal four-vertex path is shorter than a non-optimal four-

vertex path with the same vertices and two end vertices. 

The Hamiltonian cycle with the optimal four-vertex paths 

is generally shorter than that without them. Therefore, the 

hybrid MST heuristics will generally compute a better 

approximation than the common MST heuristics does. 

The rest of the paper is organized as follows. TSP ba-

sed on weighted graph (WG) is briefly introduced in 

section 2. The function of the optimal four-vertex paths is 

given in section 3. The process of the hybrid MST heu-

ristics is introduced in section 4. In section 5, the hybrid 

MST method is verified with tens of Euclidean TSP exam-

ples and the results are analyzed. In the last section, the 

merits and shortcomings of the method are summarized 

and the possibilities of the future research are given.  

 

2 Description of TSP based on WG 

 

In general, TSP is represented as a WG. For an ordinary 

graph including n vertices, it can be represented as

)E,V(G  , where ),,,(V n21 vvv   are the vertices 

sets and ),,,(E n)1(n1312  eee   are the edges sets. 

)1(i niv   is the vertex and )1,1(ij njnie  is the 

edge linking the two vertices iv  and jv  in the graph G. 

For a graph G with n vertices, the edges can be repre-
sented as an adjacent matrix and the values of ije  is given 
as: 



 


otherwise        0,

E(G)),if(         ,1 ji

ij

vv
e . (1) 

The two vertices 
iv  and 

jv  are called two adjacent 

vertices if 1ij e . Otherwise, they are non-adjacent. 

Given the weights ),,,(W n)1(n1312  www    

are assigned to the corresponding edges 

),,,(E n)1(n1312  eee  .  

The graph G becomes one WG. The weight is often 

taken as distance, cost, etc in the TSP.  
 
A Hamiltonian cycle (HC) is a circuit that visits each 

vertex once and exactly once. For TSP, the objective is to 
find the HC with the minimal weight, i.e. OHC. Given wij 
is the weight between two adjacent vertices vi and vj in the 
HC, the primary mathematical model of TSP is given as: 

  

 









 


HCE and    t.s.
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jiji
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ij

evv

w

, (2) 

 
where w(HC) is the weights of the HC and eij(1≤i, j≤n) is 
the edge linking the two adjacent vertices vi and vj in the 
HC. For the symmetrical TSP with n vertices, the number 
of the HCs is (n-1)!/2. To decrease the complexity, more 
constraints [22] are added to Equation (1) to reduce the 
search space of the OHC. 
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3 The function of the optimal four-vertex path 

3.1 THE OPTIMAL K-VERTEX PATH 

Given a symmetrical TSP with n vertices, a Hamiltonian 

cycle is represented as HC=(v1, v2, v3,…, vi,…, vn, v1) and 
its two end vertices are identical, where vi represents the 

i-th vertex. It includes n k-vertex paths and the ith path is 

noted as Pi=(vi, vi+1, vi+2,…, vi+k-1), where i+k-1 is less 

than n. The number of k-vertex paths is computed as 

formula (3), where the superscript k represents the 

number of vertices in the path Pk. 

k
nC

k
N

2

!
kP
 . (3) 

The OHC is the Hamiltonian cycle with the minimum 
weight. The OHC also includes n k-vertex paths which are 
different from the other paths. The relative positions of the 
vertices in the OHC are determined. Given an arbitrary k-
vertex path in the OHC, its two end vertices are concluded 
and it is shorter than the other paths with the same vertices 
and two end vertices. We name this kind of k-vertex paths 
as the optimal k-vertex paths. Based on the description of 
optimal k-vertex paths, the number of optimal k-vertex 
paths is computed as Equation (4) [23]. It is obviously that 
the number of optimal k-vertex paths is much smaller than 
that of the whole k-vertex paths.  

  k
nC

kk
N

2

1
kOP


 . (4) 

The k-vertex paths are divided into two kinds which are 
the optimal k-vertex paths and the non-optimal k-vertex 
paths. The number of the non-optimal k-vertex paths is the 
error between Equations (3) and (4). When k is bigger than 
4, the number of non-optimal k-vertex paths becomes 
bigger than that of the optimal k-vertex paths. It notes that 
none of the non-optimal k-vertex paths belong to the OHC. 
When we search the OHC with the k-vertex paths, the non-
optimal k-vertex paths can be neglected to reduce the 
computation time and memory space.  

In the following, we give a simple example with 10 
vertices to show the reduction of the search space of the 
OHC with optimal k-vertex paths.  

The 10 vertices and their coordinates of the example 
are illustrated in Table 1. It is considered as one symmet-
rical plain TSP.  

TABLE 1  The 10 vertices and their coordinates 

Vertices No. 0 1 2 3 4 
Coordinates (82;7) (91;38) (83;46) (71;44) (64;60) 
Vertices No. 5 6 7 8 9 
Coordinates (68;58) (83;69) (87;76) (74;78) (71;71) 

 
Due to the simplicity of the example, we compute all 

of the Pis and OPis (4≤i≤10). The number of the Pis and 
OPis (4≤i≤10) are computed and the results are shown in 
Table 2. 

TABLE 2  Comparison of number of OPis and Pis 

Number of vertices i 3 4 5 6 

Number of OP
i
s 360 1260 2520 3150 

Number of P
i
s 360 2520 15120 75600 

Number of vertices i 7 8 9 10 

Number of OP
i
s 2520 1260 360 45 

Number of P
i
s 302400 907200 1814400 181440 

 
Through the results of the simple example, we know 

the number of Ps is much bigger than that of the OPs 
according to the number of vertices. 
 

3.2 THE COMPUTATION OF OPTIMAL FOUR-

VERTEX PATH 

 
Although the OHC is composed of n optimal k-vertex 
paths, it is hard to compute the optimal k-vertex paths if k 
is big. On the other hand, the optimal k-vertex paths will 
be generated in a polynomial computation time when k is 
small. In an extreme case, the optimal four-vertex paths 
can be computed with the four-vertex-and-three-line ine-
quality [24]. For the other optimal k-vertex paths with 
more vertices, more number of inequalities of weights will 
be necessary.  

Given arbitrary four vertices h, i, j and k, they will form 
4!/2 four-vertex paths for symmetrical TSP. The 12 paths 
P4 are shown in Figure 1 and each path is noted with an 
integer in front of it. For example, P4=(h, i, k, j) represents 
the 3th path. The 12 P4s are arranged in two columns. For 
the two P4s in the same line, such as the 7th and 8th P4s, 
their two end vertices are the same whereas their two 
middle vertices are exchanged. One P4 will be shorter than 
the other P4. For example, if the 7th is shorter than the 8th 
path, the inequality (5) holds. This is the four-vertex-and-
three-line inequality. It is used to compute the optimal 
four-vertex paths and these optimal paths are used to 
construct the approximations. In Figure 1, there are total 6 
such shorter paths comparing with the other 6 paths in their 
same lines.  

hjkhikkjhkih cccccc  . (5) 

When the approximations are composed of the 

optimal four-vertex paths, the OHC of a WG with n 

vertices can be taken as the union of n pairs of optimal 

four-vertex paths. The optimization model of the TSP can 

be changed into Equation (6) with respect to the Equation 

(2).  

 

   





















 



4
i

'
i

4
ii

4
i

1

POP   s.t.                        

Omin
3

1
)HC(min

ww

PwL
n

i

i
, (6) 

where wi represents the i-th 
4
iOP in the approximation, 

which is smaller than that of the 
4
iP with the same 

vertices and two end vertices as 
4
iOP . 
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FIGURE 1 12 paths formed with 4 vertices 

 

3.3 THE REDUCTION OF THE SEARCH SPACE 
WITH OPTIMAL FOUR-VERTEX PATH 

It notes that the number of Hamiltonian cycles composed 
of the optimal four-vertex paths will be smaller than that of 
Hamiltonian cycles combined with the total four-vertex 
paths. The reason is that the number of optimal four-vertex 
paths is smaller than that of the total four-vertex paths. The 
combinations of the vertices under the four-vertex-and-
three-line inequality will be less than those without con-
sidering it. For example, we want to compute the 5-vertex 
paths with the optimal four-vertex paths for a TSP with n 
vertices. Given the initial vertex is i0, the number of the 5-
vertex paths composed of the optimal four-vertex paths is 
approximately evaluated as Equation (7), where m5 repre-
sents the average number of the optimal four-vertex paths 
which can combine with the former (n-1)×(n-2)×(n-3)/2 
optimal four-vertex paths. It is clearly that m5 is smaller 
than n-4. 

     
55

2

321
m

nnn
N 


 . (7) 

In the previous research [25], the authors compute all 
of the Hamiltonian paths composed with the optimal four-
vertex paths for the example in Table 1. The total number 
of this kind of Hamiltonian paths is no more than 30000 
whereas the total number of HCs is 1814400. Hence, the 
search space of the OHC with the optimal four-vertex 
paths will be reduced a lot with the optimal four-vertex 
paths.  

We use the optimal four-vertex paths to simplify the 
Eulerian graph into an approximation. The optimal four-
vertex paths are shorter than the non-optimal four-vertex 
paths with the same vertices and two end vertices. A better 
approximation will be generated than that computed with 
the common MST heuristics. In addition, the search space 
of the OHC will be reduced if only the optimal four-vertex 
paths are used to constitute the OHC rather than the four-
vertex paths.  

4 The process of the hybrid MST heuristics 

In the 3rd section, we have given the foundation of the 
optimal four-vertex paths for TSP. In this section, we use it 

to improve the performace of the common MST heuristics. 
The hybrid MST heuristics is the combination of the 
common MST heuristics and the optimal four-vertex paths. 
The process of the hybrid MST heuristics is given in Table 
3. It includes four main steps.  

TABLE 3  The hybrid MST heuristics 

Step The pseudo codes of the hybrid MST heuristics 
1 Compute the MST using Prime algorithm for a complete 

weighted graph with n vertices. 
2 Given an initial vertex v0, generate an Eulerian graph by 

doubling the edges of the MST. 
3 Convert the Eulerian graph into a Hamiltonian cycle using the 

optimal four-vertex paths. 
4 Check the four-vertex paths in the approximation. If one path 

is not optimal, change it into an optimal four-vertex path. 

 
In the first step, the Prime algorithm is used to compute 

the MST of a weighted graph. The computation comple-
xity is O(n2). For example, the MST of a TSP with 8 
vertices is shown in Figure 2. The alphabets in Figure 2 
represent the vertices of the graph. The next step is to 
compute an Eulerian graph by doubling the edges of the 
MST. We appoint vertex a as the root vertex of the Eule-
rian graph. Then the depth-first algorithm is used to com-
pute the Eulerian graph as E=(a, b, d, b, e, b, a, f, g, h, g, i, 
g, f, a). Obviously, the length of E is 2 times of the MST, 
which is smaller than 2 times of the length of the OHC. For 
triangle TSP, we can delete the repeated vertices in E and 
the rest route will not become longer. In the end, we will 
obtain a Hamiltonian cycle of no more than 2 times of the 
OHC. This is the common MST heuristics. The approxi-
mation computed with the common MST heuristics is ge-
nerally unsatisfactory because most of the paths in the 
approximation are not optimal. In the third step after the 
second step, we use the optimal four-vertex paths to con-
vert the Eulerian graph into a Hamiltonian cycle, which is 
distinctive from the common MST heuristics. We first 
select a segmental route with four different vertices from 
the Eulerian graph and change it into a path. For example, 
(a, b, d, b, e) in E is selected as the first segmental route. A 
repeated vertex b will be deleted to generate a path. We 
can delete the vertex b ahead of vertex d or behind vertex d 
and we obtain two paths P1=(a, d, b, e) and P2=(a, b, d, e). 
The two paths will be evaluated and the optimal four-
vertex path is maintained. With the Eulerian graph, the 
process to generate the optimal four-vertex paths is 
executed iteratively until a Hamiltonian cycle is obtained. 

 

FIGURE 2 MST of a complete weighted graph with 8 vertices 

The four-vertex paths in the approximation may not be 
optimal because some reasons. The first reason is that the 
appointed initial vertex may not be suitable. The second 
reason is that the following optimal four-vertex path may 
ruin the previous optimal four vertex path. To generate an 
approximation composed of the optimal four-vertex path, 
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we adjust the non-optimal four-vertex paths in the appro-
ximation into the optimal four-vertex paths.  

It mentions that we compute two approximations from 
two sides of the Eulerian graph. For example, the first 
Hamiltonian cycle is computed from left to right with the 
Eulerian graph E whereas the second Hamiltonian cycle is 
generated from right to left. If the optimal four-vertex path 
is not used, the approximation is the same. However, the 
two approximations will be different when the optimal 
four-vertex paths are considered. In the following experi-
ments, the shorter approximation is maintained. With the 
common MST heuristics, some of the generated four-ver-
tex paths will not be the optimal four-vertex paths. With 
the hybrid MST heuristics, all the four-vertex paths are 
altered into the optimal four-vertex paths and a better 
approximation will be generated.  

5 Experiments and discussions 

Euclidean TSP is a special kind of triangle TSP. The Eucli-
dean TSP examples are used to test the hybrid method. 
These Euclidean TSP instances are downloaded from 
TSPLIB [9]. The hybrid MST heuristics is coded with C++ 
language and implemented on a personal computer. The 
common MST heuristics is also programmed for compari-
sons. The time complexity of the two algorithms is O(n2). 
The computation time of the hybrid MST heuristics may be 
a little longer but it does not increase much computation 
time. Therefore, the computation time is neglected in the 
experiments. The OHC is computed with the Concorde 
package online, which guarantees to find the optimal solu-
tion. The error between the approximations and the OHC is 
computed as  

err=(wA-wO)/wO×100%,  

where wA and wO are the weights of the approximation and 
the OHC, respectively. In the experiments of these exam-
ples, the first vertex v0 is assigned as the initial vertex to 
compute the Euerian graph and Hamiltonian cycle. The 
computational results are shown in Table 4. 

TABLE 4  The results of the experiments 

Instances wcMST whMST wOHC errcMST/% errhMST/% 

Eil51 609.05 529.92 428.87 42.01 23.56 

Berlin52 10376.30 9864.88 7544.36 37.54 30.76 

Eil76 708.97 682.54 544.36 30.24 25.38 

Pr76 138775.75 138230.67 108159.42 28.31 27.80 

Rat99 1767.71 1598.81 1219.24 44.98 31.13 

KroA100 28520.93 28249.88 21285.44 33.99 32.72 

kroC100 27089.10 26604.00 20750.76 30.55 28.21 

kroD100 26603.45 26320.97 21294.28 24.93 23.61 

Rd100 10722.93 10459.11 7910.39 35.56 32.22 

Eil101 930.45 861.49 640.21 45.34 34.56 

Lin105 20878.58 20221.85 14382.99 45.16 40.60 

Pr107 59435.99 52274.70 44301.67 34.16 18.00 

Pr124 78922.73 76763.76 59030.72 33.70 30.04 

Bier127 154983.26 150847.03 118293.44 31.02 27.52 

Ch130 8091.69 7733.53 6110.71 32.42 26.56 

Pr136 127267.69 127024.27 96780.45 31.50 31.25 

Pr144 79284.44 79205.88 58535.21 35.45 35.31 

Ch150 9115.37 8819.64 6530.90 39.57 35.04 

kroA150 36159.74 34747.96 26524.85 36.32 31.00 

kroB150 35607.00 34345.47 26127.34 36.28 31.45 

Pr152 92753.64 92733.67 73683.62 25.88 25.85 

U159 58689.95 56991.68 42075.65 39.49 35.45 

Rat195 3308.15 3258.94 2333.87 41.75 39.64 

D198 18932.66 18783.89 15808.65 19.76 18.82 

kroA200 39379.79 37956.82 29369.40 34.08 29.24 

Ts225 181702.06 164429.02 126645.93 43.47 29.83 

Tsp225 5434.96 5276.97 3859.00 40.84 36.74 

Pr226 115179.55 113959.75 80370.25 43.31 41.79 

Pr264 64208.26 63746.83 49135.00 30.68 29.74 

Pr299 64129.90 62086.54 48194.92 33.06 28.82 

Lin318 60675.04 58940.90 42042.53 44.32 40.19 

Rd400 20940.96 20449.47 15275.98 37.08 33.87 

Fl417 16512.90 16333.49 11914.83 38.59 37.09 

Pr439 141332.81 139816.73 107215.33 31.82 30.41 

Pcb442 65044.95 63557.90 50783.55 28.08 25.15 

D493 45799.66 45097.26 35023.07 30.77 28.76 

U574 50232.21 49164.83 36934.79 36.00 33.11 

Rat575 9430.82 9237.28 6798.25 38.72 35.88 

P654 48630.75 48126.13 34646.83 40.36 38.90 

D657 65577.11 64103.04 48915.65 34.06 31.05 

U724 58221.13 56222.04 41908.10 38.93 34.16 

Rat783 12292.80 11978.47 8846.15 38.96 35.41 

 
With the 42 Euclidean TSP examples, we find the 

hybrid MST heuristics always generates the better appro-
ximations than the common MST heuristics does for each 
of the TSP instance under the same environment. It says 
the MST heuristics is improved when it is combined with 
the optimal four-vertex paths. The distributions of the 
approximations according to their errors are listed in 
Table 5. With the common MST heuristics, the number of 
the approximations which are more than 1.4 times of the 
OHC reaches 10 whereas only 3 such approximations are 
generated with the hybrid MST heuristics. With the hybrid 
MST heuristics, most of the approximations are less than 
1.4 times of the OHC and all of them are bigger than 1.15 
times of the OHC.  

TABLE 5  Distributions of the approximations according to their errors 

Error (%) (15,20] (20,25] (25,30] (30,35] (35,40] (40,50] 
number of 
examples 

with hMST 
2 2 12 14 9 3 

number of 
examples 

with cMST 
1 1 3 15 12 10 

The change of the errors of the approximations with the 
two algorithms according to the scale of the examples is 
shown in Figure 3.  

 

FIGURE 3 The change of the errors of the two algorithms according  

to the scale of the Euclidean TSP 

It clearly shows that the error of the approximation 
generated with the hybrid MST heuristics is smaller than 
that of the approximation generated with the common 
MST heuristics. For small scale of TSP with less than 200 
vertices, most of the errors with the hybrid MST heuristics 
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are much less than those of the common MST heuristics, 
such as the such as Eil51, Rat99, Eil101 and Pr107, the 
approximations searched with the hybrid MST heuristics 
are much better than those generated with the common 
MST heuristics. On the other hand, for the medium and 
large size of TSP, the errors of the approximations gene-
rated with the two algorithms have a small distinction, such 
as the Pr264, Fl417, Pr439, D493, U574, Rat575, P654, 
D657, the approximations are not enhanced too much with 
the hybrid MST heuristics. There are two reasons. The first 
is that the initial vertex may not appropriate. If we change 
the initial vertex to generate the Eulerian graph, a better 
approximation will be acquired. Of course, the compu-
tation time will be added. 

6 Conclusions 

The common MST heuristics is improved with the optimal 
four-vertex path for triangle TSP. The optimal four-vertex 
paths are shorter than the non-optimal four-vertex paths 
with the same four vertices and two end vertices. The app-
roximation composed of the optimal four-vertex paths may 
be better than those without them. The time complexity of 
the hybrid MST heuristics is O(n2) and it is easy to 
implement on computers. Through the 42 Euclidean TSP 
examples, the hybrid MST heuristics generally compute 
the approximations which are less than 1.4 times of the 
OHC when the first vertex is appointed. 
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