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Abstract 

This paper presents finite-time synchronization for the unified chaotic system. The master-slave system synchronization is achieved 
within a pre-specified convergence time. Based on the Lyapunov stability theory and the finite-time stability theory, the finite-time 
controller is derived to make the state of two unified chaotic systems synchronized within finite-time. At the same time, the state of 

the slave system exponentially synchronizes state of the master system. At last numerical simulations are presented to shows the 
effectiveness of theoretical analysis. 
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1 Introduction 

In 1963 Lorenz found the first attractor and chaos theory 
was developed [1]. Then many new chaotic systems and 
methods are successively found. Especially the nonlinear 
dynamics of chaotic system as well as chaos control and 
chaos synchronization have been researched by many 
researchers, as in [2-6]. 

The main idea of synchronization is to make the state 
of the slave system follow the state of the master system 
asymptotically. The master system and slave system may 
have identical or completely different structures. From a 
practical point of view, it will be more reasonable to realize 
synchronization in a given time. To achieve faster 
convergent in control systems, finite-time control is a very 
useful technique. Moreover, the finite-time control 
technique has demonstrated better robustness and 
disturbance rejection properties. Finite-time stability is of 
finite-time control. The solutions of an asymptotic system 
reach the equilibrium point. To illustrate this fact, let us 
consider the following scalar system [7]. 
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The solution converges to the equilibrium 0x   within 
a finite time. This example suggests that in order to achieve 
finite-time stability, non-smooth or at least non-Lipchitz 
continuous feedback must be employed, even if the 
controlled plant ( , , )x f x u t  is smooth. 

Many research works have been done on chaos 
synchronization base on finite time [8-11]. Basically, two 

haotic systems are synchronized by controller, which is 
equivalent to the asymptotic stability of the error system. 
Many methods have been developed to stabilize the 
chaotic system on finite time [12-19]. In this paper, finite-
time synchronization is investigated for the unified chaotic 
system. Based on finite-time stability theory and Lyapunov 
stability theory, the controller is derived to make the state 
of two the unified chaotic system synchronizes within 
finite-time. At the same time, the state of the response 
system exponentially synchronizes state of the drive 
system with exponential rate. 

2 Problem description 

Considering the following master-slave system which 
contains the unified chaotic system. 

Master system 
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where  0,1  . System (1) is chaotic for  0,1  . 
When  0,0.8  , system (1) reduces to the general 
Lorenz system; when 0.8  , it becomes the general Lu 
system; and  0.8,1  , system (1) is the general Chen 
system [7]. 

In this paper, we design controller 

 1 2 3
( ) ( ), ( ), ( )
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u t u t u t u t  such that the states 
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 of the slave system (2) track the states 
1 2
( ), ( )x t x t  

and 
3
( )x t  of the master system (1), respectively. The state 

of the slave system (2) track state of the master system (1) 
within a guaranteed convergence time T. In other words, 
the controller ( )u t  is designed to achieve exponential 
synchronization and the finite convergence time is 
calculated too. 

3 Preliminary definition and lemma 

Let the synchronous error vector between the master 
system (1) and slave system (2) be defined as 

 

 

1 2 3

1 1 2 2 3 3

( ) ( ) ( ) ( )
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T
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t x t t x t t x t

 
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 (3) 

Before deriving the main theorem, there is some 
precise definition to be given as follows. 

Define 1: The slave system (2) exponentially 
synchronizes the master system (1), if there exists a 
tracking control ( , )u t R  and positive constant h  and   
such that the synchronous error satisfies 

( )  exp( ), 0e t h t t    
 

Here, the constant   is called the exponential 
convergence rate. 

Define 2: Consider the master system (1) and slave 
system (2) to realize finite-time synchronization. Then if 
there exists a positive value T  such that 

( )lim 0  
x T

e t



 (4) 

and ( ) 0e t  , if Tt  ,  then master-slave synchronization 
of system (1) and system (2) is achieved within the finite-
time T . 

Lemma 1: Suppose that a continuous and positive 
definite function ( )W t  is a system’s Lyapunov function 
candidate. If ( )W t  satisfies the following differential 
inequality, 

( ) ( ) (t), t 0,W(0) 0,(5) W t W t W      
 

and ( ) 0,W t t T   , then the finite time T  is given by 

1-T ln(( W (0) ) 1) (1 )         (6) 

Then the system is exponential finite-time stable, where 

, 0    and 0 1   are constants. In the Equation (6) 

  and   are called the exponential and finite-time 

convergence rates, respectively. 

Lemma 2: The following inequality holds 

2 2 2 2 2 2

1 1 2 2 n n h 1 2 n(c a c a c a ) -c (a a a ) ,        
 (7) 

where ( 1,2, , )ic i n are positive numbers and 

 1 2min , , ,h nc c c c . 

Lemma 3: The following inequality holds 
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where ( 1,2, , )id i n  are positive numbers, 

( 1,2, , )ia i n  are positive numbers, 

 1 2min , , ,h nd d d d , 0 1b  . 

Proof: When 0 1b  , ( 1,2, , )ia i n  are positive 

numbers and  1 2min , , ,h nd d d d  , we can obtain 

b b b b b b

1 1 2 2 n n h 1 h 2 h n

b b b

h 1 2 n

d a d a d a d a d a d a

d (a a a ) .

      

   
 

Based on the Lemma 2 of paper [8], we can deduce 

that 

b b b
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Lemma 1: The controller ( )u t of the slave system (2) 

satisfies 
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where ( 1,2,3) 0ik i   , ( 1,2,3) 0i i   , p  and q  are 

two positive odd integers and qp  . 

Proof: From Equations (1)-(3), we deduce that, for 

every 0t  , 
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Choose the following Lyapunov function 

2 2 2

1 2 3

1
( ) ( ( ) ( ) ( )). 

2
W t e t e t e t    (11) 

The time derivative of ( )W t  along the trajectories of 

the closed-loop system (11) 

1 1 2 2 3 3( ) ( ) ( ) ( ) ( ) ( ) ( ).W t e t e t e t e t e t e t    (12) 

Substituting Equation (10) into Equation (12) 
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where 1 2 3min( , , )hk k k k , 
2

p q

p



 , 1 2 3min( , , )h    . 

 

So the Equation (13) satisfies Lemma 1. 

Remark 1: p  and q  are two positive odd integers, 

qp  is even number, qp  , so 0 1  . The 

reason for this is that if p  is even and q  is odd, then 

)(te
p

q

i ,  1,2,3i  are always positive. Thus, it may 

cause the system to be unstable when ( )ie t  are negative. 

In contrast, if q  is odd and p  is even, then the states of

)(te
p

q

i ,  1,2,3i  will become complex numbers 

when ( )ie t  is negative. 

Remark 2: In Equation (9), 1( )e t , 2 ( )e t  and 3 ( )e t  all 

choose the same exponent 
p

q
. The reason for this is that 

if 1( )e t , 2 ( )e t  and 3 ( )e t  all choose the different exponent 

then we cannot apply Lemma 2 and Lemma 3 to satisfy 

conditions of Lemma 1. 

From Equation (13), it is easy to deduce that  

 
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t W t t W t
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t W t t
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It follows that 

 
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d
t W t dt t W t W
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


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Thus, from Equations (11) and (14), it can be obtained 

that 

2
( )  2 ( ) 2 (0)exp( 2 ), 0.e t W t W t t      

Consequently, we conclude that 

( )  2 (0) exp( ), 0e t W t t     

According to the results discussed above, 

synchronization is still achieved exponentially with the 
controller (9). 

In this section, the main result is illustrated to show 

validity and correctness. Figure 1 - Figure 4 shows the 

numerical simulation results when the initial condition as 

follows, 

1 2 3(0) 0.5, (0) 0.1, (0) 3,x x x    

1 2 3

3
(0) 1, (0) 1, (0) 2, .

5
y y y      

Figure 1 shows the numerical simulation result when 

the initial parameters as follows, 

1 2 3 1300hk k k k    , 1 2 3 60h       . 

Figure 2 shows the numerical simulation result when 

the initial parameters as follows, 

1 2 3 1100hk k k k    , 1 2 3 60h        

Figure 3 shows the numerical simulation result when 

the initial parameters as follows, 

1 2 3 1000hk k k k    , 1 2 3 50h       . 

Figure 4 shows the numerical simulation result when 

the initial parameters as follows, 

1 2 3 1000hk k k k    , 1 2 3 90h       . 

From Lemma 1 it can be obtained that the slave 

system (2) will synchronize the master system (1) within 

app:ds:odd
app:ds:even
app:ds:number
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the time 
33.5 10 , 

34.35 10 , 
34.95 10 , 

34.15 10 , 

respectively. So it can be obtained that when 
h

  is fixed, 

the synchronization time is more short with the increasing 

of value of 
hk . When 

hk  is fixed, the synchronization 

time is more short with the increasing of value of
h

 . 

t/s 

FIGURE 1 Synchronization error when 1300, 60h hk    

t/s 

FIGURE 2 Synchronization error when 1100, 60h hk    

t/s 

FIGURE 3 Synchronization error when 1000, 50h hk    

t/s 

FIGURE 4 Synchronization error when 1000, 90h hk    

 

4 Conclusions 

This paper proposes finite-time synchronization for the 
unified chaotic system. At the same time, the state of the 

slave system exponentially synchronizes the state of the 

master system. Based on the Lyapunov stability theory 

and the finite-time stability theory, the finite-time 

controller is derived to make the state of two unified 
chaotic systems is finite-time synchronization. Numerical 

simulations are presented to shows the effectiveness of 

theoretical analysis. 
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