
COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12C) 419-423 Zhao Runlin, Zhao Yang  

419 
 

Depth Induced Feature Representation  
for 4D Human Activity Recognition 

Runlin Zhao1*, Yang Zhao2 
1Department of Computer Science and Technology, Yuncheng University, Yuncheng, China 

2School of Automation, University of Electronic Science and Technology of China, Chengdu, China  

Received 23 November 2014, www.cmnt.lv 

Abstract 

Human activity recognition based on RGBD data has drawn considerable attention due to recent emergence of low-cost depth 
cameras. Essentially, human activities are composed by human bodies moving in four-dimensional space, (x,y,z,t). The traditional 
human activity recognition approaches usually ignore depth information thus degrading its discriminative performance. In this paper, 

our contributions are two-fold. First of all, we learn an Activity Depth Mapping (ADM) over each activity from training samples, 
where Activity Depth Maps are represented by Gaussian Mixture of Models (GMM) and encode depth distributions of activities. 
Second, we propose a novel feature representation, called Depth-Induced Multiple Channel STIPs (DIMC-STIPs), for activity 
representation with RGB-D data where both color and depth channels are available. The proposed feature representation is evaluated 
on the public dataset RGBD-HuDaAct and it remarkably improves the classification accuracy over state-of-the-art approaches. 
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Introduction 

Much effort has been made in human activity understan-
ding since human activities play important roles on smart 
healthcare and wellbeing [9], human-computer interfaces 
[30], video surveillance [19], and content-based video 
indexing. Visual activity recognition has been an active 
research topic in computer vision community [40]. So far, 
most of the visual action recognition approaches only 
considered human body movement in x-y-t subvolumes 
due to the high cost and low availability of depth cameras. 
In this case, we usually capture activities using color came-
ras thus losing depth information. Hence, this simplific-
ation definitely leads to discriminative performance degra-
dation. However, both physical bodies and motions are of 
four dimensions, x-y-z-t, in real world. That is, human 
activities involve not only spatio-temporal axes but also a 
depth axis. The recent progress in depth sensors (e.g. 
Microsoft Kinect [30]) has drawn much attention on hu-
man activity recognition from RGBD data [30], [26], [18], 
[33], [35], [41], [43], [42]. 

Compared with infinite variation in appearance of 
human activities, depth information is a straightforward yet 
useful cue. The depth constraints on the structure of the 3D 
Scenes and activities can be directly transposed into image/ 
video content [36]. Consequently, learning and inferring 
depth from images/videos are widely used in various com-
puter vision tasks [36], [28], [25]. The rationalization 
behind this is that video features that are based on image 
gradients have different distributions as the depth changes. 
In a similar token, human activities can be thought of as 
parts/points moving in 4D space. The conventional video-
based features (e.g. STIPs) will have different distributions 
for different depth ranges. Therefore, we propose to model 

depth distributions and augment the codebook so that the 
codewords are depth dependent.  

More specifically, we propose a technique, called acti-
vity depth mapping (ADM), which is represented by Gaus-
sian Mixture Models (GMM) whose parameters are lear-
ned from training samples. The learned ADMs affect acti-
vity distribution over depth layers each corresponding to 
one of components of the GMM components. Instead of 
using fixed depth layers, we propose a novel depth induced 
feature representation, called Depth-Induced Multiple Cha-
nnel STIPs (DIMC-STIPs). Moreover, we discuss two 
common issues in RGBD data collected by Kinect devices, 
Kinect calibration and noise removal. Finally, we validate 
the proposed approach on RGBD-HuDaAct [26].  

This paper is organized as follows. Section II reviews 
some related work. Section III introduces the framework of 
the proposed approach. Section IV presents how to model 
and learn activity depth mappings of human activities. We 
discuss Depth Induced Multi-Channel STIP (DIMC-STIP) 
feature representation in Section V. Moreover, we discuss 
two common issues about RGBD data using Kinect devi-
ces in section VI. The experimental results are shown in 
Section VII. Section VIII concludes this paper. 

2 Relate work 

Many different approaches have been proposed for human 
activity recognition. These techniques have been surveyed 
recently in [40], [27], [24], [35]. Roughly, we divide acti-
vity recognition techniques into four categories, Bag-of-
Features/SVM (BoF/SVM) approaches [17], Deformable 
Part Models (DPM) approaches[39], silhouette representa-
tion [3], [5], [14], [22], feature trajectories [38], [21], [23], 
[31]. Most of those activity recognition approaches are 
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only using x − y − t features. This section mainly presents 
the related work on activity recognition using x − y − z − t 
features.  

Thanks to the recent emergence of Microsoft Kinect 
devices, depth based activity recognition has drawn much 
effort in computer vision community recently [26], [33], 
[34], [15], [30]. Li el al. [18] proposed a bag-of-3D-points 
feature representation for activity recognition from depth 
map sequences, where the 3D points are sampled from the 
silhouettes of the depth maps. They used an action graph as 
their classification framework, where each action is enco-
ded in one or multiple paths in the action graph. Each node 
of the action graph denotes a salient postures. Since acti-
vities consist of a sequence of well defined sub-activities, 
the other category models the dynamics of the activities 
explicitly using statistical techniques. Sung et al. proposed 
a hierarchical Maximum Entropy Markov Model (MEMM), 
where a person’s activity is composed of a set of sub-acti-
vities and the two-layered graph structure is inferred by 
using a dynamic programming approach. Sempena et al. 
proposed exemplar-based sequential single-layered app-
roach using Dynamic Time Warping (DTW) to recognize 
actions, and performed body part tracking using depth 
information to recover human body joints in 3D coordinate 
system [29]. The BoFs/SVM approaches are widely used 
in activity recognition due to its simplicity and effectti-
veness [17], [37], [32]. Ni et al. proposed a Depth-Layered 
Multi-Channel STIPs (DLMC-STIPs) framework [26], 
where STIPs were divided into multiple depth layered cha-
nnels, and afterwards those STIPs within different depth 
layers are pooled correspondingly. Finally, it yields multi-
ple depth channel histogram representation. Meanwhile, Ni 
et al. proposed a 3D Motion History Images (3D-MHI) 
using depth information in the same paper. Zhang et al. 
proposed a new 4D local spatio-temporal feature that com-
bines both intensity and depth information, which is detec-
ted by along the 3D dimensions and the 1D temporal 
dimension to detect a feature point [41]. Here, Latent Diri-
chlet Allocation with Gibbs sampling is used as the clas-
sifier.  

For better evaluating depth based activity recognition 
approaches, several activity datasets are collected by using 
Kinect devices in very recent years [26][34][41]. The 
RGBD-HuDaAct collected by Singapore Advanced Digital 
Science Center aims at home daily activities [26]. This 
database includes 12 categories, make a phone call, mop 
the floor, enter the room, exit the room, go to bed, get up, 
eat meal, drink water, sit down, stand up, take off the 
jacket and put on the jacket. Also, there is a background 
activity that contains different types of random activities. 
There are 30 subjects to perform these daily activities, 
which are organized into 14 video capture sessions. Each 
subject repeats 2-4 times and each video sample spans 
about 30-150 seconds. Therefore, there are 1189 labeled 
video samples in total. As the authors mentioned that the 
size of the database is still growing. The Robot Learning 
Laboratory at Cornell University collected an unstructured 
human activities dataset in unstructured environment for 
smart homes and personal assistive robotics [33], [34]. 
This dataset were collected by the Kinect sensor in five 
different environments: office, kitchen, bedroom, bath-

room, and living room. Moreover, there are twelve daily 
activities, brushing teeth, cooking, writing on whiteboard, 
working on computer, talking on phone, wearing contact 
lenses, relaxing on a chair, opening a pill container, drin-
king water, cooking, talking on a chair, and rinsing mouth 
with water. This dataset not only provides RGBD images, 
but also provides skeleton motion data. The LIRIS human 
activities dataset contains RGBD videos showing people 
performing ten activities taken from daily life, discussion 
between two or more people, giving an object to another 
person, putting /taking an object into/from a box/desk, 
entering/leaving a room without unlocking, trying to enter 
a room, unlocking and entering a room, leaving baggage 
unattended, handshaking, typing on a keyboard, telephone 
conversation [1]. To evaluate the 4D local spatio-temporal 
features for activity recognition, a dataset is built with a 
Kinect installed on a Pioneer mobile robot [41]. This data-
set currently contains six human activities, lifting, remo-
ving, pushing, waving, walking, and signaling. Each acti-
vity has 33 samples where each sample lasts 2 to 5 
seconds.  

3  The overview of the proposed approach 

In this paper, we propose a novel depth induced local 
feature representation. First, we use Gaussian Mixture 
Models to capture important depth structures instead of 
fixed and unified layer dividing strategy. By doing so, we 
not only discard STIPs from clustered backgrounds due to 
both camera motion and noises, but also improve the 
distinctive ability of STIP feature representation by using 
depth components learned from the depth information of 
training STIPs. Furthermore, the learned GMM is used in 
the feature pooling step. Compared to DLMC-STIPs, we 
pool features along Gaussian depth components encoded in 
the learned GMM. Second, we use noise removing and 
Kinect alignment between RGB data and depth data to 
improve activity recognition performance.  

Figure 1 illustrates the system framework of the pro-
posed approach, which consists of two modules: training 
and testing. The training module learns the depth mapping 
and the classifier. The test module performs classification 
for any given video clip. The learning module is different 
from the conventional bag-of-words based classification 
framework in two aspects. First, It learns the GMM para-
meters of the activity depth mappings. Second, it generates 
the depth induced multi-channel (DIMC) feature represen-
tation. Given a set of training video clips, we first extract 
the STIPs from the RGB channel*. For each STIP, we store 
both its HOG-HOF feature descriptor and the correspon-
ding depth value. The extracted STIPs are clustered to 
form a dictionary. The depth values of the extracted STIPs 
are used to learn the GMM parameters of the activity depth 
mappings. For each training video, we can then obtain its 
depth induced multi-channel (DIMC) histogram vector. 
The DIMC histogram vectors are used to train a SVM. We 
have developed an efficient spatio-temporal bilateral filter 
to remove depth noises, and a Kinect calibration for RGBD 
alignment. Both the depth noise removal and the RGB-D 
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alignment are important for the performance of the activity 
depth mappings. 

 

FIGURE 1 The framework of the proposed approach  

for human activity recognition. Note that the gray rectangles  
denotes the novel parts in this paper. 

4  Learning activity depth mapping 

Let 1 2{ , ,......., }CX X X X  be all training samples, where 

1{ } cNC c

i iX X   is the set of STIPs extracted from training 

samples of the cth activity, 

where ={ , , , , }C T

i i iX x y z HOG HOF .  

Here, , , , ,i i i i ix y z t   are the 3D coordinate (x, y, z), 

temporal index, and the scale of the detected feature point, 

respectively. HOG and HOF are the feature vectors of his-

togram of gradient and optical flow, respectively. Given 
1 2{ , ,......., }CZ Z Z Z , where 

1{ } cNC

i iZ z   , we can model 

class-independent Activity Depth Mappings (ADM) over 

all activities using GMM  

1
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
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where ( | , )k kN z u   is the kth component of the mixture; 

ku  is depth mean, 
k  is depth variance, and Kw  is the 

mixing weight. Here, each component could correspond to 

one important depth structure of activities. Moreover, 
ku  

denotes the depth position, and Kw  measures the relative 

importance degree of this component compared with the 

rest of the mixture. Instead of using class dependent ADM, 

we use class independent way to model depth distribution. 

By doing so, we can simply the feature pooling step with-

out falling into the issue of class-dependent depth layer 

selection in the histogramming step.  

Now, we can use Expectation Maximization to estimate 

the parameters of the GMM (refer to [4]), 1 2{ , ,......, },Kw w w   

1 2{ , ,......, }ku u u u , and 1 2{ , ,......, }K   . Usually, 

we can take K = 8 ∼ 10 in our experiments. After obtaining 

GMM distribution, we will remove the component { , }k ku   

with very small weights Kw . To simplify descriptions, we 

still assume there are K components of GMM in the rest of 

paper.  

Given the GMM of the activity depth mappings, we 

can classify each STIP into one of the GMM components 

according to its depth value z by  

2
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
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We would like to point out that there are two ways to 

model depth information, whole depth images and just 

depth of STIPs. The simple yet effective way to use depth 

information is to just model depth distribution of STIPs. 

Alternatively, we can first model whole depth distribution 

of both activities and background. However, most of STIPs 

focus on human activity not on background. Hence, we use 

the first way to model activity depth mappings. 

5  Depth induced STIP feature representation 

Local interest points along with both space and time con-

tain significant local variation of video intensities and mo-

tions. Spatio-Temporal Interest Points are one of the most 

popular action representations, and Laptev et al. proposed 

the most representative STIPs, 3D Harris detector [16], 

which is a natural extension of 2D Harris detector [13]. 3D 

Harris interest points are local extremes of second-moment 

matrix, a 3-by-3 matrix composed of first order spatial and 

temporal derivatives. Upon the localization of STIPs, His-

togram of Gradient (HOG) and Histogram of Flow (HOF) 

are important yet popular video features in videos [10], 

[20], [16], [11], [12]. Hence, STIP features consisting of 

HOG and HOF are widely used in activity recognition. 

Bag-of-Feature representation of activities can be obtained 

by the two steps, STIP feature coding and feature pooling. 

First, the STIP features are coded by being quantized into 

visual codewords. Second, each video clip is represented as 

a histogram vector over a visual codebook by pooling 

functions. Furthermore, an nonlinear trained SVM can be 

usually used in activity recognition.  
In this paper, we propose a depth induced STIP feature 

representation as follows.  

Given training samples 1 2{ , ,....., }CX X X , we learn 

dictionary by unsupervised clustering on HOG and HOF 

thus resulting in visual codeword set of size M for all 

activities. Define each video clip 
1 2{ , ,......., }NV X X X  

as a set of N STIPs, where { , , , , }T

n n n nX x y z HOG HOF . 

In the coding step, we assign feature vector nX  as k

nv   by 

calculating the distance between zn  and component 

l{ , }lu   using Eqn. (2). Here, k

nv  is a K M assignment 

vector with one of the element within the range of k(M-1) 

to (k+1)(M-1) as 1 and the others as 0s. We use feature 

pooling to generate the global histogram vector of video 

clip V by aggregating local STIPs  

1

1 N
k

n

n

h v
N 

   , (3) 
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Similar to depth-layered multi-channel representation in 

[26], we use depth gaussianization multi-channel represen-

tation to form h. In the feature pooling step, the histogram 

vectors of each video clip over visual codewords are depth 

dependent. The proposed feature representation is called 

Depth Induced Multi-Channel STIPs (DIMU-STIPs) fea-

ture representation. 

6 Experiment results and analysis 

6.1. EXPERIMENT SETUP 

Local In this paper, we use RGBD-HuDaAct database [26] 

for validating the proposed algorithm. For better compari-

son with DLMC-STIPs, we follow the experiment setup in 

[26]. Hence, we use 18 subjects with 9 capture sessions, 

and 702 video samples belonging to 13 activity categories 

for evaluating the proposed approach. In our experiments, 

the dimensions of HOG and HOF are 72 and 90, respec-

tively. We use Ivan’s STIP implementation to extract inte-

rest point*, and classifying accuracy and class confusion 

matrix are used as evaluation approach. Moreover, we use 

LibSVM [8] to classify human activities as multi-class cla-

ssification and a leave-one-out strategy is used to evaluate 

the generalization capability of the proposed approach.  
In the following sections, we use two sets of experi-

ments to validate different issues of the proposed approach: 
(1) How many GMM components are the best for activity 
recognition? (2) Is a general dictionary better than a depth 
induced dictionary?  

6.2. THE NUMBER OF GMM COMPONENTS 

In our experiments, we compare activity recognition among 

DLMC-STIPs, the traditional STIPs, and Depth Induced 

Mutli-channel STIPs (DIMC-STIPs). We perform K-means 

clustering to the set of STIP features thus resulting in code-

books with size M. In our experiment, we take M = 256 

due to only slight performance difference among different 

M . The comprehensive evaluation over different values of 

M, 128, 256, and 512, can refer to [26](Table 2). Instead of 

fixed equally spaced layers dividing strategy in [26], we 

divide all STIPs into different depth layers, where each 

depth layer corresponds to one of components of the GMM. 

Hence, we generate the histogram vector of each video clip 

over each depth layer according to depth distribution of all 

STIPs. Finally, we concatenate K channel histogram vec-

tors into an M×K dimensional feature vectors.  
Table 1 shows the activity recognizing accuracies using 

different number of GMM components, K = 2, 3, 4, 5. The 
parameters of learned GMM shows in Table 2. From this 
table, we can see that: (1) The accuracy of activity recogni-
tion using K = 3 is better than those of the others. (2) The 
general Activity Depth Models contain two classes, human 
posture depth distribution and background depth distribu-
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tion. According to the components of learned GMM, it’s 
easy to see that one component with much bigger mean 
since the background is much further away from Kinect 
cameras. 

TABLE 1  Experimental comparison on the RGBD-HuDaAct dataset 
among different number of GMM components 

K K=2 K=3 K=4 K=5 

Acc. 86.37% 87.71% 85.14% 83.49% 

TABLE 2  The parameters of learned GMM, K=3 

Para. Comp. 1 Comp. 2 Comp. 3 

  0.62912 117.81 195.33 

  1.07 29.24 20 

  4.5% 82.57% 12% 

Table 3 shows the experimental comparison between 
DLMC-STIPs and DIMC-STIPs. The average accuracy for 
DLMC-STIPs is 85.50% and for DIMC-STIPs is 87.71%. 
We can see that the DIMC-STIPs approach significantly 
outperforms DLMC-STIPs. 

TABLE 3  Experimental comparison between DLMC-STIPs and DIMC-
STIPs 

Types DLMC-STIPs DIMC-STIPs 

Accu.  85.5% 87.71% 

6.3. DEPTH LAYERS-DEPENDENT&DEPTH 
LAYERS-INDEPENDENT DICTIONARY 
LEARNING 

In this section, we validate that depth induced dictionary 
learning is not benefit for dictionary learning. There are 
two potential cases, general dictionary and depth induced 
dictionary. In depth induced dictionary learning, we can 
generate different codewords over different depth layers. 
Table 4 shows that the performance of general dictionary is 
better than that of depth induced dictionary. 

7  Conclusion 

In this paper, we have proposed an depth induced multiple 
channel feature representation for activity recognition. We 
have introduced Activity Depth Mappings to model depth 
distribution of all activities by learning the parameters of 
GMMs. The approach has been evaluated on the popular 
public activity dataset, RGBD-HuDaAct. The experiments 
show that the proposed approach is better than existing 
approaches. 

TABLE 4  Experimental comparison on the RGBD-HuDaAct dataset 
using general dictionary and depth induced dictionary, 
respectively, K=3 

Types General dictionary Depth-induced dictionary 

Accu. 87.71% 86.97% 
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