
COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 326-332 Su Shoubao, Su Yu, Xu Mingjuan  

326 

 

Comparisons of Firefly Algorithm with Chaotic Maps 

Shoubao Su1, Yu Su2, Mingjuan Xu3* 
1 School of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China; 

2 School of Information & Software Engineering, University of Electronic Science &Technology of China, Chengdu 610054, China; 

3 School of Information Engineering, West Anhui University, Lu’an 237012, P.R. China 

Received 1 November 2014, www.cmnt.lv 

Abstract 

Firefly Algorithm (FA) is one of the new bio-inspired algorithm driven by the simulation of the flashing behavior of fireflies. To deal 
with the problems of low accuracy and local convergence in standard FA, the chaos theory is introduced into the evolutionary 
process of FA. Since chaotic mapping has certainty, ergodicity and stochastic property, by initializing the population of fireflies and 
replacing the constant value of absorption coefficient with four chaotic maps, the proposed FA increases its convergence rate  and 

resulting precision. Comparisons experimentally show that convergence quality and accuracy are improved, which testify that 
modified FA with chaos is valid and feasible. 
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1 Introduction 

Metaheuristic algorithms are optimization algorithms 
which attempt to better the quality of solution members ite-
ratively with some random characters. Majority of these 
algorithms are inspired by biological behavior. Unlike 
deterministic solution methods, metaheuristic algorithms 
are not affected by the behavior of the optimization prob-
lem[1]. So this property makes the algorithm to be used 
widely in different fields[2]. The firefly algorithm has 
become an increasingly important method of Swarm Intel-
ligence that has been applied in almost all areas of optima-
zation, as well as engineering practice. Many problems 
from various areas have been successfully solved using the 
firefly algorithm and its variants. The FA is based on the 
idealized behavior of the flashing features of fireflies. 
Preliminary studies show that the FA can perform superi-
orly, compared with genetic algorithm and particle swarm 
optimization, and it is applicable for mixed variable and 
engineering optimization[3].  

Recently, the new idea of applying chaotic systems to 
stochastic processes in optimization algorithms has been 
noticed by many researchers. In random-based and sto-
chastic optimization algorithms, the role of randomness 
can be played by a chaotic dynamics[6-11]. In Ref. [8] 
different chaotic maps are utilized to tune the attractive 
movement of the fireflies in the algorithm and Ref. [12] 
introduces a chaos-enhanced firefly algorithm with auto-
matic parameter tuning. In Ref. [2], researchers introduce a 
modified FA approach combined with chaotic sequences 
applied to reliability-redundancy optimization. Experimen-
tal studies assert that the benefits of using chaotic signals 
instead of random signals are often evident although it is 
not mathematically proved yet [13].  

In this paper, we use four chaotic maps to initialize the 
population of fireflies and replace the constant value of 
absorption coefficient γ. Simulation is also done on sixteen 

benchmark functions. From the simulation result, it is 
shown that the modified firefly algorithm with chaos 
outperforms the standard firefly algorithm. The structure of 
this paper is organized as follows. In Section 2, firefly 
algorithm and chaotic map will be presented. The details of 
the proposed algorithm with chaos are explained in Section 
3, and the simulation results will be presented In Section 4. 
Finally, conclusions are demonstrated in Section 5. 

2 Firefly algorithm and chaotic map 

2.1 FIREFLY ALGORITHM 

The firefly algorithm is inspired by the flashing behavior of 
fireflies. According to Yang[10], there are three assump-
tions in firefly algorithm: 
1) All fireflies are unisexual and every firefly attracts 

attracted to every other firefly; 
2) Attractiveness is proportional to a firefly’s brightness. 

For any two fireflies, the less bright one will be 
attracted by the brighter one, and the brightness will 
reduce as their distance increases; 

3) If there are no fireflies brighter than a given firefly, it 
will move randomly. 
As we know the light intensity I(r) is inversely propor-

tional to the distance r from the light source. Therefore 
when light passes through a medium with light absorption 
coefficient of γ, I(r) varies with distance r as given below: 

2

0)( reIrI   , (1) 

where I0 is the intensity at the point of source. Because 
computationally computing )1/(1 2r  is easier than 

2re  . So I(r) can be calculated as follows[8]: 
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Each firefly has its distinctive attractiveness   can be 
defined as below: 

2

0)( rer   , (3) 

Similarly it can be defined as follows: 
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where 0  is the attractiveness at  r =0. 
The firefly located at xi movement is attracted to ano-

ther more brighter firefly located at xj is determined by 
equation (5): 
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The second item is attributing to the attraction, and the 
third item is randomization with (0 1)    and  . For 
most practical problems, we can use a constant value of 

0.2 . Here  is a vector of random variables being deri-
ved from a Gaussian distribution. In Ref. [10] Levy distri-
bution was used instead of Gaussian one. 

2.2 CHAOTIC MAP 

Chaos is a stochastic motion mapped by the deterministic 
equation and it is different from the phenomenon of ire-
gularity and disorder. Chaos has a fine internal structure. It 
has three characters: random, ergodic and regularity. Ergo-
dic property can search all states by its formulas within 
certain range. So chaos became a available strategy to 
avoid being trapped in local optima and improve the 
quality of searching global optimum[8]. To utilize this ad-
vantage, this paper initializes the population of fireflies and 
replaces the constant value of absorption coefficient with 
chaotic maps. Four well-known maps as follows. 

1)  Logistic map 

(1 )1x x xi i i  , (6) 

here  is a control parameter. When 04, 0 1    , 
logistic is totally in a chaotic state [11]. In this paper, 

assigns 4.  

2)  Tent map. The tent map is very similar to the logistic 
map. This map is defined by the following equation[7] 
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3) Iterative map. The iterative chaotic map with infinite 
collapses is expressed by equation[8] 
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where (0,1)a is a suitable parameter. 

4) Gauss map. The Gauss map (also known as Gaussian 
map or mouse map) given by the Gaussian function [9] 

2

1 exp(- )i ix x  . (9) 

3 Propsed firefly algorithm 

When firefly algorithm is used to optimize the multi-peak 

function, it can be easily trapped in the local minima, 
which leads to slow convergence speed. Moreover, it is 
difficult to obtain an accurate result without the use of a 
good searching method. Chaos is a general nonlinear phe-
nomenon in nature which has characteristics of random-
ness, ergodicity, and regularity because of its exquisite 
internal structure. This section we present a modified FA 
with chaos theory to improve the standard FA’s conver-
gence quality and precision. 

3.1 DEFECTS OF FIREFLY ALGORITHM 

Analyzing defects of firefly algorithm in its search process 
as follows: 
1)  Initialization process is random. Although random 

initialization can ensure the initial fireflies distributed 
homogeneous in the solution space, the quality of 
solutions is uncertain, because a part of fireflies far 
away the global optimum. If the initial fireflies are not 
only distributed homogeneous but also high-quality, it 
will help to better the mass of fireflies, and prevent 
algorithm to be prematurely stuck in local optima to 
some extent. 

2)  The light absorption coefficient of γ is a constant value. 
The value of γ determines the attractiveness with all the 
fireflies. In general γ∈[0,10] could be suggested[15], it 
is more convenient. However, to use fixed value for all 
the problems is not rational. In fact the absorption 
coefficient should be varied with the iteration in 
searching space. Therefore, we proposed here to tune γ 
with chaotic maps and not use the constant value. 

3.2 CHAOTIC FIREFLY ALGORITHM 

In stochastic searching optimization algorithms, the methods 
utilizing chaotic variables instead of random variables are 
called chaotic optimization algorithm[16]. In these algo-
rithms, due to the nonrepeatability and ergodicity of chaos, 
it can achieve overall searches at higher speeds than sto-
chastic searches that depend on probabilities[17]. So in this 
paper we try to use chaotic map to initialize the population 
of fireflies and tune the absorption coefficient. 

// Chaotic Firefly Algorithm 

Begin 

Objective function  f(x),x =  (x1…..xd)
T 

Generate an initial chaotic population of fireflies   

xi,i = 1,2,…n 

Formulate light intensity I so that it is associated with f(x) 

    While (t < MaxGeneration) 

Define absorption coefficient γ with chaos 

    For i = 1: n (n fireflies) 

       for j = 1: n (n fireflies) 

           if (Ij > Ii),  

move firefly i towards j 

end if 

           Vary attractiveness with distance r via exp( ^2r ) 

           Evaluate new solutions and update light intensity 

        end for j 

      end for i 

      Rank the fireflies and find the current best 

end while 

Post-processing the results and visualization 

End 

FIGURE 1 Chaotic Firefly Algorithm Pseudo code 
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On the other hand, from equation (5), it is easy to see 
that there exist two limiting cases when γ is small and 
large. When γ trends towards zero, the attractiveness beco-
me constant. That is to say, a firefly can be seen by all 
other fireflies. When γ tends to very large, then the attract-
tiveness decreases remarkably, and all fireflies are short-
sightedness. This means all fireflies move nearly casually, 
which equivalently a stochastic search technique. This may 
be decrease the precision of the firefly algorithm. So, the 
proposed chaotic firefly algorithm in this paper, tries to use 
four famous chaotic maps to initialize the population of 
fireflies and to tune γ instead of constant values in the equ-
ation (5). The equation (5) is modified to 

   
 )(

2)(
01 ij

rt
ii xxexx . (10) 

In this context, γ (t)  is adopted with four mentioned 
chaotic maps. The pseudo code of chaotic firefly algorithm 
can be given in Figure 1. 

4 Simulation results 

The proposed algorithm were tested on sixteen benchmark 
functions which be given as Table 1. All simulations are 
run in Matlab 2010b with 2GB RAM. The algorithms used 
for comparison are 1) Standard firefly algorithm, 2) 
Proposed algorithm with four chaotic maps. The algo-
rithms were executed with 500 generations and 30 popu-
lation sizes, 10   as suggested in Ref. [18]. 

Table 2 shows the best solution, the worst solution, the 
mean of the solutions and the standard deviation of 100 
runs. Mean best fitness and standard deviation are conside-
red to measure the scalability. It is considerable that all of 
the best solutions are exactly equal the exact solution of the 
problem. Logistic and Gauss map have better solutions 
than other maps according to the best solution. 

Stronger local search ability of the proposed algorithm 
with chaos is proven by the improved results of the given 
functions. Global searching capacity is also represented by 

the betterment of the results. Due to space limitations, we 
give nine comparisons of convergence processes of the 
proposed algorithm with chaos and standard FA in the 
above benchmark functions (FIGURES 2-9). It can be 
found out that the proposed FA outperformed standard FA 
and with the same parameter settings (the algorithms were 
executed with 100 generations and 30 population sizes). 

 

 

FIGURE 2 Comparison of curve graph for f1 

  

FIGURE 3 Comparison of curve graph for f2

 
TABLE 1  Benchmark Functions 

Functions Formulations Limits 

1
f  

2 2 2 2 2 2 2 2( 4) ( 4) ( 4) ( 4) ( 4)
1 2 1 2 1 2 1 2

min ( ) 2 2
x x x x x x x x

f x e e e e
            

   
 [ 5,5]x

i
   

2
f  

2 2
min ( ) ( 5) ( 5)

1 2
f x x x     [ 10,10]x

i
   

3f
 2 2min ( ) cos(18 ) cos(18 )

1 2 1 2
f x x x x x     [ 1,1]x

i
   

4f
 2 2 2min ( ) 100( ) ( 1)

2 1 1
f x x x x     [ 2.048,2.048]x

i
   

5f
 

5.1 5 12 2
min ( ) ( 6) 10(1 ) cos 102 1 1 12 84

f x x x x x
 

        [ 5,15]x
i
   

6f
 2 2min ( ) ( 2 7) (2 5)

1 2 1 2
f x x x x x      [ 10,10]x

i
   

7f
 

12 4 6 2 4
min ( ) 4 2.1 4 41 1 1 1 2 1 13

f x x x x x x x x       [ 5,5]x
i
   

8f
 

2 2sin( 0.5)
1 2

min ( )
2 2 21 0.001( ) 0.5

1 2

x x
f x

x x

 

  

 [ 10,10]x
i
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9f
 

2 2 2
min ( ) {1 ( 1) (19 14 3 14 6 3 )}1 2 1 1 1 1 2 1

2 2 2
{30 (2 3 ) (18 32 12 48 36 27 )}1 2 1 1 2 1 2 2

f x x x x x x x x x

x x x x x x x x

        

      

 [ 2,2]x
i
   

10f  2 2 2 2max ( ) 660 ( 11) ( 7)
1 2 1 2

f x x x x x        [ 6,6]x
i
   

11f  
2 2( ) ( )

1 2max ( ) cos cos
15 1 2

x x
f x x x e

    
  [ 20,20]x

i
   

12f  

2 2 2 2 2
max ( ) ln{[(sin(cos cos ) ) (cos(sin sin ) ) ] }1 2 1 2 1

2
0.1(( 1)2 ( 1) )1 2

f x x x x x x

x x

    

   

 [ 10,10]x
i
   

13f  
5 5

max ( ) cos( 1) cos(( cos( 1) )
1 2

1 1

f x i i x i i i i x i

i i

  
       

     
 [ 10,10]x

i
   

14f  2min ( )
1

i

n
f x x

i



 [ 2, 2]xi    

15f  2min ( ) ( 10cos(2 ) 10)
1

n
f x x x

i i
i

  


 [ 10, 10]xi    

 

  
FIGURE 4 Comparison of curve graph for f4 

 
 

FIGURE 5  Comparison of curve graph for f5 

  
FIGURE 6  Comparison of curve graph for f6 

  
FIGURE 7  Comparison of curve graph for f9 

TABLE 2  Comparison of Standard FA and Chaotic FA 

Functions Optimization Method Best solution Worst solution Medium of solutions Standard Deviation 

1
f  

Standard FA 1.0176E-12 6.4556E-11 2.4690E-12 7.6288E-12 

Logistic map 1.0176E-12 1.8155E-11 2.1521E-12 3.0949E-12 

Tent map 1.0176E-12 1.0491E-10 4.8634E-12 1.2216E-11 

Iterative map 1.0851E-12 4.0348E-04 6.2328E-05 1.0876E-04 

Gauss map 1.0176E-12 1.0329E-11 1.7976E-12 1.6285E-12 
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2
f  

Standard FA 2.5000E+01 4.4996E+01 2.6933E+01 3.3282E+00 

Logistic map 2.5000E+01 2.9694E+01 2.5211E+01 6.2300E-01 

Tent map 2.5000E+01 2.5862E+01 2.5039E+01 1.2829E-01 

Iterative map 2.5000E+01 5.7063E+01 3.5034E+01 9.4611E+00 

Gauss map 2.5000E+01 2.7954E+01 2.5247E+01 5.2753E-01 

3
f  

Standard FA -2.0000E+00 -2.0000E+00 -2.0000E+00 4.3668E-15 

Logistic map -2.0000E+00 -2.0000E+00 -2.0000E+00 3.2105E-15 

Tent map -2.0000E+00 -1.8789E+00 -1.9891E+00 3.4831E-02 

Iterative map -2.0000E+00 -1.3945E+00 -1.8232E+00 9.0131E-02 

Gauss map -2.0000E+00 -1.3945E+00 -1.9201E+00 9.7702E-02 

4
f  

Standard FA 4.4876E-18 1.2602E+00 4.2904E-02 1.3422E-01 

Logistic map 1.0928E-18 6.8244E-01 3.8561E-02 9.5235E-02 

Tent map 6.7522E-18 2.3144E+00 9.7590E-02 3.3412E-01 

Iterative map 1.5032E-18 3.8095E+00 4.6297E-02 3.8240E-01 

Gauss map 4.2402E-18 1.7009E+00 5.9070E-02 2.0013E-01 

5
f  

Standard FA 3.9789E-01 1.6091E+00 4.2213E-01 1.3534E-01 

Logistic map 3.9789E-01 7.0256E-01 4.0129E-01 3.0604E-02 

Tent map 3.9789E-01 5.4383E+00 5.1643E-01 5.6304E-01 

Iterative map 3.9789E-01 2.3977E+01 1.7885E+00 3.0466E+00 

Gauss map 3.9789E-01 1.7454E+00 4.6988E-01 2.1218E-01 

6
f  

Standard FA 3.4693E-18 3.2596E+01 4.4325E+00 6.3051E+00 

Logistic map 2.3766E-19 2.6489E+00 8.0357E-02 3.8548E-01 

Tent map 4.5401E-19 1.8151E+00 3.6728E-02 1.8924E-01 

Iterative map 2.5026E-18 1.6343E+01 2.5490E+00 3.4054E+00 

Gauss map 6.1576E-19 9.2337E+00 2.0756E-01 1.0640E+00 

7
f  

Standard FA -1.0316E+00 -2.1546E-01 -1.0234E+00 8.1615E-02 

Logistic map -1.0316E+00 -1.0316E+00 -1.0316E+00 1.5621E-15 

Tent map -1.0316E+00 -1.0316E+00 -1.0316E+00 1.5621E-15 

Iterative map -1.0316E+00 -7.4975E-02 -9.8644E-01 1.8559E-01 

Gauss map -1.0316E+00 -2.1546E-01 -9.7421E-01 2.0923E-01 

8
f  

Standard FA -1.4480E+00 -1.4476E+00 -1.4480E+00 4.0389E-05 

Logistic map -1.4480E+00 -1.4480E+00 -1.4480E+00 2.9011E-15 

Tent map -9.5885E-01 -8.8878E-01 -8.9286E-01 1.4984E-02 

Iterative map -9.5885E-01 -8.8877E-01 -8.9051E-01 1.0355E-02 

Gauss map -9.5885E-01 -8.8878E-01 -8.9439E-01 1.9106E-02 

9
f  

Standard FA 3.0000E+00 5.3589E+01 9.1263E+00 1.2362E+01 

Logistic map 3.0000E+00 3.0000E+01 6.7289E+00 9.2646E+00 

Tent map 3.0000E+00 3.0000E+01 5.1600E+00 7.3618E+00 

Iterative map 3.0000E+00 8.4000E+02 2.9189E+02 3.6549E+02 

Gauss map 3.0000E+00 8.4000E+02 1.8838E+01 8.4071E+01 

10f  

Standard FA 6.6000E+02 6.6000E+02 6.6000E+02 0.0000E+00 

Logistic map 6.6000E+02 6.6000E+02 6.6000E+02 0.0000E+00 

Tent map 6.6000E+02 6.6000E+02 6.6000E+02 0.0000E+00 

Iterative map 6.6000E+02 6.6000E+02 6.6000E+02 2.9406E-04 

Gauss map 6.6000E+02 6.4976E+02 6.5984E+02 1.1679E+00 

11
f  

Standard FA 1.0000E+00 9.3803E-04 2.0951E-01 2.9770E-01 

Logistic map 1.0000E+00 1.3566E-01 8.4126E-01 2.8523E-01 

Tent map 1.0000E+00 3.5662E-26 3.4516E-01 4.5263E-01 

Iterative map 1.0000E+00 1.1820E-203 2.1324E-01 3.9122E-01 

Gauss map 1.0000E+00 0.0000E+00 1.1002E-01 3.1446E-01 

12
f  

Standard FA 2.2051E+00 2.0156E+00 2.1694E+00 5.4808E-02 

Logistic map 2.2051E+00 2.2051E+00 2.2051E+00 4.5454E-16 

Tent map 2.2051E+00 1.3026E+00 1.8712E+00 2.7416E-01 
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Iterative map 2.2051E+00 1.6587E+00 1.9531E+00 2.6351E-01 

Gauss map 2.2051E+00 -3.7112E+00 8.5499E-01 1.1649E+00 

13f  

Standard FA 1.8673E+02 5.4405E+01 1.5826E+02 3.9709E+01 

Logistic map 1.8673E+02 2.3137E+01 1.4147E+02 5.1459E+01 

Tent map 1.8673E+02 5.2553E+01 1.6440E+02 3.7499E+01 

Iterative map 1.8673E+02 1.2965E+01 8.6621E+01 5.6661E+01 

Gauss map 1.8673E+02 1.6286E+01 9.1016E+01 6.1511E+01 

14f  

Standard FA 6.4453E-07 1.7977E-04 1.0845E-05 2.4858E-05 

Logistic map 5.0530E-07 1.7721E-04 8.2073E-06 2.1639E-05 

Tent map 4.1150E-07 1.0832E-04 9.1679E-06 1.8123E-05 

Iterative map 3.8522E-07 3.1273E-04 1.4320E-05 3.7946E-05 

Gauss map 5.1035E-07 4.2150E-04 1.0884E-05 4.2908E-05 

15f  
Standard FA 6.9673E+00 5.9701E+01 1.8765E+01 7.5423E+00 

Logistic map 6.9697E+00 5.2739E+01 1.9154E+01 8.0053E+00 

  

FIGURE 8  Comparison of curve graph for f11 

5 Conclusion 

This paper proposed modified firefly algorithm with chaos. 
We use four chaotic maps to initialize the population of 
fireflies and replace the constant value of absorption coe-
fficient. Simulation is also done on sixteen benchmark 
functions. From the simulation result, it is shown that the 
modified firefly algorithm with chaos can increase the 
quality of initial solutions, avoid being in local optima in a 
certain extent. Our methods enhance the convergence 
speed and improve the precision of the solution. 

  

FIGURE 9  Comparison of curve graph for f12 
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