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Abstract 

Aiming at such problems as grasping space limitation, unknown target configuration, DOF redundancy of dual arm and singular 
configuration for collision avoidance motion planning of simultaneous grasping of high-dimensional space humanoid robot, firstly, forward 
kinematics for dual arm of humanoid robot and SVD-based inverse kinematics models have been established. Secondly, this paper has put 
forward a parallel algorithm for dual arm grasping motion planning framework integrating SVD and RRT techniques and DAGRRT 
collision avoidance motion planning. Finally, the correctness and effectiveness of the algorithm proposed in this paper has been verified 
via computer 3D visualization simulation. 

Keywords: humanoid robot, dual arm grasping, rapidly-exploring random tree (RRT), singular value decomposition (SVD), DAGRRT planner, parallel 

algorithms. 

 

1 Introduction 
 
The collision avoidance motion planning of complex space 
object grasped by dual arm of humanoid robot is a typical 
high-dimensional C-space and nonlinear constrained 
motion planning issue as well as a challenging frontier 
research field [1-4]. It is becoming a research focus for 
scholars at home and abroad [5-10]. 

At present, the motion planning of high-dimensional 
space robot mainly includes two kinds of typical random 
sampling methods: Probabilistic Road Map (PRM) [11-15] 
and Rapidly-exploring Random Tree (RRT) [16-21]. 

Kuffner and Wang Wei et al succeeded in applying RRT 
method in bipedal robot H5 to solve such motion planning 
problems as walking, gesture conversion, single arm 
grasping and control [22-24]. As for the structure of joint-
type humanoid robot lacking the analytical solution for 
inverse kinematics, these literatures provide the heuristic 
information mainly according to the robot’s configuration 
state in the work space end effector, adopt the RRT motion 
planning method based on random sampling theory and 
provide new solution ideas for the motion planning of 
humanoid robot. Bertram et al utilized the distance 
measurement for the end effector of humanoid robot in work 
space opposite to the object configuration as the heuristic 
information for C-space motion planning, and led RRT 
algorithm to rapid expansion of target configuration [25]. 
Weghe et al utilized Jacobi matrix transposition method to 
directly translate the heuristic information in work space 
into joint space configuration, which has improved the 
performance of motion planning algorithm of humanoid 
robot [26]. Berenson et al utilized the projection technology 
to put forward limited two-way RRT algorithm, move the 
sampling road points in C-space to the constraint manifold 
and realize the rapid motion planning of single arm grasping 
of mechanical arm with 7 DoFs [27-29]. 

Aiming at the collision avoidance motion planning of 
dual arm grasping of humanoid robot, this paper firstly 
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studies the modelling methods for forward kinematics and 
inverse kinematics of dual arm. Secondly, it has put forward 
the framework model for collision avoidance motion 
planning of dual arm grasping based on RRT as well as a 
parallel processing algorithm for DAGRRT collision 
avoidance motion planning integrating SVD and RRT 
techniques. Finally, the correctness and effectiveness of the 
algorithm proposed in this paper has been verified via 
computer 3D visualization simulation. 
 
2 Model For Dual Arm Kinematics 
 
2.1 FORWARD KINEMATICS 
 
Refer to Fig.1 for schematic diagram for dual arm model of 

humanoid robot studied in this paper. Left (right) arm has 7 

rotational DOFs, and D-H method is adopted to describe 

each rotational joint parameter ( k

iq , k

i , k

ia , k

id ). Each 

coordinate system is recorded as ( , , )k k k k

i i i ix y z , and 

each joint angle as k

iq  and arm configuration as 

0 6, ...,
T

k k kq q   q (k=R, L refer to left/right arm; i=0~6 

refer to 7 rotating joints including shoulder 1, shoulder 2, 

upper arm, elbow, forearm, wrist 1 and wrist 2). If sin k

iq  

and cos k

iq are simplified as k
iq

s  and k
iq

c , the homogeneous 

transformation matrix 1( )k i k

i iqT  between the coordinate 

systems 1

k

i  and k

i  can be expressed as Formula (1):  
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Figure 1 Schematic diagram for dual arm of humanoid robot 

When taking dual arm centre (CoA) as an original point 
of the reference coordinate system 

0 , the matrix form of 
forward kinematical equation for dual arm can be expressed 
as Formula (2):  

70

7 10
( ) ( )k k k i k k

i i tcpi
q

 T q T T , (2) 

Wherein, 
0 0 0 1

k k k k

k

tcp

 
  
 

n o a p
T  refers to 

homogeneous matrix of TCP configuration of humanoid 

robot, kn , ks , ka  and 
kp  refer to normal vector, sliding 

vector, approach vector and position vector of left (right) 

arm. Formula (2) can be converted into the classic vector 

form expressed in Formula (3):  

( )k k kx f q , (3) 

Wherein, 
7k Rq  refers to configuration vector of left 

(right) arm of humanoid robot, 
6[ , , , , , ]k x y z R   x  re-

fers to TCP configuration vector at the end of left (right) arm, 
including 3D position vector (x, y, z) and 3D Euler angle 
( , , )    configuration vector. The configurations ex-
pressed by Euler angle and the configuration described by 
rotation matrix [ ]R n o a  have the following transfor-
mational relation. If the Euler angle is known, the rotation 
matrix R  (4) can be inferred according to

, , ,z y z  R R R R :    

c c c s s c c s s c c s

s c c c s s c s c c s s

s c s s c

           

           

    

   
 

    
  

R . (4) 

If the rotation matrix R  is known, the Euler angle can 
be calculated according to Formula (5):  

tan 2( , )

tan 2( , )

tan 2( , )

y x

x y z

x y x y

a a a

a c a s a a

a s n c n s s c s

 

   







 


 
   

. (5) 

Considering that inverse cosine function cannot deter-
mine the characteristic of plus-minus sign of the angle, arc-
tan function atan2(y, x) is adopted in this paper to determine 
the Euler angle within [-π, π]. 
 
2.2 FORWARD KINEMATICS 
 
The time t is derived from Formula (3), and then the 
differential relation (6) between dual arm configuration 

k
q

and configuration k
x  of dual arm of humanoid robot:  

( )k k k

kx J q q , (6) 

Where, k
x  is the generalized velocity of the end of dual arm 

of humanoid robot in operating space, 
k

q  is the joint speed, 
and ( )k

kJ q  is the partial derivative matrix of 6x7. That is, 
it is Jacobi matrix of dual arm, and the elements in No. i  
line and No. j  row are:  

( )
( )

k k

k k i

ij k

j

f
J

q






q
q (i=0,…,5 j=0, …,6). (7) 

In the base coordinate system 
0 , Jacobi matrix

6 7( )k

k R J q of dual arm of humanoid robot can be 
expressed as Formula (8):  

1 0 1 6( ) [ ( ) ( )]k k k k k

k J q J qJ q , (8) 

Wherein, 1 0( )

k i k

k k i n

k

i

z p
J q

z

 
  
 

, k

iz  and i k

np  are the 

expressions in the base coordinate system
0 , and refers 

to vector product. Use singular value decomposition (SVD), 

( )k

kJ q can be expressed as Formula (9):  

( )k T

k k k kJ q U D V , (9) 

Wherein, 6 7

k R U  and 7 7

k R V  are orthogonal 
matrixes, 6 7

k R D . Thus, the generalized inverse matrix 
( )k

k


J q  can be written as the vector form in Formula (10):  

1

1

( )
r

k T

k i i i

i

v u 



J q , (10) 

Wherein, ,i i id   is ( )k

kJ q  eigenvalue of ( )k

kJ q , r  is 
the sequence of ( )k

kJ q . iu  and iv  refer to No. I row of 

kU  and 
kV  respectively.  

Therefore, according to Formula (6), the differential 
form for inverse kinematics of dual arm of humanoid robot 
based on SVD can be written as Formula (11):  
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( )k k k

k

q J q x . (11) 

To facilitate the numerical calculation, the increment 
equation for inverse in Formula (11) can be expressed as 
Formula (12):  

( )k k k

k

  q J q x . (12) 

 
3 DAGRRT algorithm 
 
Refer to Fig.2 for simultaneous grasping of 3D space object 
by the dual arm of humanoid robot integrating RRT and 
SVD techniques and the framework of collision avoidance 
motion planner DAGRRT (Dual-Arm Grasping RRT). 
Refer to Algorithm 1 for its core pseudo-code realization. 
DAPGT: DArms Parallel Grasp Trajectory; SAGT:Single 
Arm Grasp Trajectory. 

Algorithm 1: DAGRRT( L

sq , R

sq ,
objx ) { 

01 LRRT = GRRT( L

sq , objx );// construct grasping object of 

left arm 

02 RRRT = GRRT( R

sq ,
objx );//construct grasping object of 

right arm 

03 LRRT .start(); RRRT .start();//start planning process of 

left and right arms 

04  do { 

05#pragma omp parallel // OpenMP parallelization of left 

arm algorithm. 

06   Ls = LRRT .getNewPath();//process the outcome of left 

arm planning 

07   if( Ls ) ｛//if the path is non-void 

08     LS .add( Ls ); add it to the outcome set of left arm 

planning 

09     foreach( R Rs S ) {//traverse the outcome set of right 

arm planning 

10        //if meeting grasping quality criteria and collision 

avoidance requirements 

11        if(GraspScore( Ls , Rs )>
mings )&& 

12           !Collision( Ls , Rs ) ) { StopLoop=true; 

13     }} 

14#pragma omp parallel // OpenMP parallelization of right 

arm algorithm. 

15   Rs = RRRT .getNewPath();//process the outcome of 

right arm planning 

16   if( Rs ) ｛//if the path is non-void 

17     RS .add( Rs ) add it to the outcome set of left arm 

planning 

18     foreach( L Ls S ) {// traverse the outcome set of left 

arm planning 

19        if(GraspScore( Ls , Rs )> mings )&& 

20           !Collision( Ls , Rs ) ) { StopLoop=true; 

21     }} 

22  }while(!StopLoop);  

23#pragma omp critical //the main thread waits for the 

completion of other paralleled tasks 

24 LRRT .stop(); RRRT .stop ();//stop the planning process 

of left and right arms 

25 return CreatePath( Ls , Rs ) ;} 

 

FIGURE 2 DAGRRT planner framework 

Explanation for Algorithm 1: To realize the parallel plan-

ning of dual arm grasping, left (right) arm grasping planner 

GRRT( k

sq , objx ) adopts independent thread realization 

(k=R, L refer to left and right arms), and the superscript L($) 

is marked as relevant planning parameters of left (right) 

arms. Multi-core technology based on OpenMP is used to 

realize the parallelization processing for the algorithm so as 

to accelerate the planning. Parameter 
mings is the minimum 

evaluation index to judge the effectiveness of object grasped 

by dual arm. L

graspC  and R

graspC  refer to the contact point sets 

for left and right hands. According to the hand grasping for-

ce closing principle obtained from the analysis of grasping 

wrench space (GWS), the union set graspC  L

graspC R

graspC  

can be used to adjust contact force, construct the convex hull, 

which is similar to single hand and then realize the pseudo-

code of GraspScore ( Ls , Rs ), as shown in Algorithm 2 

( L

contactn  and R

contactn  refer to the minimum finger quantity for 

left and right hands to contact with the objects.). Collision 

( Ls , Rs ) is realized by adopting HBV (Hierarchical 

Bounding Volume) algorithm for directions, and its basic 

idea is as follows: A big solid bounding volume is used to 
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substitute the geometrical model of complex objects. By in-

tersection test among bounding volumes, the non-intersec-

tion basic geometrical element pairs can be quickly elimina-

ted so as to reduce the workload of intersection test. To reali-

ze the collision detection precision, the hierarchical method 

should be firstly adopted to establish HBV and approach to 

the complex geometrical model until all characteristics of 

the model can be completely described, and then separating 

axis theory can be used to conduct dual traversal test among 

bounding box trees so as to judge whether there is any 

collision [30-34].  
 

Algorithm 2: GraspScore(s, Rs ){ 

01 L

graspC  GetContactPoints( Ls );//calculate the contact 

point set for left hand 

02 
R

graspC
GetContactPoints( Rs );//calculate the contact 

point set for left hand 

03 if(
L L

grasp contactC n ||
R R

grasp contactC n ) return 0; 

04 graspC  L

graspC R

graspC ; 

05 return GraspQualityMeasure( graspC );} 

 
Refer to Algorithm for pseudo-code realization of left 

(right) arm grasping planner GRRT algorithm.  
 

Algorithm 3: GRRT( k

sq , objx ) { 

01 kRRT .initConfig( k

sq );//set initial configuration of RRT 

tree 

02 StopLoop=false;// set stop loop mark 

03 do { 

04 rf = rand()* (1.0/(0x7fff));// generate random sampling 

probability between (0, 1)  

05 if ( rf <= f ConnectJacobian){// execute routine 

extend/connect 

06 ExtGraspStatus=
kRRT .ApproachToTarget ( objx ); 

07 switch (ExtGraspStatus) { 

08 case FatalError: StopSearch=true; break;//fatal error 

09 case TargetReached://reach target grasping configuration 

10 if (Grasps.size()<=0) StopSearch=true;//stop searching 

11 else { FoundSolution=true;//find search solution  

12 graspInfo = Grasps[Grasps.size()-1]; 

13 k

gq =getTargetConfig(graspInfo.nRrtNodeId);} 

14 break;}//obtain the target configuration 

15 }else {//Expand to C-space random configuration 

16 
kRRT .getRandConfig (

k

rq );//obtain C-space random 

configuration 

17 k

nq =
kRRT .NNConfig(

k

rq );//search RRT nearest 

configuration 

18 ExtStatus＝ kRRT .Connect ( k

nq , 
k

rq , k

newq ); 

19 
kRRT .addConfig( k

newq );//add new configuration to 

RRT tree 

20 if (ExtendStatus==ERROR) StopSearch=true; 

21  } 

22  Cycles++;//add 1 to search times 

23  if (StopSearch|| FoundSolution||(Cycles>MaxCycles)) 

24    StopLoop=true;//set stop loop mark 

25 } while(!StopLoop); 

26 getNewPath ( k

sq , k

gq ) ;} 

Explanation for Algorithm 3: Set f  ConnectJacobian 

as 0.3, the maximum cycle search times are MaxCycles＝

40,000. getRandConfig (
k

rq ) are evenly distributed in left 

(right) C-space. After random sampling, the random 

configuration 
k

rq = min

k
q + rand() * (1/ 0x7fff)*( max

k
q - min

k
q ) 

can be obtained. NNConfig (
k

rq ) seeks the configuration k

nq , 

which is nearest to 
k

rq  in left (right) arm rapidly-exploring 

random tree kRRT . That is, 
2

min k k

n rq q

6 2

, ,0
min ( )k k

n i r ii
q q


  . Connect ( k

nq , 
k

rq , k

newq ) realizes 

the expansion for left (right) arms of humanoid robot from 

the nearest configuration k

nq  to the random configuration

k

rq  until the obstacle is met. A new configuration k

newq  is 

obtained and added to 
kRRT . Its schematic diagram for 

operating principle is shown in Figure 3.  

 

 

 

 

 

 

 

 

FIGURE 3 Operating priniple of Connect (
k

nq , 
k

rq , 
k

newq ) 

ApproachToTarget ( objx ) is to adopt the core algorithm, 

in which SVD generalized inverse kinematics expands to 

the target configuration. Its pseudo-code realization is 

shown in Algorithm 4.  

Algorithm 4: ApproachToTarget ( objx ){ 

01 calculateGlobalGraspPose(grasp); //calculate global 

grasping object 

02 
arg

k

t etx ＝ ComputeTargetPose(grasp, objx );//target 

configuration 

03 k

nearq =
kRRT .GetNearestNeighbor(

arg

k

t etx );  

04 do { 

05 k

nearx =
kFK ( k

nearq );//forward kinematics of left (right) 

arms as per Formula (3)  

06 
arg

k k k

t et near  x x x ;//calculate Cartesian space 

configuration difference 
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07 k

stepx =LimitStepSize ( kx );// calculate configuration 

increment  

08 ( )k k

k near

 q J q * kx ; //obtain configuration increment 

as per Formula (12) 

09 k

nearq +＝ kq ;// calculate the new configuration after 

artificial arm moves the little configuration 

10   if (Collision ( k

nearq ) || !InJointLimits( k

nearq )) 

11      return FatalError; 

12   kRRT .AddConfig ( k

nearq ); 

13  }while (
k k

Threshold  x x ) ; 

14  return TargetReached; } 
Algorithm 4: No.05 code is realized according to the 

forward kinematics of left (right) arms of humanoid robot. 
No. 08 line code calculates the configuration increment and 
is realized according to increment equation (12) for inverse 
kinematics of left (right) arms based on SVD.  
 
4 Computer 3d Simulation 
 

Taking parallel grasping complex object by dual arm of hu-

manoid robot in a multiple-obstacle environment, this paper 

has conducted a lot of computer 3D visualization simulation 

experimental verifications and researches on the proposed 

DAGRRT collision avoidance motion planning algorithm. 

Refer to Table 1 for D-H ( is , i , ia , id ) parameters for 

dual arm of humanoid robot. Left (right) arm has 7 rotating 

joints, the configuration space is 0 6, ...,
T

k k kq q   q (k=R, 

L refer to left arm and right arm), each joint angle is randomly 

sampled within the scope of joint constraint. Open Inventor is 

adopted to construct 3D simulation scenarios including 

artificial dual arm, object and obstacle, and hierarchical 

bounding volumes algorithm for directions proposed by 

Gottschalk et al is applied to realize self-collision detection of 

dual arm of humanoid robot and scenario collision detection 

between humanoid robot and object or obstacle. Refer to 

Figure 4 for 3D display of planning outcome obtained from 

dual arm grasping object by DAGRRT algorithm, and 6 

rectangle obstacles are randomly placed in the work space of 

humanoid robot. Subgraph (1) is initial configuration for dual 

arm, the initial configuration of left arm end effector is 

( , , , , ,x y z    ) = (-729.387, 150.811, 1296.943, 1.669, 

0.992,-2.542), and the initial configuration of right arm end 

effector is (390.833, 138.736, 1320. 031,-1.214, 1.048, 0.587). 

Subgraphs (2) and (3) are the middle grasping configurations 

of dual arm. Subgraph (4) is the grasping target configuration 

obtained from planning. The target configuration of left arm 

end effector is -204.765, 516.069, 1302.585, -0.150, -0.952, -

2.499), and the target configuration of right arm end effector 

is (207.720, 416. 536, 1146. 943,-1.874, 0.587, 0.317). Fig.5 

is a 3D dynamic process of DAGRRT planning observed 

from different perspectives. Figure 6 is 3D effect for 

simultaneously displaying RRT path and grasping set. Figure 

7 is tracks after smoothness optimizing process of dual arm 

configuration obtained from DAGRRT algorithm. It can be 

seen from simulation outcome that the algorithm proposed in 

this paper can realize in parallel the operation task of collision 

avoidance motion planning of dual arm grasping object of 

humanoid robot accurately, effectively and efficiently in a 

complex obstacle environment.  

FIGURE 4 3D display of DAGRRT planning results 

FIGURE 5 3D dynamic process of DAGRRT planning 

FIGURE 6 3D effect for simultaneously displaying RRT path and 

grasping set 

(1) Initial configuration 

of dual arm grasping 
(2) Middle configuration 

of dual arm grasping 

(3) Middle configuration 

of dual arm grasping 
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Figure 7 Tracks after smoothness optimizing process of dual arm 

configuration 

 

TABLE 1 D-H parameters for dual arm of humanoid robot 

Joint 

Varia

bles 

Theta 

(rad) 

Alpha 

(rad) 

a 

(mm) 

d 

(mm) 

joint constraint 

(rad) 

0

Lq  π/2 π/2 0 0 [-π/2, π/2] 

1

Lq  π/2 π/2 0 0 [-π/2, π/2] 

2

Lq  -π/2 π/2 20 -310 [-23π/18,π/2] 

3

Lq  0 -π/2 0 -7.5 [-23π/18,π/2] 

4

Lq  π/2 -π/2 0 -240 [-π, π] 

5

Lq  -π/2 -π/2 0 0 [-π/2, π/2] 

6

Lq  -π/2 π/2 0 0 [-π/2, π/2] 

0

Rq  0 -π/2 0 0 [-π/2, π/2] 

1

Rq  -π/2 -π/2 0 0 [-π/2, π/2] 

2

Rq  π/2 π/2 20 -310 [-23π/18,π/2] 

3

Rq  0 -π/2 0 7.5 [-23π/18,π/2] 

4

Rq  0 π/2 0 -240 [-π, π] 

5

Rq  π/2 -π/2 0 0 [-π/2, π/2] 

6

Rq  0 π/2 0 0 [-π/2, π/2] 

 
5 Conclusion 
 
Grasping operation of dual arm collision avoidance of 
humanoid robot is a critical technique involved in the 
motion planning research of humanoid robot. Aiming at 
such problems as grasping space limitation, redundancy 
constraint and unknown target configuration, this paper has 
put forward a dual arm grasping motion planning DAGRRT 
framework integrating SVD and RRT techniques and the 
realization of parallel processing algorithm. On the one hand, 
it makes full use of rapidly-exploring random tree (RRT) to 
seek completeness characteristic of the path; on the other 
hand, it uses singular value decomposition (SVD) to seek 
configuration singularity, meet inverse kinematics of dual 
arm in joint constraint, lead the dual arm of humanoid robot 
to parallel and expand from initial configuration to target 
object, find a collision avoidance path and complete the 
object grasping by dual arm. This method is of universal 
significance to simultaneous grasping by dual arm or control 
operation of humanoid robot for dynamic target or unknown 
target position in a complex environment.  
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